高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中国东北部典型树种功能性状地理变异规律研究

连政华 张春雨 程艳霞 辛本花

连政华, 张春雨, 程艳霞, 辛本花. 中国东北部典型树种功能性状地理变异规律研究[J]. 北京林业大学学报, 2019, 41(3): 42-48. doi: 10.13332/j.1000-1522.20180352
引用本文: 连政华, 张春雨, 程艳霞, 辛本花. 中国东北部典型树种功能性状地理变异规律研究[J]. 北京林业大学学报, 2019, 41(3): 42-48. doi: 10.13332/j.1000-1522.20180352
Lian Zhenghua, Zhang Chunyu, Cheng Yanxia, Xin Benhua. Geographical variations of functional traits of typical tree species in northeastern China[J]. Journal of Beijing Forestry University, 2019, 41(3): 42-48. doi: 10.13332/j.1000-1522.20180352
Citation: Lian Zhenghua, Zhang Chunyu, Cheng Yanxia, Xin Benhua. Geographical variations of functional traits of typical tree species in northeastern China[J]. Journal of Beijing Forestry University, 2019, 41(3): 42-48. doi: 10.13332/j.1000-1522.20180352

中国东北部典型树种功能性状地理变异规律研究

doi: 10.13332/j.1000-1522.20180352
基金项目: 国家重点研发计划项目(2017YFC0504005),国家自然科学基金项目(31670643)
详细信息
    作者简介:

    连政华。主要研究方向:森林生态学。Email:1056468466@qq.com 地址:100083 北京市海淀区清华东路35号北京林业大学林学院

    责任作者:

    程艳霞,教授。主要研究方向:森林生态学、光与植物生理生态学。Email:chyx@bjfu.edu.cn 地址:100083 北京市海淀区清华东路35号北京林业大学理学院

  • 中图分类号: S718.55

Geographical variations of functional traits of typical tree species in northeastern China

  • 摘要: 目的以东北林区典型喜光树种和耐阴树种为对象,探讨功能性状沿地理梯度的变化格局及其成因,为科学预测典型树种对未来环境变化的响应和适应策略提供依据。方法利用标准化主轴回归法检验树高、比叶面积、木质密度3个性状的种内关联性;采取偏相关分析法计算功能性状与气候因子之间的关系。结果树高、比叶面积和木质密度3个性状在种内没有显著的关联性。植物性状的地理分布格局随树种而变化,白桦、水曲柳、色木槭的树高随经度增加而减小;山杨、水曲柳和色木槭的树高随纬度增加而减小;白桦和水曲柳的树高随海拔增加而增大。白桦和山杨的比叶面积随经度增加而减小,水曲柳和色木槭的比叶面积随经度增加而增大;白桦、山杨、水曲柳的比叶面积随纬度增加而增大。色木槭的木质密度随经度增加而增大;蒙古栎的木质密度随纬度增加而减小。植物性状与气候因子关系分析显示,白桦的树高与年均温度显著负相关,白桦、山杨、蒙古栎、水曲柳、红松的树高与年降水量显著正相关;白桦的比叶面积与年降水量显著负相关,蒙古栎、山杨和水曲柳的比叶面积与年均温度显著负相关;蒙古栎的木质密度与年均温度显著正相关,色木槭的木质密度则与年均温度显著负相关。结论功能性状地理格局及其环境驱动机制随着树种变化而变化。总体上,树高和比叶面积分别受降水和温度的影响;木质密度相对稳定,受气候因子影响不显著。

     

  • 图  1  取样点地理空间分布

        地理坐标:39°33ʹ ~ 53°33ʹN,118°19ʹ ~ 131°26ʹE   Geographical coordinates: 39°33ʹ−53°33ʹN, 118°19ʹ−131°26ʹE

    Figure  1.  Location of the research sites

    图  2  典型树种树高在地理环境上的变化规律

                            H:树高Height;E:海拔Elevation

    Figure  2.  Variations of dominant tree height in geographical environment

    图  3  典型树种比叶面积(SLA)的地理变异趋势

    Figure  3.  Variations of specific leaf area (SLA) in dominant species in geographical environment

    图  4  典型树种木质密度(D)在地理环境上变化规律

    Figure  4.  Variations of wood density (D) in dominant species in geographical environment

    表  1  环境因子间关系

    Table  1.   Relationship among environmental factors

    项目 Item 经度 Latitude 纬度 Longitude 海拔 Altitude MAT MAR
    MAT 0.237*** − 0.812*** − 0.386*** 0.580***
    MAR 0.394*** − 0.822*** 0.121* 0.580***
    注:MAT为年均温度,MAR为年降水量;*代表P < 0.05水平上相关性显著,**代表P < 0.01水平上相关性显著,***代表P < 0.001水平上相关性显著。下同。Notes: MAT, average annual temperature; MAR, annual precipitation; * represents significant correlation at P < 0.05 level, ** represents significant correlation at P < 0.01 level, *** represents significant correlation at P < 0.001 level. The same below.
    下载: 导出CSV

