• Scopus收录期刊
  • CSCD(核心库)来源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • F5000顶尖学术来源期刊
  • RCCSE中国核心学术期刊
高级检索

胡杨繁殖根系分枝特征及其与土壤因子的关联性

叶子奇, 邓如军, 王雨辰, 王健铭, 李景文, 张凡兵, 陈杰

叶子奇, 邓如军, 王雨辰, 王健铭, 李景文, 张凡兵, 陈杰. 胡杨繁殖根系分枝特征及其与土壤因子的关联性[J]. 北京林业大学学报, 2018, 40(2): 31-39. DOI: 10.13332/j.1000-1522.20170426
引用本文: 叶子奇, 邓如军, 王雨辰, 王健铭, 李景文, 张凡兵, 陈杰. 胡杨繁殖根系分枝特征及其与土壤因子的关联性[J]. 北京林业大学学报, 2018, 40(2): 31-39. DOI: 10.13332/j.1000-1522.20170426
Ye Zi-qi, Deng Ru-jun, Wang Yu-chen, Wang Jian-ming, Li Jing-wen, Zhang Fan-bing, Chen Jie. Branching patterns of clonal root of Populus euphratica and its associations with soil factors[J]. Journal of Beijing Forestry University, 2018, 40(2): 31-39. DOI: 10.13332/j.1000-1522.20170426
Citation: Ye Zi-qi, Deng Ru-jun, Wang Yu-chen, Wang Jian-ming, Li Jing-wen, Zhang Fan-bing, Chen Jie. Branching patterns of clonal root of Populus euphratica and its associations with soil factors[J]. Journal of Beijing Forestry University, 2018, 40(2): 31-39. DOI: 10.13332/j.1000-1522.20170426

胡杨繁殖根系分枝特征及其与土壤因子的关联性

基金项目: 

国家自然科学基金项目 31570610

林业公益性行业科研专项 201404304-6

详细信息
    作者简介:

    叶子奇。主要研究方向:恢复生态学。Email: 344425997@qq.com 地址:100083北京市海淀区清华东路35号北京林业大学林学院

    责任作者:

    李景文,教授,博士生导师。主要研究方向:恢复生态学。Email: lijingwen@bjfu.edu.cn 地址:同上

  • 中图分类号: S718.46 S792.11

Branching patterns of clonal root of Populus euphratica and its associations with soil factors

