高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

长白山自然保护区蒙古栎幼树生理生长特性随海拔梯度的变化

樊莹 乔雪涛 赵秀海

樊莹, 乔雪涛, 赵秀海. 长白山自然保护区蒙古栎幼树生理生长特性随海拔梯度的变化[J]. 北京林业大学学报, 2019, 41(11): 1-10. doi: 10.13332/j.1000-1522.20190095
引用本文: 樊莹, 乔雪涛, 赵秀海. 长白山自然保护区蒙古栎幼树生理生长特性随海拔梯度的变化[J]. 北京林业大学学报, 2019, 41(11): 1-10. doi: 10.13332/j.1000-1522.20190095
Fan Ying, Qiao Xuetao, Zhao Xiuhai. Physiological and growth variations of Quercus mongolica saplings along an elevational gradient in Changbai Mountain Nature Reserve, northeastern China[J]. Journal of Beijing Forestry University, 2019, 41(11): 1-10. doi: 10.13332/j.1000-1522.20190095
Citation: Fan Ying, Qiao Xuetao, Zhao Xiuhai. Physiological and growth variations of Quercus mongolica saplings along an elevational gradient in Changbai Mountain Nature Reserve, northeastern China[J]. Journal of Beijing Forestry University, 2019, 41(11): 1-10. doi: 10.13332/j.1000-1522.20190095

长白山自然保护区蒙古栎幼树生理生长特性随海拔梯度的变化

doi: 10.13332/j.1000-1522.20190095
基金项目: 国家重点研发计划重点专项(2017YFC0504005),国家自然科学基金项目(31670643)
详细信息
    作者简介:

    樊莹,博士。主要研究方向:森林生态学。Email:fanying20070397@163.com 地址:100083 北京市海淀区清华东路35号北京林业大学林学院

    责任作者:

    赵秀海,教授,博士生导师。主要研究方向:森林经营理论与技术。Email:zhaoxh@bjfu.edu.cn 地址:同上

  • 中图分类号: S792.186

Physiological and growth variations of Quercus mongolica saplings along an elevational gradient in Changbai Mountain Nature Reserve, northeastern China

  • 摘要: 目的揭示长白山自然保护区蒙古栎幼树生理生长特征对海拔梯度的响应,以预测环境变化对该地区蒙古栎幼树生长的潜在影响。方法以长白山自然保护区不同海拔的林下蒙古栎幼树为材料,研究其叶片生理学、叶片形态学特性和植株生长特性对海拔梯度的响应。结果(1)蒙古栎叶片的比叶重和叶片干物质含量没有显著的海拔差异(P > 0.05),而叶片的表观量子效率、光饱和点、光饱和速率、水分利用效率和表观CO2利用效率随海拔高度的增加呈下降趋势,即蒙古栎叶片的对弱光的利用能力、对强光的适应能力和最大光合潜力随海拔高度的增加而下降,生成单位有机物所需消耗的水分和胞间CO2随海拔高度的增加而增加;(2)蒙古栎植株的叶生物量、新生枝条生物量、一年生枝条生物量、叶生物量比重、新生枝条生物量比重和一年生枝条生物量比重随海拔高度的增加分别下降了64%、59%、60%、53%、45%和47%,即蒙古栎幼树的年生长量随海拔高度的增加而下降;(3)本研究中选择的叶片因子共解释了蒙古栎总生长变异的12.03%,选择的环境因子共解释了总生长变异的19.31%。结论蒙古栎幼树叶片生理性状和整株生长性状对海拔梯度的响应反映了该物种在异质生境中具有较强的叶片生理和整株形态可塑性。蒙古栎幼树的叶片的比叶重和干物质含量随海拔梯度没有显著变化,但其光合速率以及年生长量随海拔高度的增加而下降,即环境变化可能会通过影响蒙古栎幼树叶片的光合特征而非叶片的形态学特征进而影响蒙古栎幼树的生长。本文对预测蒙古栎在未来气候变化下的生理生态响应及演化方向具有一定意义。

     

  • 图  1  长白山地区不同海拔高度蒙古栎幼树叶片光合参数

    AQY. 表观量子效率;LSP. 光饱和点;Asat. 光饱和速率;Gs. 气孔导度;Ci. 胞间二氧化碳浓度;Tr. 蒸腾速率;WUE. 水分利用效率;CUE. 表观二氧化碳利用率。下同。AQY, apparent quantum yield; LSP, light saturation point; Asat, light-saturated net photosynthesis; Gs, conductance to H2O; Ci, intercellular CO2 concentration; Tr, transpiration rate; WUE, water use efficiency; CUE, carbon use efficiency. The same below.