    表  2  中国东北部7个典型树种的树高、比叶面积及木质密度

    Table  2.   Tree height, specific leaf area and wood density of 7 typical tree species in northeastern China

    树种
    Tree species
    样本数
    Sample number
    树高
    Height (H)/m
    比叶面积
    Specific leaf area (SLA)/
    (cm2·g− 1)
    木质密度
    Wood density (D)/
    (g·cm− 3)
    均值 Mean SD 均值 Mean SD 均值 Mean SD
    白桦 Betula platyphylla 130 13.7a 5.1 50.3c 19.6 0.497 4d 0.057 4
    山杨 Populus davidiana 58 12.7a 5.2 35.7e 15.7 0.403 5e 0.044 4
    蒙古栎 Quercus mongolica 157 13.7a 5.3 44.5d 22.7 0.666 0b 0.172 0
    紫椴 Tilia amurensis 142 13.9a 5.4 64.2b 19.0 0.379 3e 0.077 7
    水曲柳 Fraxinus mandschurica 61 13.7a 6.6 95.7a 36.1 0.594 3c 0.090 3
    色木槭 Acer pictum 78 13.4a 5.4 58.5b 13.1 0.675 5a 0.269 9
    红松 Pinus koraiensis 61 12.1a 4.9 0.418 6e 0.086 1
    注:SD为标准差;不同树种各性状的均值采用 t 检验方法进行比较,同列中不同字母代表差异显著(P < 0.05)。Notes: SD is standard deviation, means with the same letter are not significantly different at P < 0.05 level using t-test among different tree species.
    下载: 导出CSV

    表  3  典型树种不同性状间标准化主轴回归分析

    Table  3.   Standardized major axis regression between different tree traits

    树种
    Tree species
    样本数
    Sample number
    SLA−H SLA−D HD
    斜率 Slope R2 斜率 Slope R2 斜率 Slope R2
    白桦 Betula platyphylla 130 0.9 0.018 3.5 0.020 − 4.0 0.000
    山杨 Populus davidiana 58 0.7 0.005 2.9 0.020 4.2 0.026
    蒙古栎 Quercus mongolica 157 0.8 0.001 2.0 0.002 − 2.4 0.010
    紫椴 Tilia amurensis 142 − 0.7 0.000 1.7 0.008 2.4 0.002
    水曲柳 Fraxinus mandschurica 61 − 0.9 0.000 3.5 0.038 3.8 0.017
    色木槭 Acer pictum 78 0.5 0.001 − 1.0 0.003 − 1.7 0.008
    红松 Pinus koraiensis 61 0.2 0.003
    注:SLA、HD分别为比叶面积、树高、木质密度。Notes: SLA, H and D are specific leaf area, tree height and wood density, respectively.
    下载: 导出CSV

    表  4  典型树种功能性状与气候因子偏相关分析

    Table  4.   Partial correlation analysis between functional traits and climatic factors of dominant tree species

    树种 Tree species log(SLA) logH logD
    MAT MAR MAT MAR MAT MAR
    白桦 Betula platyphylla − 0.009 − 0.16* − 0.178* 0.161* − 0.005 − 0.007
    山杨 Populus davidiana − 0.312** − 0.151 0.019 0.292*** − 0.025 0.043
    蒙古栎 Quercus mongolica − 0.164* 0.062 − 0.035 0.260*** 0.176** − 0.008
    紫椴 Tilia amurensis − 0.019 0.060 − 0.037 0.132 0.117 0.009
    水曲柳 Fraxinus mandschurica − 0.384*** − 0.052 0.168 0.344*** − 0.026 − 0.117
    色木槭 Acer pictum − 0.085 − 0.021 0.149 0.122 − 0.26** 0.096
    红松 Pinus koraiensis 0.052 0.263* − 0.078 − 0.100
    下载: 导出CSV
  • [1] 何念鹏, 刘聪聪, 张佳慧, 等. 植物性状研究的机遇与挑战: 从器官到群落[J]. 生态学报, 2018, 38(19):6787−6796.

    He N P, Liu C C, Zhang J H, et al. Perspectives and challenges in pant traits: from organs to communities[J]. Acta Ecologica Sinica, 2018, 38(19): 6787−6796.
    [2] Jhc C, Lavorel S, Garnier E, et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide[J]. Australian Journal of Botany, 2003, 51(4): 335−380. doi: 10.1071/BT02124
    [3] Reich P B. The evolution of plant functional variation: traits, spectra, and strategies[J]. International Journal of Plant Sciences, 2003, 164(S3): S143−S164. doi: 10.1086/374368
    [4] Diaz S, Cabido M, Casanoves F. Plant functional traits and environmental filters at a regional scale[J]. Journal of Vegetation Science, 1998, 9(1): 113−122. doi: 10.2307/3237229
    [5] Westoby M. A leaf-height-seed (LHS) plant ecology strategy scheme[J]. Plant & Soil, 1998, 199(2): 213−227.
    [6] Guittar J, Goldberg D, Klanderud K, et al. Can trait patterns along gradients predict plant community responses to climate change[J]. Ecology, 2016, 97(10): 2791. doi: 10.1002/ecy.1500
    [7] Falster D S, Westoby M. Plant height and evolutionary games[J]. Trends in Ecology & Evolution, 2003, 18(7): 337−343.
    [8] 刘金环, 曾德慧, Don Koo LEE. 科尔沁沙地东南部地区主要植物叶片性状及其相互关系[J]. 生态学杂志, 2006, 25(8):921−925. doi: 10.3321/j.issn:1000-4890.2006.08.010