  • 摘要:
    目的胡杨根系克隆繁殖对胡杨林更新及其群落维持具有重要作用,而胡杨根克隆器官——繁殖根系的扩展分枝是实现克隆繁殖的重要生态过程。本文以明确胡杨繁殖根系分枝特征(节间长、分支强度、分支垂向和水平向夹度)在异质生境下的可塑性和主要分枝类型,探究胡杨繁殖根系特征与土壤因子的关系,找到影响胡杨繁殖根系变化的关键环境因子。
    方法采用典型抽样对16个样点的一段跨度10 m以上的繁殖根分枝以及对应的土壤因子进行挖掘和调查。运用相关性分析(CA)和主成分分析(PCA)方法分析繁殖根特征之间的相关性和分布规律。运用冗余分析(RDA)和方差分解探究根分枝特征与土壤因子的关联性。
    结果(1) CA和PCA结果显示,4个分枝特征之间的相关性较高(P<0.05),PCA第1轴解释了繁殖根特征变异的66.88%,基本代表了从占据型(分枝强、短、垂向角小、水平角大)到游击型(分枝弱、长、垂向角大、水平角小)两种极端分枝类型的变化。占据型分枝更多出现在林缘,而游击型分枝更多出现在靠近河道处。(2)RDA结果显示,垂向分枝夹角主要受土壤紧实度的正影响(R2=0.64,P<0.05),节间长度主要受紧实度的负向影响(R2=0.87,P<0.05)。土壤全碳和全氮主要对分枝强度和分枝水平夹角有正向作用,但土壤含砂量对它们具有负向作用。主轴分布深度主要受毛管水埋深影响(R2=0.62,P<0.05)。(3)方差分解结果显示,三类土壤特征共解释了胡杨分枝特征变异的68.3%,土壤物理特征(土壤质地、紧实度)的独立作用最大(R2=0.12,P<0.05),土壤水分(土壤含盐量、含水量)和养分特征(全N、C)的独立作用较小(R2=0.07,P<0.05;R2=0.03),但与土壤物理特征的共同作用较大(R2=0.23, P<0.05)。
    结论(1) 在异质性的河漫滩环境中,胡杨繁殖根系分枝在两种极端分枝类型——游击型和占据型分枝形成的连续谱之间变化。(2)土壤物理特征是影响胡杨繁殖根分枝的最关键因素,胡杨繁殖根系主要选择占据土壤质地良好,紧实度小的斑块。单纯水分或养分丰富的斑块不会引起胡杨繁殖根分枝明显变异,但是在土壤质地和紧实度良好的土壤斑块中,水分和养分的变化会对繁殖根分枝产生显著影响。(3)胡杨繁殖根的垂向分枝夹角具有明显的生态塑性,是胡杨克隆器官的重要适应特征。
    Abstract:
    ObjectiveThe clonal growth of Populus euphratica plays an important role to the recruitment and persistence of the population in arid-climate region, and the change in branching pattern of clonal roots is a key process for P. euphratica to achieve the clonal growth in heterogeneous environment. This paper attempts to clarify the branching pattern of clonal root system of P. euphratica in heterogeneous riparian habitat, to estimate the correlations between branching traits of clonal roots including internal length (IL), branching intensity (BI), vertical-and horizontal-branching angle (VBA and HBA), and soil factors, and then to find the key factors driving changes of the branching pattern.
    MethodWe investigated 16 clonal root branches over 10 m by manual digging and collected below-ground environmental factors correspondingly in a natural floodplain of Ejin Oasis, Inner Mongolia of northern China. Correlation and ordination of the branching traits of clonal root were analyzed using correlation analysis (CA) and principal component analysis (PCA). Redundancy analysis (RDA) and variation partitioning (VP) were applied to explore the relationship between root branching traits and soil factors.
    Result(1) The results of CA and PCA showed that there was a high correlation between the four branching traits (P < 0.05), and the first axis, reflecting 66.88% variation of the branching traits, can represent the changes from guerrilla-branching type (with sparser and longer branches, smaller branching angle in vertical and horizontal) to occupation-branching type (with denser and shorter branches, steeper branching angle in vertical and wider branching angle in horizontal). The former more occur on the edge of the river, and the later more on the edge of the forest. (2) The results of RDA revealed that VBA was mainly affected by soil compactness positively (R2=0.64, P < 0.05), and IL was mainly affected by it negatively (R2=0.87, P < 0.05). Soil total carbon and total nitrogen had a major positive influence on BI and HBA, but soil sandy content had a negative effects on them. The depth of branching points of clonal root was positively controlled by capillary water depth (R2=0.62, P < 0.05). (3) VP results showed that the three set of soil variables including soil nutrient-related, water-related and physical factors explained a total of 68.3% of the variance of P. euphratica branching traits. The independent effects of soil physical factors (soil texture, compactness) were the highest (R2=0.12, P < 0.05). Nutrient- and water-related factors had relative smaller independent effects (R2=0.07, P < 0.05; R2=0.03, respectively), but they had a greatest together influences with soil physical factors to variance of the branching traits (R2=0.23, P < 0.05).
    Conclusion(1) Guerrilla-branching type and occupation-branching type are two main branching pattern of clonal roots for P. euphratica to vegetative propagate in heterogeneous floodplain of arid region. (2) Soil physical factor is the most important factor to drive changes in branching pattern of the clonal roots. P. euphratica tends to develop an occupation-branching clonal roots in soil patches with less sandy and smaller compactness to establish its ramets. (3) The vertical branching angle of clonal roots of P. euphratica expresses a significant ecological plasticity, it may be an important adaptive trait of clonal roots for woody plant that should be paid attention in the future researches of clonal plant.
  • 图  1   距河道不同距离样点繁殖根特征的主成分分析

    字母A~E分别代表 5个不同取样带的样点,数字1~4表示距河道远近,1最近、4最远,如A1表示A样带距河道最近的样点。

    Figure  1.   Principal component analysis (PCA) for clonal root traits in 16 samples of different distance to the river

    Letters A to E represent different transects, and numbers 1 to 4 represent samples in different distances to the river, in which 1 represents the farthest and 4 represents the nearest.