    Figure  1.  Mean (s.e.) values of different photosynthetic parameters of leaves in Quercus mongolica saplings at different elevations at Changbai Mountain

    图  2  长白山地区不同海拔高度蒙古栎幼树叶片比叶重(LMA)和叶片干物质含量(LDMC)

    ns表示不同海拔之间不存在显著差异。对于每一个海拔高度,样本量为6。 ns means no significant differences between elevations. The sample size was 6 for each elevation.

    Figure  2.  Mean (s.e.) values of leaf mass per area (LMA) and leaf dry mass content (LDMC) in Quercus mongolica at different elevations at Changbai Mountain

    图  3  长白山地区不同海拔高度蒙古栎幼树的生长指标

    LM. 叶片生物量;NBM. 新生枝条生物量;OBM. 一年生枝条生物量;LR. 叶片生物量比重;NBR. 新生枝条生物量比重;OBR. 一年生枝条生物量比重。下同。LM, leaf biomass; NBM, new branch biomass; OBM, one year old branch biomass; LR, leaf biomass / total biomass ratio; NBR, new branch biomass / total biomass ratio; OBR, one year old branch biomass / total biomass ratio. The same below.

    Figure  3.  Mean(s.e.)values of growth indicators of Quercus mongolica saplings at different elevations at Changbai Mountain

    图  4  植株生长指标和叶片性状的RDA分析排序图

    Figure  4.  RDA analysis of growth indexes and leaf traits

    图  5  植株生长指标与环境因子的RDA分析排序图

    Figure  5.  RDA analysis of plant growth indexes and environmental factors

    表  1  各海拔样本植株介绍

    Table  1.   General description of saplings at various elevations

    项目 Item750 m800 m850 m900 m950 m1 050 m
    树高
    Tree height/cm
    229.00 ± 1.63a 220.17 ± 1.82b 213.50 ± 2.17c 211.33 ± 2.04c 211.33 ± 2.12c 207.33 ± 3.07c
    基径
    Basal stem diameter/cm
    2.40 ± 0.05a 2.27 ± 0.04ab 2.28 ± 0.05ab 2.27 ± 0.04ab 2.27 ± 0.05ab 2.24 ± 0.04b
    树高/基径
    Tree height/basal stem diameter
    95.43 ± 1.67a 97.19 ± 1.62a 93.92 ± 2.23a 93.26 ± 1.43a 93.36 ± 2.40a 92.83 ± 1.11a
    冠幅长
    Crown length/cm
    98.17 ± 2.85 98.33 ± 1.69 98.50 ± 2.17 91.67 ± 3.69 95.67 ± 2.40 93.83 ± 1.80
    冠幅宽
    Crown width/cm
    98.00 ± 2.65 97.33 ± 2.58 100.67 ± 2.39 95.50 ± 2.99 99.50 ± 2.93 99.17 ± 1.20
    林冠开阔度
    Canopy openness/%
    18.07 ± 0.79a 18.46 ± 0.72a 18.02 ± 0.55a 18.12 ± 0.82a 18.34 ± 1.05a 18.54 ± 1.02a
    坡向
    Slope aspect
    N N N N N N
    样本数
    Number of sample trees
    6 6 6 6 6 6
    注:数据为平均值 ± 标准误差。不同小写字母表示不同海拔之间差异显著性(P < 0.05)。下同。Notes: values are mean ± SE. Significant differences among elevations are denoted by lowercase letters ( P < 0.05). The same below.
    下载: 导出CSV

