高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

人工林刺槐木材物理力学性质研究

孙恒 冀晓东 赵红华 杨茂林 丛旭

孙恒, 冀晓东, 赵红华, 杨茂林, 丛旭. 人工林刺槐木材物理力学性质研究[J]. 北京林业大学学报, 2018, 40(7): 104-112. doi: 10.13332/j.1000-1522.20180030
引用本文: 孙恒, 冀晓东, 赵红华, 杨茂林, 丛旭. 人工林刺槐木材物理力学性质研究[J]. 北京林业大学学报, 2018, 40(7): 104-112. doi: 10.13332/j.1000-1522.20180030
Sun Heng, Ji Xiaodong, Zhao Honghua, Yang Maolin, Cong Xu. Physical and mechanical properties of Robinia pseudoacacia wood in artificial forests[J]. Journal of Beijing Forestry University, 2018, 40(7): 104-112. doi: 10.13332/j.1000-1522.20180030
Citation: Sun Heng, Ji Xiaodong, Zhao Honghua, Yang Maolin, Cong Xu. Physical and mechanical properties of Robinia pseudoacacia wood in artificial forests[J]. Journal of Beijing Forestry University, 2018, 40(7): 104-112. doi: 10.13332/j.1000-1522.20180030

人工林刺槐木材物理力学性质研究

doi: 10.13332/j.1000-1522.20180030
基金项目: 

国家自然科学基金项目 31570708

详细信息
    作者简介:

    孙恒。主要研究方向:林木抗风。Email: sun_heng@bjfu.edu.cn 地址:100083北京市海淀区清华东路35号北京林业大学水土保持学院

    责任作者:

    冀晓东,教授。主要研究方向:工程材料和林木抗风。Email: jixiaodong@bjfu.edu.cn 地址:同上

  • 中图分类号: S781.2; S781.3; S781.4

Physical and mechanical properties of Robinia pseudoacacia wood in artificial forests

  • 摘要: 目的刺槐作为我国重要的速生用材树种,被广泛应用于北方人工林种植,深入研究刺槐木材的物理力学性质,为刺槐人工林建设经营以及木材的高效精细化利用提供科学依据。方法本文对采自于山东省东营市刺槐林场的4株不同树龄人工林刺槐沿树干等分成0.65 m长若干小段并顺序编号,测定和分析每段木材的物理性质(气干密度、全干密度、基本密度)、力学性质(顺纹抗压强度、横纹径向全部抗压强度、横纹弦向全部抗压强度、抗弯强度、抗弯弹性模量)以及化学组分(纤维素、半纤维素、木质素)含量,并通过SEM电镜扫描图对各段木材的微观构造进行对比分析。结果刺槐木材的气干密度、全干密度、基本密度、顺纹抗压强度、横纹全部抗压强度(径向、弦向)、抗弯强度、抗弯弹性模量均随树龄的增大而增加,随树干位置增高呈现先增大后减小的规律。将木材气干密度与顺纹抗压强度、横纹(径向、弦向)全部抗压强度、抗弯强度、抗弯弹性模量分别进行线性和幂函数拟合,两种模型均能很好地拟合试验结果,拟合度R2值为0.865~0.895。各段木材化学组分中纤维素含量随树龄及树干高度位置的变化规律与木材各项力学性质的变化规律相似。木材的微观构造中导管占比率随树龄增大而减少,随树干高度位置增加呈现出先减后增的变化规律。结论10年生、15年生、20年生、25年生刺槐木材的气干密度、顺纹抗压强度、抗弯强度、抗弯弹性模量均为中级以上,是良好的家具和建筑用材。在利用时应充分考虑不同树龄木材和树干不同位置的差别。密度作为影响木材力学性质的直接要素,可根据相关方程通过刺槐木材的密度值估算部分力学性质的数值。刺槐木材纤维素含量与木材各项宏观力学性质相关度很高,而木材导管占比率的差异则从微观构造上揭示了木材密度变化的内在机理。

     

  • 图  1  各树龄木材不同高度位置处密度

    Figure  1.  Wood density of different tree ages with varied trunk height positions

    图  2  各树龄木材力学性质沿树干高度变异

    Figure  2.  Variations of wood mechanical properties along trunk height at different ages

    图  3  各树龄木材不同高度位置处主要化学成分含量

    Figure  3.  Main chemical component contents of different tree age with varied trunk positions