    图  2   繁殖根特征和土壤因子的冗余分析

    实线向量为土壤因子,虚线向量为根特征。il.节间长; mrd.主根分布深度; vba.垂向分枝夹角; bi.分枝强度; hba.水平向分枝夹角; SC.土壤紧实度; SdR.土壤砂粒百分含量; CWD.毛管水埋深; TOC.土壤全碳含量; TON.土壤全氮含量; WC.土壤质量含水量; SS.土壤含盐量。*表示该因子为某根特征的主要影响因子(P<0.05)。

    Figure  2.   Redundancy analyses (RDAs) calculated from the six clonal root traits of P. euphratica and the below-ground environmental factors

    Bold line vector represents soil factor, dashed line vector represents root trait. il, internal length; bi, branch intensity; hba, horizontal branch angle; vba, vertical branch angle; mrd; axis depth; CWD, soil capillary water depth; WC, soil mass water content; SS, soil salinity; SdR, the ratio of sand; SC, soil compactness; TOC, total C; TON, total N; * represents a major influence factor (P < 0.05).

    图  3   方差分解分析土壤物理性质、土壤养分和土壤水分可利用性对根特征影响的纯效应和共同效应

    *表示因子对根特征的独立作用具有显著性(*, P<0.05);f.部分解释率小于0,不显示值。

    Figure  3.   Individual and shared effects of soil physical properties, nutrient and water availability on the variance of branching traits for clonal root

    * denotes that the individual effect is statistical significance (*, P < 0.05); the value of f. less than 0 is null.

    表  1   距河道不同距离样点的土壤理化性质和根特征描述统计和方差分析

    Table  1   Summary and comparison of soil properties and clonal root traits for samples of different distance to the rive

    项目
    Item
    距河道不同距离样点
    Samples of different distance to riverway
    远(n=5)
    Far(n=5)
    中(n=5)
    Middle(n=5)
    近(n=6)
    Close(n=6)
    土壤因子
    Soil factor
    土壤水分可利
    用性 Soil water
    availability
    毛管水埋深 CWD/cm 106.4±6.2 97.8±3.4 93.5±1.3
    含水量 WC/% 22.3±1.7 21.1±1.9 22.8±1.8
    含盐量 SS/ % 3.6±0.9 3.5±0.7 2.7±0.9
    土壤物理性质
    Soil physical
    property
    土壤中值粒径 D0.5/μm 74.0±13.6 b 131.6±17.0 ab 200.1±44.1 a
    砂粒含量 SdR/% 61.9±6.4 c 85.3±4.5 b 89.3±4.9 a
    粉粒含量 SlR/% 34.7±5.8 a 13.6±4.2 b 9.9±4.4 c
    粘粒含量 ClR/% 3.3±0.58 a 1.1±0.35 b 0.8±0.49 c
    土壤密度 BD/(g·cm-3) 1.51±0.02 b 1.50±0.01 b 1.54±0.03 a
    紧实度 SC/(kg·cm-2) 1.4±0.31 1.1±0.19 0.6±0.10
    土壤养分
    Soil nutrient
    全碳量 TOC/(g·kg-1) 6.66±1.20 5.56±1.30 3.79±0.42
    全氮量 TON/(g·kg-1) 0.58±0.081 a 0.42±0.044 b 0.34±0.032 b
    全磷量 TOP/(g·kg-1) 0.202±0.025 0.181±0.037 0.195±0.032
    繁殖根特征
    Clonal root traits
    节间长 il/m 1.66±0.18 b 2.24±0.21 b 3.14±0.25 a
    分支强度 bi 1.16±0.15 a 1.09±0.04 a 0.82±0.09 b
    水平分枝角度 hba (正弦值Sine value) 0.531±0.024 0.506±0.022 0.486±0.018
    垂直分枝角度 vba (正弦值Sine value) 0.118±0.018 a 0.094±0.009 a 0.063±0.001 b
    主轴分布深度 mrd/cm 88.8±10.6 82.0±4.9 69.0±5.6
    注:CWD.毛管水埋深; WC.土壤质量含水量; SS.土壤含盐量; D0.5.土壤中值粒径; SdR.土壤砂粒百分含量; SlR.土壤粉粒百分含量; ClR.土壤粘粒百分含量; BD.土壤密度; SC.紧实度; TOC.土壤全碳含量; TON.土壤全氮含量; TOP.土壤全磷含量; il.平均节间长; bi.分枝强度; hba.水平向分枝角度; vba.垂向分枝角度; mrd.主根分布深度。同行中的不同小写字母表示不同距离样点差异显著(P<0.05)。Notes: CWD, soil capillary water depth; WC, soil mass water content; SS, soil salinity; D0.5, the mid-value of grain diameter; SdR, the ratio of sand; SlR, the ratio of silt; ClR, the ratio of clay; BD, soil bulk density; SC, soil compactness; TOC, soil total C content; TON, soil total N content; TOP, soil total P content; il, mean internal length; bi, branch intensity; hba, horizontal branch angle; vba, vertical branch angle; mrd, axis depth. Different letters in a same row denote significant difference between samples in different distances (P<0.05).
    下载: 导出CSV