    表  2  不同海拔环境因子概况

    Table  2.   General description of environmental factors at various elevations

    项目 Item750 m800 m850 m900 m950 m1 050 m
    WCT/℃[24] 15.55 15.21 14.87 14.53 14.19 13.51
    WCH/%[24] 77.17 77.63 78.10 78.56 79.03 79.96
    RIA/mm[25] 644.25 658.97 673.69 688.41 703.13 732.57
    ACT5/℃[25] 2 388.28 2 329.44 2 270.61 2 211.77 2 152.94 2 035.27
    Pair/Pa 92.21 ± 0.04a 92.16 ± 0.01b 91.89 ± 0.02c 91.74 ± 0.03d 91.31 ± 0.06e 89.58 ± 0.01f
    TN/% 0.28 ± 0.08ab 0.17 ± 0.05b 0.25 ± 0.07b 0.29 ± 0.07ab 0.46 ± 0.10a 0.18 ± 0.03b
    TC/% 6.71 ± 1.06b 7.38 ± 1.47ab 7.99 ± 1.36ab 7.66 ± 2.21ab 11.91 ± 1.76a 4.02 ± 1.18b
    TP/% 0.43 ± 0.07a 0.36 ± 0.03a 0.30 ± 0.04a 0.36 ± 0.03a 0.41 ± 0.04a 0.34 ± 0.02a
    pH 5.41 ± 0.12a 5.31 ± 0.11ab 5.63 ± 0.26a 5.18 ± 0.06ab 5.20 ± 0.13ab 4.87 ± 0.06b
    WCs/% 0.44 ± 0.01c 0.67 ± 0.02a 0.57 ± 0.01b 0.47 ± 0.01c 0.56 ± 0.01b 0.56 ± 0.02b
    注:WCT. 林下年均温;WCH. 林下年均大气湿度;RIA. 年降水量;ACT5. 年积温;Pair. 大气压强;TN. 土壤全氮;TC. 土壤全碳;TP. 土壤全磷;WCs. 土壤含水量。下同。Notes: WCT, annual within-crown air temperature; WCH, annual within-crown air humidity; RIA, annual precipitation; ACT5, annual accumulated temperature > 5 ℃; Pair, atmospheric pressure; TN, soil total N; TC, soil total C; TP, soil total P; WCs, soil water content. The same below.
    下载: 导出CSV
  • [1] Saleska S R, Shaw M R, Fischer M L, et al. Plant community composition mediates both large transient decline and predicted long-term recovery of soil carbon under climate warming[J]. Global Biogeochemical Cycles, 2002, 16(4): 1−18.
    [2] Dunne J A, Saleska S R, Fischer M L, et al. Integrating experimental and gradient methods in ecological climate change research[J]. Ecology, 2004, 85(4): 904−916. doi: 10.1890/03-8003
    [3] Fukami T, Wardle D A. Long-term ecological dynamics: reciprocal insights from natural and anthropogenic gradients[J]. Pro-ceedings of the Royal Society of London B Biological Sciences, 2005, 272: 2105−2115. doi: 10.1098/rspb.2005.3277
    [4] IPCC (Intergovernmental Panel on Climate Change). Working group I contribution to the IPCC fifth assessment report climate change 2013: the physical science basis[M]//Thomas F S, Dahe Q, Gian-Kasper P, et al. Observations: atmosphere and surface. Cambridge: Cambridge University Press, 2013.
    [5] Fang O, Wang Y, Shao X. The effect of climate on the net primary productivity (NPP) of Pinus koraiensis, in the Changbai Mountains over the past 50 years[J]. Trees, 2015, 30(1): 1−14.
    [6] 高志涛, 吴晓春. 蒙古栎地理分布规律的探讨[J]. 防护林科技, 2005(2):83−84. doi: 10.3969/j.issn.1005-5215.2005.01.034

    Gao Z T, Wu X C. Discussion on geographic distribution law of Quercus mongolica[J]. Protection Forest Science and Technology, 2005(2): 83−84. doi: 10.3969/j.issn.1005-5215.2005.01.034
    [7] 张春雨, 赵秀海, 赵亚洲. 长白山温带森林不同演替阶段群落结构特征[J]. 植物生态学报, 2009, 33(6):1090−1100. doi: 10.3773/j.issn.1005-264x.2009.06.009