    Liu J H, Zeng D H, Lee D K. Leaf traits and their interrelationships of main plant species in southeast Horqin sandy land[J]. Chinese Journal of Ecology, 2006, 25(8): 921−925. doi: 10.3321/j.issn:1000-4890.2006.08.010
    [9] Swenson N G, Enquist B J. Ecological and evolutionary determinants of a key plant functional trait: wood density and its community-wide variation across latitude and elevation[J]. American Journal of Botany, 2007, 94(3): 451−459. doi: 10.3732/ajb.94.3.451
    [10] Villar R, Merino J. Comparison of leaf construction costs in woody species with differing leaf life-spans in contrasting ecosystems[J]. New Phytologist, 2001, 151(1): 213−226. doi: 10.1046/j.1469-8137.2001.00147.x
    [11] 刘晓娟, 马克平. 植物功能性状研究进展[J]. 中国科学: 生命科学, 2015, 45(4):325−339.

    Liu X J, Ma K P. Advances in plant functional traits[J]. Scientia Sinica Vitae, 2015, 45(4): 325−339.
    [12] Niinemets Ü. Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs[J]. Ecology, 2001, 82(2): 453−469. doi: 10.1890/0012-9658(2001)082[0453:GSCCOL]2.0.CO;2
    [13] Wright I J, Reich P B, Westoby M. Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitats[J]. Functional Ecology, 2001, 15(4): 423−434. doi: 10.1046/j.0269-8463.2001.00542.x
    [14] Wright I J, Reich P B, Cornelissen J H C, et al. Assessing the generality of global leaf trait relationships[J]. New Phytologist, 2010, 166(2): 485−496.
    [15] Santiago L S, Wright S J. Leaf functional traits of tropical forest plants in relation to growth form[J]. Functional Ecology, 2010, 21(1): 19−27.
    [16] Falster D S, Warton D I, Wright I J. User’s guide to SMATR: standardised major axis tests and routines: Version 2.0[M/OL]. 2006 [2018−06−06]. http://www.bio.mq.edu.au/ecology/SMATR/.
    [17] Westoby M. The worldwide leaf economics spectrum[J]. Nature, 2004, 428: 821. doi: 10.1038/nature02403
    [18] Chave J, Coomes D, Jansen S, et al. Towards a worldwide wood economics spectrum[J]. Ecology Letters, 2010, 12(4): 351−366.
    [19] Wright I J, Ackerly D D, Bongers F, et al. Relationships among ecologically important dimensions of plant trait variation in seven neotropical forests[J]. Annals of Botany, 2007, 99: 1003−1015.
    [20] Moles A T, Warton D I, Warman L, et al. Global patterns in plant height[J]. Journal of Ecology, 2009, 97(5): 923−932. doi: 10.1111/jec.2009.97.issue-5
    [21] Wang R L, Yu G R, He N P, et al. Latitudinal variation of leaf morphological traits from species to communities along a forest transect in eastern China[J]. Journal of Geographical Sciences, 2016, 26(1): 15−26. doi: 10.1007/s11442-016-1251-x
    [22] 方精云. 也论我国东部植被带的划分[J]. 植物学报, 2001, 43(5):522−533. doi: 10.3321/j.issn:1672-9072.2001.05.013

    Fang J Y. Re-discussion about the forest vegetation zonation in Eastern China[J]. Acta Botanica Sinica, 2001, 43(5): 522−533. doi: 10.3321/j.issn:1672-9072.2001.05.013
    [23] Markesteijn L, Poorter L. Seedling root morphology and biomass allocation of 62 tropical tree species in relation to drought- and shade-tolerance[J]. Journal of Ecology, 2009, 97(2): 311−325. doi: 10.1111/jec.2009.97.issue-2
    [24] Poorter L, Markesteijn L. Seedling traits determine drought tolerance of tropical tree species[J]. Biotropica, 2008, 40(3): 321−331. doi: 10.1111/(ISSN)1744-7429
    [25] Cornwell W K, Ackerly D D. Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California[J]. Ecological Monographs, 2009, 79(1): 109−126. doi: 10.1890/07-1134.1
  • 加载中
图(4) / 表(4)
计量
  • 文章访问数:  3094
  • HTML全文浏览量:  576
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-25
  • 修回日期:  2018-11-30
  • 刊出日期:  2019-03-01

目录

    /

    返回文章
    返回