    表  2   成对根特征之间的Pearson相关性系数和显著性检验

    Table  2   Coefficients of Pearson's correlation for pairwise clonal root traits with original dat

    变量 Variable 节间长 il 水平分支角度 hba 分支强度 bi 垂向分支角度 vba
    水平分支角度 hba -0.662**
    分支强度 bi -0.844** 0.629**
    垂向分支角度 vba -0.786** 0.531** 0.787**
    主轴分布深度 mrd -0.401 0.486* 0.474 0.297
    注:*表示根特征之间的相关性显著(*, P<0.05;**, P < 0.01)。Notes: correlations were significant: **, P < 0.01; *, P<0.05.
    下载: 导出CSV

    表  3   根特征前两轴的载荷得分

    Table  3   Loadings scores of root variables in the first two axe

    变量
    Variable
    第1轴
    PCA1
    第2轴
    PCA2
    节间长 il -0.913 0.215
    分枝强度 bi 0.931 -0.048
    垂向分枝角度 vba 0.917 -0.340
    水平分枝角度 hba 0.803 0.266
    主轴分布深度 mrd 0.593 0.827
    下载: 导出CSV
  • [1]

    Grime J P. The role of plasticity in exploiting environmental heterogeneity[C]//Caldwell M M, Pearcy R W. Exploitation of environmental heterogeneity by plants. San Diego: Academic Press, 1994: 1-19. https://www.sciencedirect.com/science/article/pii/B9780121550707500068

    [2] 董鸣.克隆植物生态学[M].北京:科学出版社, 2011.

    Dong M. Clonal plant ecology[M]. Beijing: Science Press, 2011.

    [3] 董鸣.资源异质性环境中的植物克隆生长:觅食行为[J].植物学报, 1996, 38(10): 828-835. http://www.cnki.com.cn/Article/CJFDTOTAL-ZWXB199610011.htm

    Dong M. Clonal growth in plants in relation to resource heterogeneity: foraging behavior[J]. Acta Botanica Sinica, 1996, 38(10): 828-835. http://www.cnki.com.cn/Article/CJFDTOTAL-ZWXB199610011.htm

    [4]

    Wang T, Li X, Liu C H, et al. The compromising foraging of a clonal submerged plant in variable environments of substrate type and light condition: a simulation study[J]. Journal of Plant Ecology, 2016, 10: 538-545. http://cn.bing.com/academic/profile?id=df2f47c66739eb59b561d49d04d1f7eb&encoded=0&v=paper_preview&mkt=zh-cn

    [5] 彭一可, 罗芳丽, 李红丽, 等.根状茎型植物扁秆荆三棱对土壤养分异质性尺度和对比度的生长响应[J].植物生态学报, 2013, 37(4):335-343. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201304006

    Peng Y K, Luo F L, Li H L, et al. Growth responses of a rhizomatous herb Bolboschoenus planiculmis to scale and contrast of soil nutrient heterogeneity[J]. Chinese Journal of Plant Ecology, 2013, 37(4): 335-343. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201304006

    [6] 施建敏, 叶学华, 陈伏生, 等.竹类植物对异质生境的适应:表型可塑性[J].生态学报, 2014, 34(20): 5687-5695. http://d.old.wanfangdata.com.cn/Periodical/stxb201420001

    Shi J M, Ye X H, Chen F S, et al. Adaptation of bamboo to heterogeneous habitat: phenotypic plasticity[J]. Acta Ecologica Sinica, 2014, 34(20): 5687-5695. http://d.old.wanfangdata.com.cn/Periodical/stxb201420001