    Zhang C Y, Zhao X H, Zhao Y Z. Community structure in different successional stages in north temperate forests of Changbai Mountains, China[J]. Chinese Journal of Plant Ecology, 2009, 33(6): 1090−1100. doi: 10.3773/j.issn.1005-264x.2009.06.009
    [8] Kobe R K. Sapling growth as a function of light and landscape-level variation in soil water and foliar nitrogen in northern Michigan[J]. Oecologia, 2006, 147(1): 119−133. doi: 10.1007/s00442-005-0252-8
    [9] Günter S, Gonzalez P, Álvarez G, et al. Determinants for successful reforestation of abandoned pastures in the Andes: soil condi-tions and vegetation cover[J]. Forest Ecology and Management, 2009, 258(2): 81−91. doi: 10.1016/j.foreco.2009.03.042
    [10] 郭志华, 张旭东, 黄玲玲, 等. 落叶阔叶树种蒙古栎(Quercus mongolica)对林缘不同光环境光能和水分的利用[J]. 生态学报, 2006, 26(4):1047−1056. doi: 10.3321/j.issn:1000-0933.2006.04.010

    Guo Z H, Zhang X D, Huang L L, et al. Solar energy and water utilization of Quercus mongolica, a deciduous broadleaf tree, in different light regimes across the edge of a deciduous broad leaved forest[J]. Acta Ecologica Sinica, 2006, 26(4): 1047−1056. doi: 10.3321/j.issn:1000-0933.2006.04.010
    [11] 吴家兵, 关德新, 张弥, 等. 长白山地区蒙古栎光合特性[J]. 中国科学院大学学报, 2006, 23(4):548−554.

    Wu J B, Guan D X, Zhang M, et al. Photosynthetic characteristics of Quercus mongolica in region of Changbai Mountain[J]. Journal of the Graduate School of the Chinese Academy of Sciences, 2006, 23(4): 548−554.
    [12] 张弥, 吴家兵, 关德新, 等. 长白山阔叶红松林主要树种光合作用的光响应曲线[J]. 应用生态学报, 2006, 17(9):1575−1578. doi: 10.3321/j.issn:1001-9332.2006.09.004

    Zhang M, Wu J B, Guan D X, et al. Light response curve of dominant tree species photosynthesis in broadleaved Korean pine forest of Changbai Mountain[J]. Chinese Journal of Applied Ecology, 2006, 17(9): 1575−1578. doi: 10.3321/j.issn:1001-9332.2006.09.004
    [13] 许中旗, 黄选瑞, 徐成立, 等. 光照条件对蒙古栎幼苗生长及形态特征的影响[J]. 生态学报, 2009, 29(3):1121−1128. doi: 10.3321/j.issn:1000-0933.2009.03.008