    图  4  木材横截面微观构造

    Figure  4.  Microstructure of wood cross section

    图  5  各树龄木材不同高度位置处导管占比率

    Figure  5.  Ratio of wood ducts at different trunk positions with different tree ages

    表  1  试验样木概况

    Table  1.   General survey of sample trees

    样木编号
    Sample tree No.
    树龄
    Tree-age/a
    树高
    Tree height/m
    枝下高
    Clear bole height/m
    胸径
    DBH/cm
    划分段数
    Partition number
    1 10 5.9 3.8 12.2 6
    2 15 6.8 4.0 16.4 6
    3 20 10.5 5.7 21.7 8
    4 25 12.4 7.2 24.3 11
    下载: 导出CSV

    表  2  树龄对木材物理力学性质的影响

    Table  2.   Influence of tree age on the physical and mechanical properties of wood

    项目
    Item
    10年生木材
    10 years old wood
    15年生木材
    15 years old wood
    20年生木材
    20 years old wood
    25年生木材
    25 years old wood
    气干密度Air-dry density/(g·cm-3) 0.725±0.009 0.733±0.010 0.748±0.008 0.762±0.012
    全干密度Absolute-dry density/(g·cm-3) 0.659±0.010 0.681±0.009 0.696±0.009 0.718±0.013
    基本密度Basic density/(g·cm-3) 0.592±0.007 0.602±0.010 0.618±0.010 0.632±0.008
    顺纹抗压强度Compressive strength parallel to grain/MPa 49.202±2.119 53.314±1.918 55.370±2.016 60.342±2.416
    横纹径向全部抗压强度Radial compression(entire)strength perpendicular to grain/MPa 10.788±0.534 11.499±0.691 12.507±0.676 13.802±0.736
    横纹弦向全部抗压强度Tangential compression(entire) strength perpendicular to grain/MPa 11.337±0.521 12.509±0.459 13.038±0.493 14.926±0.605
    抗弯强度Bending strength/MPa 94.102±5.929 97.162±4.297 116.074±5.246 126.059±6.217
    抗弯弹性模量Bending elastic modulus/GPa 8.929±0.397 9.128±0.434 11.286±0.513 12.084±0.510
    注:表中物理力学性质的数值均为整株样木的平均值。Note: the numerical values of physical and mechanical properties in the table are the average value of the whole tree.
    下载: 导出CSV

    表  3  木材气干密度与力学性质之间相关分析

    Table  3.   Correlation analysis between wood air-dry density and mechanical properties

    力学性质
    Mechanical property
    相关方程
    Regression equation
    残余平方和
    Residual sum of squares
    拟合度
    Fitting degree (R2)
    顺纹抗压强度Compression strength parallel to grain σ=250.468 7ρ-133.726 5 93.332 0.895
    σ=143.86ρ3.406 2 78.631 0.892
    横纹径向全部抗压强度Radial compression (entire) strength perpendicular to grain σ=74.110 4ρ-43.575 2 6.513 0.881
    σ=44.052ρ4.534 5.154 0.886
    横纹弦向全部抗压强度Tangential compression (entire) strength perpendicular to grain σ=80.713 9ρ-47.624 5 8.338 0.872
    σ=48.283ρ4.601 9 9.712 0.865
    抗弯强度Bending strength σ=784.220 2ρ-480.899 1 784.397 0.883
    σ=507.19ρ5.426 1 835.868 0.879
    抗弯弹性模量Bending elastic modulus E=76.221 3ρ-46.837 2 6.856 0.881
    E=49.466ρ5.470 6 9.673 0.875
    下载: 导出CSV

    表  4  各树龄木材主要化学成分对比

    Table  4.   Comparison of main chemical composition of different tree-age woods

    %
    化学组分
    Chemical component
    10年生木材
    10 years old wood
    15年生木材
    15 years old wood
    20年生木材
    20 years old wood
    25年生木材
    25 years old wood
    纤维素Cellulose 49.052±0.347 50.107±0.439 51.470±0.502 52.156±0.579
    半纤维素Hemicellulose 21.358±0.131 21.125±0.154 21.161±0.167 21.001±0.204
    木质素Lignin 24.217±0.177 24.110±0.227 23.918±0.213 23.865±0.287
    注:表中纤维素、半纤维素和木质素含量均以绝干材为基准,数值为整株样木的平均值。Notes: the content of cellulose, hemicellulose and lignin in the table are benchmarked against absolutely dry wood, and the average value of the whole wood is used for the test value.
    下载: 导出CSV
  • [1] 田明华, 史莹赫, 黄雨, 等.中国经济发展、林产品贸易对木材消耗影响的实证分析[J].林业科学, 2016, 52(9):113-123. http://d.old.wanfangdata.com.cn/Periodical/lykx201609014

