Physiological and growth variations of Quercus mongolica saplings along an elevational gradient in Changbai Mountain Nature Reserve, northeastern China
-
摘要:目的揭示长白山自然保护区蒙古栎幼树生理生长特征对海拔梯度的响应,以预测环境变化对该地区蒙古栎幼树生长的潜在影响。方法以长白山自然保护区不同海拔的林下蒙古栎幼树为材料,研究其叶片生理学、叶片形态学特性和植株生长特性对海拔梯度的响应。结果(1)蒙古栎叶片的比叶重和叶片干物质含量没有显著的海拔差异(P > 0.05),而叶片的表观量子效率、光饱和点、光饱和速率、水分利用效率和表观CO2利用效率随海拔高度的增加呈下降趋势,即蒙古栎叶片的对弱光的利用能力、对强光的适应能力和最大光合潜力随海拔高度的增加而下降,生成单位有机物所需消耗的水分和胞间CO2随海拔高度的增加而增加;(2)蒙古栎植株的叶生物量、新生枝条生物量、一年生枝条生物量、叶生物量比重、新生枝条生物量比重和一年生枝条生物量比重随海拔高度的增加分别下降了64%、59%、60%、53%、45%和47%,即蒙古栎幼树的年生长量随海拔高度的增加而下降;(3)本研究中选择的叶片因子共解释了蒙古栎总生长变异的12.03%,选择的环境因子共解释了总生长变异的19.31%。结论蒙古栎幼树叶片生理性状和整株生长性状对海拔梯度的响应反映了该物种在异质生境中具有较强的叶片生理和整株形态可塑性。蒙古栎幼树的叶片的比叶重和干物质含量随海拔梯度没有显著变化,但其光合速率以及年生长量随海拔高度的增加而下降,即环境变化可能会通过影响蒙古栎幼树叶片的光合特征而非叶片的形态学特征进而影响蒙古栎幼树的生长。本文对预测蒙古栎在未来气候变化下的生理生态响应及演化方向具有一定意义。Abstract:Objective This paper aims to reveal the inner mechanisms of vegetation growth to elevational gradient and provide scientific basis for predicting the impact of climate change on vegetation growth of Quercus mongolica in Changbai Mountain Nature Reserve, northeastern China.Method We used the Quercus mongolica saplings under the canopy to evaluate leaf physiological characteristics, leaf morphological characteristics and plant growth characteristics of Quercus mongolica at different elevations.Result The results were as follows: (1) there were no significant differences (P > 0.05) between the average needle leaf mass per area (LMA) and leaf dry mass content (LDMC) from various elevations. The apparent quantum yield, the saturation light intensity, the light saturated net photosynthesis, the water use efficiency and apparent CO2 use efficiency were negatively correlated with elevation, i.e. the ability to utilize low light, the ability to adapt to strong light and the maximum photosynthetic potential decreased with elevation, while the consumption of water and intercellular CO2 required for the production of organic matter increased with elevation. (2) Leaf biomass, new branch biomass, one year old branch biomass, leaf biomass proportion, new branch biomass proportion and one year old branch biomass proportion were also negatively correlated with elevation, i.e. the annual growth of Quercus mongolica saplings decresed with elevation. (3) All leaf factors in this study explained 12.03% of total growth variation, while all environmental factors in this study explained 19.31% of total growth variation of Quercus mongolica saplings.Conclusion The elevational responses of leaf physiological characters and whole plant growth characters of Quercus mongolica reflect that this species has strong plasticity in heterogeneous habitats. There is no significant difference in leaf mass per area and leaf dry mass content of Quercus mongolica from different elevations, but the photosynthetic rate and annual growth decrease with elevation, namely environmental variations may affect the growth of saplings by affecting the photosynthetic characteristics rather than the morphological characteristics of the leaves, in turn, affect the growth of Quercus mongolica saplings. This paper is of certain significance to predict the physiological and ecological response of Quercus mongolica under the future climate change.