    Xu Z Q, Huang X R, Xu C L, et al. The impacts of light conditions on the growth and morphology of Quercus mongolica seedlings[J]. Acta Ecologica Sinica, 2009, 29(3): 1121−1128. doi: 10.3321/j.issn:1000-0933.2009.03.008
    [14] Körner C. The use of ‘altitude’ in ecological research[J]. Trends in Ecology and Evolution, 2007, 22(11): 569−574. doi: 10.1016/j.tree.2007.09.006
    [15] Angert A L. Growth and leaf physiology of monkeyflowers with different altitude ranges[J]. Oecologia, 2006, 148(2): 183−94. doi: 10.1007/s00442-006-0361-z
    [16] Dornbos D L, Martzke M R, Gries K, et al. Physiological competitiveness of autumn olive compared with native woody competitors in open field and forest understory[J]. Forest Ecology and Management, 2016, 372: 101−108. doi: 10.1016/j.foreco.2016.03.051
    [17] Herrick J D, Thomas R B. Effects of CO2 enrichment on the photosynthetic light response of sun and shade leaves of canopy sweetgum (Liquidambar styraciflua) in a forest ecosystem[J]. Tree Physiology, 1999, 19(12): 423−423.
    [18] Marin F R, Ribeiro R V, Marchiori P E R. How can crop modeling and plant physiology help to understand the plant responses to climate change? A case study with sugarcane[J]. Theoretical and Experimental Plant Physiology, 2014, 26(1): 1−15. doi: 10.1007/s40626-014-0004-4
    [19] Callaway R M, Delucia E H, Schlesinger W H. Biomass allocation of montane and desert ponderosa pine: an analog for response to climate change[J]. Ecology, 1994, 75(5): 1474−1481. doi: 10.2307/1937470
    [20] Frazer G W, Fournier R A, Trofymow J A, et al. A comparison of digital and film fisheye photography for analysis of forest canopy structure and gap light transmission[J]. Agricultural and Forest Meteorology, 2001, 109(4): 258−263.
    [21] Schollenberger C J. A rapid approximate method for determining soil organic matter[J]. Soil Science, 1927, 24: 65−68. doi: 10.1097/00010694-192707000-00008
    [22] Mitchell A K. Acclimation of pacific yew (Taxus brevifolia) foliage to sun and shade[J]. Tree Physiology, 1998, 18: 749−757. doi: 10.1093/treephys/18.11.749
    [23] Berenblum I, Chain E. An improved method for the colorimetric determination of phosphate[J]. Biochemical Journal, 1938, 32(2): 295−298. doi: 10.1042/bj0320295
    [24] Yan C, Han S, Zhou Y, et al. Needle δ13C and mobile carbohydrates in Pinus koraiensis in relation to decreased temperature and increased moisture along an elevational gradient in NE China[J]. Trees, 2013, 27(2): 389−399. doi: 10.1007/s00468-012-0784-6
    [25] Fan B, Sang W, Axmacher J C. Forest vegetation responses to climate and environmental change: a case study from Changbai Mountain, NE China[J]. Forest Ecology and Management, 2012, 262(11): 2052−2060.
    [26] Ye Z P. A new model for relationship between irradiance and the rate of photosynthesis in Oryza sativa[J]. Photosynthetica, 2007, 45(4): 637−640. doi: 10.1007/s11099-007-0110-5
    [27] Reich P B, Walters M B, Ellsworth D S, et al. Relationships of leaf dark respiration to leaf nitrogen, specific leaf area and leaf life-span: a test across biomes and functional groups[J]. Oecologia, 1998, 114(4): 471−482. doi: 10.1007/s004420050471
    [28] Fryer J H, Ledig F T. Microevolution of the photosynthetic temperature optimum in relation to elevational complex gradient[J]. Canadian Journal of Botany, 1972, 50(6): 1231−1235. doi: 10.1139/b72-149
    [29] Cabrera H M, Rada F, Cavieres L. Effects of temperature on photosynthesis of two morphologically contrasting plant species along an altitudinal gradient in the tropical high Andes[J]. Oecologia, 1998, 114(2): 145−152. doi: 10.1007/s004420050430
    [30] Kumar T A, Charan T B. Temperature-stress-induced impairment of chlorophyll biosynthetic reactions in cucumber and wheat[J]. Plant Physiology, 1998, 117(3): 851−858. doi: 10.1104/pp.117.3.851
    [31] 赵娟, 宋媛, 毛子军. 蒙古栎幼苗光合作用以及叶绿素荧光对温度和降水交互作用的响应[J]. 北京林业大学学报, 2013, 35(1):64−71.

    Zhao J, Song Y, Mao Z J. Response in photosynthesis and chlorophyll fluorescence of Quercus mongolica seedlings to the interaction of temperature and precipitation[J]. Journal of Beijing Forestry University, 2013, 35(1): 64−71.
    [32] Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis[J]. Annual Review of Plant Physiology, 1982, 33(1): 74−79.
    [33] 王淼, 李秋荣, 郝占庆, 等. 土壤水分变化对长白山主要树种蒙古栎幼树生长的影响[J]. 应用生态学报, 2004, 15(10):1765−1770. doi: 10.3321/j.issn:1001-9332.2004.10.012

    Wang M, Li Q R, Hao Z Q, et al. Effects of soil water regimes on the growth of Quercus mongolica seedlings in Changbai Mountains[J]. Chinese Journal of Applied Ecology, 2004, 15(10): 1765−1770. doi: 10.3321/j.issn:1001-9332.2004.10.012
    [34] 赵娟. 气候变化背景下模拟温度升高和降水变化对蒙古栎种子萌发和幼苗生长的影响[D]. 哈尔滨: 东北林业大学, 2013: 14−16.