    [7]

    Hutchings M J, Kroon H D. Foraging in plants: the role of morphological plasticity in resource acquisition[J]. Advances in Ecological Research, 1994, 25: 159-238. doi: 10.1016/S0065-2504(08)60215-9

    [8]

    Schenk H J. Clonal splitting in desert shrubs[J]. Plant Ecology, 1999, 141(1-2): 41-52. doi: 10.1023-A-1009895603783/

    [9] 汤俊兵, 肖燕, 安树青.根茎克隆植物生态学研究进展[J].生态学报, 2010, 30(11): 3028-3036. http://d.old.wanfangdata.com.cn/Periodical/stxb201011027

    Tang J B, Xiao Y, An S Q. Advance of studies on rhizomatous clonal plants ecology[J]. Acta Ecologica Sinica, 2010, 30(11): 3028-3036. http://d.old.wanfangdata.com.cn/Periodical/stxb201011027

    [10] 王艳红, 王珂, 邢福.匍匐茎草本植物形态可塑性、整合作用与觅食行为研究进展[J].生态学杂志, 2005, 24(1): 70-74. http://d.old.wanfangdata.com.cn/Periodical/stxzz200501014

    Wang Y H, Wang K, Xing F. Advances of studies on the morphological plasticity, integration and foraging behavior of stoloniferous herbaceous plants[J]. Chinese Journal of Ecology, 2005, 24(1): 70-74. http://d.old.wanfangdata.com.cn/Periodical/stxzz200501014

    [11] 王世绩.全球胡杨林的现状及保护和恢复对策[J].世界林业研究, 1996(6): 37-44. doi: 10.1002-mus.22050/

    Wang S J. The status, conservation and recovery of global resources of Populus euphradica[J]. World Forestry Research, 1996(6): 37-44 doi: 10.1002-mus.22050/

    [12]

    Cao D C, Li J W, Huang Z, et al. Reproductive characteristics of a Populus euphratica population and prospects for its restoration in China[J/OL]. Plos One, 2012, 7(7): e39121[2017-04-22]. https://doi.org/10.1371/journal.pone.0039121.

    [13] 李志军, 焦培培, 周正立, 等.胡杨横走侧根及不定芽发生的形态解剖学研究[J].北京林业大学学报, 2011, 35(5):42-48. http://j.bjfu.edu.cn/article/id/9647

    Li Z J, Jiao P P, Zhou Z L, et al. Anatomic characteristics of transverse lateral roots and adventitious buds of Populus euphratica[J]. Journal of Beijing Forestry University, 2011, 35(5):42-48. http://j.bjfu.edu.cn/article/id/9647

    [14]

    Wiehle M, Eusemann P, Thevs N, et al. Root suckering patterns in Populus euphratica (Euphrates poplar, Salicaceae)[J]. Trees, 2009, 23(5): 991-1001. doi: 10.1007/s00468-009-0341-0

    [15] 黄晶晶, 井家林, 曹德昌, 等.不同林龄胡杨克隆繁殖根系分布特征及其构型[J].生态学报, 2013, 33(14):4331-4342. http://d.old.wanfangdata.com.cn/Periodical/stxb201314013

    Huang J J, Jing J L, Cao D C, et al. Clonal root system distribution and architecture of different forest age Populus euphratica in Ejina Oasis[J]. Acta Ecologica Sinica, 2013, 33(14): 4331-4342. http://d.old.wanfangdata.com.cn/Periodical/stxb201314013

    [16] 郑亚琼, 张肖, 梁继业, 等.濒危物种胡杨和灰叶胡杨的克隆生长特征[J].生态学报, 2016, 36(5):1331-1341. http://d.old.wanfangdata.com.cn/Periodical/stxb201605017

    Zheng Y Q, Zhang X, Liang J Y, et al. Clonal growth characteristics of the endangered species Populus euphratica Oliv. and Populus pruinosa Schrenk[J]. Acta Ecologica Sinica, 2016, 36(5):1331-1341. http://d.old.wanfangdata.com.cn/Periodical/stxb201605017

    [17] 李志军, 焦培培, 周正立, 等.灰叶胡杨根蘖繁殖的形态解剖学特征[J].植物学报, 2012, 47(2):133-140. http://d.old.wanfangdata.com.cn/Periodical/zwxtb201202005