    Tian M H, Shi Y H, Huang Y, et al. An empirical analysis of effects of economic development and forest product trade on wood consumption in China[J].Scientia Silvae Sinicae, 2016, 52(9):113-123. http://d.old.wanfangdata.com.cn/Periodical/lykx201609014
    [2] 刘世荣, 杨予静, 王晖.中国人工林经营发展战略与对策:从追求木材产量的单一目标经营转向提升生态系统服务质量和效益的多目标经营[J].生态学报, 2018, 38(1): 1-10. doi: 10.3969/j.issn.1673-1182.2018.01.001

    Liu S R, Yang Y J, Wang H. Development strategy and management countermeasures of planted forests in China: transforming from timber-centered single objective management towards multi-purpose management for enhancing quality and benefits of ecosystem services[J]. Acta Ecologica Sinica, 2018, 38(1): 1-10. doi: 10.3969/j.issn.1673-1182.2018.01.001
    [3] 李坚.木材科学研究[M].北京:科学出版社, 2009:183.

    Li J.Wood science research[M]. Beijing: Science Press, 2009:183.
    [4] Reiterer A, Sinn G, Stanzl-Tschegg S E. Fracture characteristics of different wood species under mode Ⅰ loading perpendicular to the grain[J]. Materials Science & Engineering A, 2002, 332(1):29-36.
    [5] Adamopoulos S, Passialis C, Voulgaridis E. Strength properties of juvenile and mature wood in black locust (Robinia pseudoacacia) [J]. Wood & Fiber Science Journal of the Society of Wood Science & Technology, 2007, 39(2):241-249.
    [6] Niklas K J. Size- and age-dependent variation in the properties of sap and heartwood in black locust (Robinia pseudoacacia L.) [J]. Annals of Botany, 1997, 79(5):473-478.
    [7] Pollet C, Verheyen C, Hébert J, et al. Physical and mechanical properties of black locust (Robinia pseudoacacia) wood grown in Belgium[J]. Canadian Journal of Forest Research, 2012, 42(5):831-840. doi: 10.1139/x2012-037
    [8] 陈印平, 夏江宝, 赵西梅, 等.黄河三角洲典型人工林土壤碳氮磷化学计量特征[J].土壤通报, 2017, 48(2):392-398. http://d.old.wanfangdata.com.cn/Periodical/trtb201702020

    Chen Y P, Xia J B, Zhao X M, et al. Effect of different plantation types on soil ecological stoichiometry in Yellow Delta[J]. Chinese Journal of Soil Science, 2017, 48(2):392-398. http://d.old.wanfangdata.com.cn/Periodical/trtb201702020
    [9] 邓磊, 张文辉.黄土沟壑区刺槐人工林的天然发育规律[J].林业科学, 2010, 46(12):15-22. doi: 10.11707/j.1001-7488.20101203

    Deng L, Zhang W H. Natural development pattern of Robinia pseudoacacia plantations in loess hilly region[J]. Scientia Silvae Sinicae, 2010, 46(12):15-22. doi: 10.11707/j.1001-7488.20101203
    [10] 任世学, 姜贵全, 屈红军.植物纤维化学实验教程[M].哈尔滨:东北林业大学出版社, 2008: 53-54.

    Ren S X, Jiang G Q, Qu H J. Plant fibre chemistry experiment[M]. Harbin: Northeast Forestry University Press, 2008: 53-54.
    [11] 葛晓雯, 王立海, 侯捷建, 等.褐腐杨木微观结构、力学性能与化学成分的关系研究[J].北京林业大学学报, 2016, 38(10):112-122. doi: 10.13332/j.1000-1522.20160098

    Ge X W, Wang L H, Hou J J, et al. Relationship among microstructure, mechanical properties and chemical compositions in Populus cathayana sapwood during brown-rot decay[J]. Journal of Beijing Forestry University, 2016, 38(10):112-122. doi: 10.13332/j.1000-1522.20160098
    [12] 李坚.木材科学[M].北京:科学出版社, 2014:241.