    Zhao J. Study on the impact of climate change on seed germination and seedling growth of Quercus mongalica[D]. Harbin: Northeast Forestry University, 2013: 14−16.
    [35] Stephanie D C, Margaretj S, Lawren S. Leaf trait diversification and design in seven rare taxa of the Hawaiian Plantago radiation[J]. International Journal of Plant Sciences, 2009, 170(1): 61−75. doi: 10.1086/593111
    [36] Scheepens J F, Frei E S, Stöcklin J. Genotypic and environmental variation in specific leaf area in a widespread alpine plant after transplantation to different altitudes[J]. Oecologia, 2010, 164(1): 141−150. doi: 10.1007/s00442-010-1650-0
    [37] Luo J, Zang R, Li C. Physiological and morphological variations of Picea asperata populations originating from different altitudes in the mountains of southwestern China[J]. Forest Ecology and Management, 2005, 221(1−3): 285−290.
    [38] 李东胜, 史作民, 刘世荣, 等. 南北样带温带区栎属树种幼苗功能性状的变异研究[J]. 林业科学研究, 2013, 26(2):156−162. doi: 10.3969/j.issn.1001-1498.2013.02.005

    Li D S, Shi Z M, Liu S R, et al. Variation of functional traits of Quercus seedlings from different provenances of temperate zone of NSTEC[J]. Forest Research, 2013, 26(2): 156−162. doi: 10.3969/j.issn.1001-1498.2013.02.005
    [39] 冯秋红, 史作民, 董莉莉, 等. 南北样带温带区栎属树种功能性状对气象因子的响应[J]. 生态学报, 2010, 30(21):5781−5789.

    Feng Q H, Shi Z M, Dong L L, et al. The response of functional traits of Quercus species to meteorological factors in temperate zone of NSTEC[J]. Acta Ecologica Sinica, 2010, 30(21): 5781−5789.
    [40] Fabbro T, Körner C. Altitudinal differences in flower traits and reproductive allocation[J]. Flora-Morphology Distribution Func-tional Ecology of Plants, 2004, 199(70): 70−81.
    [41] Delucia E H, Maherali H, Carey E V. Climate-driven changes in biomass allocation in pines[J]. Global Change Biology, 2000, 6(5): 587−593. doi: 10.1046/j.1365-2486.2000.00338.x
    [42] 程徐冰, 吴军, 韩士杰, 等. 减少降水对长白山蒙古栎叶片生理生态特性的影响[J]. 生态学杂志, 2011, 30(9):1908−1914.

    Cheng X B, Wu J, Han S J, et al. Effects of decreased rainfall on Quercus mongolica leaf eco-physiological characteristics[J]. Chinese Journal of Ecology, 2011, 30(9): 1908−1914.
    [43] Morecroft M D, Woodward F I. Experiments on the causes of altitudinal differences in the leaf nutrient contents, size and δ13C of Alchemilla alpina[J]. New Phytologist, 1996, 134(3): 471−479. doi: 10.1111/nph.1996.134.issue-3
    [44] 侯颖, 王开运, 牛德奎, 等. CO2浓度和温度升高对木本植物养分含量、分配的影响[J]. 江西农业大学学报, 2006, 28(1):95−100. doi: 10.3969/j.issn.1671-6523.2006.01.028

    Hou Y, Wang K Y, Niu D K, et al. Effects of elevated CO2 and temperature to plant nutrient content and allocation[J]. Acta Agriculturae Universitatis Jiangxiensis, 2006, 28(1): 95−100. doi: 10.3969/j.issn.1671-6523.2006.01.028
    [45] Körner C H. Functional plant ecology of high mountain ecosystems[M]. Beijing: Science Press, 2008.
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  2001
  • HTML全文浏览量:  823
  • PDF下载量:  123
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-27
  • 修回日期:  2019-06-11
  • 网络出版日期:  2019-07-15
  • 刊出日期:  2019-11-01

目录

    /

    返回文章
    返回