    Li Z J, Jiao P P, Zhou Z L, et al. Morphological and anatomical features of root sucker propagation of Populus pruinosa[J]. Chinese Bulletin of Botany, 2012, 47(2): 133-140. http://d.old.wanfangdata.com.cn/Periodical/zwxtb201202005

    [18] 曹德昌, 李景文, 陈维强, 等.额济纳绿洲不同林隙胡杨根蘖的发生特征[J].生态学报, 2009, 29(4): 1954-1961. doi: 10.3321/j.issn:1000-0933.2009.04.040

    Cao D C, Li J W, Chen W Q, et al. Development and growth of root suckers of Populus euphratica in different forest gaps in Ejina Oasis[J]. Acta Ecologica Sinica, 2009, 29(4): 1954-1961. doi: 10.3321/j.issn:1000-0933.2009.04.040

    [19]

    Eusemann P, Petzold A, Thevs N, et al. Growth patterns and genetic structure of Populus euphratica Oliv. (Salicaceae) forests in NW China :implications for conservation and management[J]. Forest Ecology & Management, 2013, 297(3): 27-36. https://www.sciencedirect.com/science/article/pii/S0378112713001035

    [20]

    Vonlanthen B, Zhang X, Bruelheide H. Clonal structure and genetic diversity of three desert Phreatophytes[J]. American Journal of Botany, 2010, 97(2): 234. doi: 10.3732/ajb.0800329

    [21]

    Zheng Y, Jiao P, Zhao Z, et al. Clonal growth of Populus pruinosa Schrenk and its role in the regeneration of riparian forests[J]. Ecological Engineering, 2016, 94: 380-392. doi: 10.1016/j.ecoleng.2016.05.080

    [22] 彭刚, 赵成义, 李君, 等.新疆塔里木河胡杨根蘖苗水分来源初探[J].干旱区研究, 2014, 31(6): 1093-1099. http://d.old.wanfangdata.com.cn/Periodical/ghqyj201406017

    Peng G, Zhao C Y, Li J, et al. Water source of root suckers of Populus euphratica in the Tarim River Basin, Xinjiang[J]. Arid Zone Research, 2014, 31(6): 1093-1099. http://d.old.wanfangdata.com.cn/Periodical/ghqyj201406017

    [23]

    Petzold A, Pfeiffer T, Jansen F, et al. Sex ratios and clonal growth in dioecious Populus euphratica Oliv. Xinjiang Prov, Western China[J]. Trees, 2013, 27(3): 729-744. doi: 10.1007/s00468-012-0828-y

    [24] 王永斌, 努尔巴依·阿布都沙力克, Thevs N.胡杨(Populus euphratica Oliv.)根繁殖特征[J].生态学杂志, 2007, 26(12): 1937-1941. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxzz200712005

    Wang Y B, Nuerbayi·Abudushalike, Thevs N. Root propagation characteristics of Populus euphratica Oliv.[J]. Chinese Journal of Ecology, 2007, 26(12): 1937-1941. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxzz200712005

    [25]

    Thevs N, Zerbe S, Schnittler M, et al. Structure, reproduction and flood-induced dynamics of riparian Tugai forests at the Tarim River in Xinjiang, NW China[J]. Forestry, 2008, 81(1): 45-57. doi: 10.1093/forestry/cpm043

    [26] 刘晚苟, 山仑, 邓西平.植物对土壤紧实度的反应[J].植物生理学报, 2001, 37(3): 254-260. http://d.old.wanfangdata.com.cn/Periodical/zwslxtx200103029

    Liu W G, Shan L, Deng X P. Responses of plant to soil compaction[J]. Plant Physiology Communications, 2001, 37(3): 254-260. http://d.old.wanfangdata.com.cn/Periodical/zwslxtx200103029

    [27]

    Jeník J. Clonal growth in woody plants: a review[J]. Folia Geobotanica, 1994, 29(2): 291-306. doi: 10.1007/BF02803802

    [28] 张明如, 翟明普, 王学勇, 等.火炬树克隆植株生长和生物量特征的研究[J].林业科学, 2004, 40(3): 39-45. doi: 10.3321/j.issn:1001-7488.2004.03.006

    Zhang M R, Zhai M P, Wang X Y, et al. A study on the characteristics of the growth and the biomass of clonal ramets in Rhus typhina[J]. Scientia Silvae Sinicae, 2004, 40(3): 39-45. doi: 10.3321/j.issn:1001-7488.2004.03.006

    [29]

    Cannon W A. The root habits of desert plants[M]. Washington: Carnegie Institution of Washington, 1911.