    Li J. Wood science [M]. Beijing: Science Press, 2014:241.
    [13] 梁宏温, 徐峰, 牟继平.马占相思木材物理力学性质的研究[J].广西农业生物科学, 2004, 23(4): 325-329. http://www.cnki.com.cn/Article/CJFDTOTAL-GXNB200404016.htm

    Liang H W, Xu F, Mou J P. Studies on the wood physical-mechanical properties of Acacia mangium Willd[J]. Journal of Guangxi Agricultural and Biological Science, 2004, 23(4): 325-329. http://www.cnki.com.cn/Article/CJFDTOTAL-GXNB200404016.htm
    [14] 成俊卿.木材学[M].北京:中国林业出版社, 1985:176.

    Cheng J Q.Wood science[M]. Beijing: China Forestry Publishing House, 1985:176.
    [15] Newlin J A, Wilson T R. The relation of the shrinkage and strength properties of wood to its specific gravity[J]. USDA Technical Bulletin, 1919, 676:1-35.
    [16] Zhang S Y. Wood specific gravity-mechanical property relationship at species level[J]. Wood Science & Technology, 1997, 31:181-191. doi: 10.1007/BF00705884
    [17] 江泽慧, 姜笑梅.木材结构与其品质特性的相关性[M].北京:科学出版社, 2008:228-230.

    Jiang Z H, Jiang X M. The correlation between wood structure and its quality characteristics[M]. Beijing: Science Press, 2008: 228-230.
    [18] 邵卓平, 董宏敢, 张治国, 等.湿地松木材物理力学性质研究[J].安徽农业大学学报, 2000, 27(1): 64-66. doi: 10.3969/j.issn.1672-352X.2000.01.016

    Shao Z P, Dong H G, Zhang Z G, et al. Study on physical and mechanical proper ties of Pinus elliottii[J]. Journal of Anhui Agricultural University, 2000, 27(1): 64-66. doi: 10.3969/j.issn.1672-352X.2000.01.016
    [19] 张双燕.化学成分对木材细胞壁力学性能影响的研究[D].北京: 中国林业科学研究院, 2011: 9-12.

    Zhang S Y.Chemical components effect on mechanical properties of wood cell wall [D]. Beijing: Chinese Academy of Forestry, 2011: 9-12.
    [20] 刘成倩, 王传贵, 李媛媛, 等.枫香木材化学成分及其在高度上的变异规律[J].安徽农业大学学报, 2017, 44(6):1043-1046. http://www.cnki.com.cn/Article/CJFDTOTAL-ANHU201706017.htm

    Liu C Q, Wang C G, Li Y Y, et al. The chemical components of Liquidambar formosana and their longitudinal variation[J]. Journal of Anhui Agricultural University, 2017, 44(6):1043-1046. http://www.cnki.com.cn/Article/CJFDTOTAL-ANHU201706017.htm
    [21] 崔贺帅, 杨淑敏, 刘杏娥, 等.杞柳的化学成分及其木质素微区分布的研究[J].林产化学与工业, 2016, 36(5):120-126. doi: 10.3969/j.issn.0253-2417.2016.05.018

    Cui H S, Yang S M, Liu X E, et al. Chemical composition and lignin distribution of Salix integra[J]. Chemistry and Industry of Forest Products, 2016, 36(5):120-126. doi: 10.3969/j.issn.0253-2417.2016.05.018
    [22] 王传贵, 江泽慧, 费本华, 等.化学成分对木材细胞壁纵向弹性模量和硬度的影响[J].北京林业大学学报, 2012, 34(3): 107-110. http://j.bjfu.edu.cn/article/id/9765

    Wang C G, Jiang Z H, Fei B H, et al. Effects of chemical components on longitudinal MOE and hardness of wood cell wall[J]. Journal of Beijing Forestry University, 2012, 34(3): 107-110. http://j.bjfu.edu.cn/article/id/9765
    [23] 姜笑梅, 殷亚方, 浦上弘幸.北京地区I-214杨树木材解剖特性与基本密度的株内变异及其预测模型[J].林业科学, 2003, 39(6):115-121. doi: 10.3321/j.issn:1001-7488.2003.06.019

    Jiang X M, Yin Y F, Hiroyuki U. Variation within tree of wood anatomical properties and basic density of I-214 poplar in Beijing area and their relationship modelling equations[J]. Scientia Silvae Sinicae, 2003, 39(6):115-121. doi: 10.3321/j.issn:1001-7488.2003.06.019
  • 加载中
图(5) / 表(4)
计量
  • 文章访问数:  941
  • HTML全文浏览量:  199
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-19
  • 修回日期:  2018-04-04
  • 刊出日期:  2018-07-01

目录

    /

    返回文章
    返回