    [30]

    Gibbens R P, Lenz J M. Root systems of some Chihuahuan Desert plants[J]. Journal of Arid Environments, 2001, 49(2): 221-263. doi: 10.1006/jare.2000.0784

    [31]

    Kroons H D, Hutchings M J. Morphological plasticity in clonal plants: the foraging concept reconsidered[J]. Journal of Ecology, 1995, 83(1): 143-152. doi: 10.2307/2261158

    [32] 廖明隽, 王其兵, 宋明华, 等.内蒙古锡林河流域不同生境中羊草的克隆构型和分株种群特征[J].植物生态学报, 2002, 26(1): 33-38. doi: 10.3321/j.issn:1005-264X.2002.01.006

    Liao M J, Wang Q B, Song M H, et al. Clonal architecture and ramet population characteristics of Leymus chinensis from different habitats in the Xilin River Watershed[J]. Acta Phytoecologica Sinica, 2002, 26(1): 33-38. doi: 10.3321/j.issn:1005-264X.2002.01.006

    [33] 罗学刚, 董鸣.匍匐茎草本蛇莓克隆构型对土壤养分的可塑性反应[J].生态学报, 2001, 21(12): 1957-1963. doi: 10.3321/j.issn:1000-0933.2001.12.001

    Luo X G, Dong M. Plasticity of clonal architecture in response to soil nutrients in the stoloniferous herb, Duchesnea indica Focke[J]. Acta Ecologica Sinica, 2001, 21(12): 1957-1963. doi: 10.3321/j.issn:1000-0933.2001.12.001

    [34]

    Vennetier M, Zanetti C, Meriaux P, et al. Tree root architecture: new insights from a comprehensive study on dikes[J]. Plant & Soil, 2015, 387(1-2): 81-101. http://cn.bing.com/academic/profile?id=c3d43337f184e3e852edb82f795ff077&encoded=0&v=paper_preview&mkt=zh-cn

  • 期刊类型引用(7)

    1. 于秋莹,郭苗苗,许岢昕,刘建斌,王聪,郑健,张克中,张炎. 欧洲丁香品种‘Downfield’花序和花序轴愈伤组织诱导和悬浮培养. 东北林业大学学报. 2023(03): 47-53 . 百度学术
    2. 胡家锋,代鲁鲁,戴瑜,姚芳,姜韬,谈家金. 常熟市枫香刺小蠹野外危害调查及防治效果评价. 天津农业科学. 2023(06): 56-61 . 百度学术
    3. 韩娟,李亚鹏,田彦挺,郭琪,李云,孙宇涵,邓永平,牛东升,苏立琢,李秀宇,彭祚登. 刺槐离体叶片高效再生体系的优化. 林业科学. 2023(04): 68-78 . 百度学术
    4. 胡家锋,谈家金,姚芳,戴瑜,姜韬,代鲁鲁. 6种药剂对枫香刺小蠹幼虫及成虫的室内毒力测定. 东北林业大学学报. 2023(11): 157-161 . 百度学术
    5. 王玉娟,罗成凤,幸伟年,李进,占志勇,何小三. 中国枫香×北美枫香杂交子代生长表现及初步评价. 南方林业科学. 2022(06): 15-18 . 百度学术
    6. 李亦轩,江帅菲,董明亮,齐帅征,张金凤,Lisheng Kong. 油松胚性愈伤组织成熟培养的影响因素. 东北林业大学学报. 2020(04): 20-23+49 . 百度学术
    7. 高磊,王建国,王章训,李猷,鞠瑞亭. 危险性害虫枫香刺小蠹的形态特征及发生现状. 林业科学. 2020(03): 193-198 . 百度学术

    其他类型引用(3)

图(3)  /  表(3)
计量
  • 文章访问数:  2227
  • HTML全文浏览量:  539
  • PDF下载量:  117
  • 被引次数: 10
出版历程
  • 收稿日期:  2017-11-25
  • 修回日期:  2018-01-04
  • 发布日期:  2018-01-31

目录

    /

    返回文章
    返回