-
Keywords:
- Quercus mongolica /
- elevation /
- growth characteristics /
- leaf property
-
-
图 1 长白山地区不同海拔高度蒙古栎幼树叶片光合参数
AQY. 表观量子效率;LSP. 光饱和点;Asat. 光饱和速率;Gs. 气孔导度;Ci. 胞间二氧化碳浓度;Tr. 蒸腾速率;WUE. 水分利用效率;CUE. 表观二氧化碳利用率。下同。AQY, apparent quantum yield; LSP, light saturation point; Asat, light-saturated net photosynthesis; Gs, conductance to H2O; Ci, intercellular CO2 concentration; Tr, transpiration rate; WUE, water use efficiency; CUE, carbon use efficiency. The same below.
Figure 1. Mean (s.e.) values of different photosynthetic parameters of leaves in Quercus mongolica saplings at different elevations at Changbai Mountain
图 2 长白山地区不同海拔高度蒙古栎幼树叶片比叶重(LMA)和叶片干物质含量(LDMC)
ns表示不同海拔之间不存在显著差异。对于每一个海拔高度,样本量为6。 ns means no significant differences between elevations. The sample size was 6 for each elevation.
Figure 2. Mean (s.e.) values of leaf mass per area (LMA) and leaf dry mass content (LDMC) in Quercus mongolica at different elevations at Changbai Mountain
图 3 长白山地区不同海拔高度蒙古栎幼树的生长指标
LM. 叶片生物量;NBM. 新生枝条生物量;OBM. 一年生枝条生物量;LR. 叶片生物量比重;NBR. 新生枝条生物量比重;OBR. 一年生枝条生物量比重。下同。LM, leaf biomass; NBM, new branch biomass; OBM, one year old branch biomass; LR, leaf biomass / total biomass ratio; NBR, new branch biomass / total biomass ratio; OBR, one year old branch biomass / total biomass ratio. The same below.
Figure 3. Mean(s.e.)values of growth indicators of Quercus mongolica saplings at different elevations at Changbai Mountain
表 1 各海拔样本植株介绍
Table 1 General description of saplings at various elevations
项目 Item 750 m 800 m 850 m 900 m 950 m 1 050 m 树高
Tree height/cm229.00 ± 1.63a 220.17 ± 1.82b 213.50 ± 2.17c 211.33 ± 2.04c 211.33 ± 2.12c 207.33 ± 3.07c 基径
Basal stem diameter/cm2.40 ± 0.05a 2.27 ± 0.04ab 2.28 ± 0.05ab 2.27 ± 0.04ab 2.27 ± 0.05ab 2.24 ± 0.04b 树高/基径
Tree height/basal stem diameter95.43 ± 1.67a 97.19 ± 1.62a 93.92 ± 2.23a 93.26 ± 1.43a 93.36 ± 2.40a 92.83 ± 1.11a 冠幅长
Crown length/cm98.17 ± 2.85 98.33 ± 1.69 98.50 ± 2.17 91.67 ± 3.69 95.67 ± 2.40 93.83 ± 1.80 冠幅宽
Crown width/cm98.00 ± 2.65 97.33 ± 2.58 100.67 ± 2.39 95.50 ± 2.99 99.50 ± 2.93 99.17 ± 1.20 林冠开阔度
Canopy openness/%18.07 ± 0.79a 18.46 ± 0.72a 18.02 ± 0.55a 18.12 ± 0.82a 18.34 ± 1.05a 18.54 ± 1.02a 坡向
Slope aspectN N N N N N 样本数
Number of sample trees6 6 6 6 6 6 注:数据为平均值 ± 标准误差。不同小写字母表示不同海拔之间差异显著性(P < 0.05)。下同。Notes: values are mean ± SE. Significant differences among elevations are denoted by lowercase letters ( P < 0.05). The same below. 表 2 不同海拔环境因子概况
Table 2 General description of environmental factors at various elevations
项目 Item 750 m 800 m 850 m 900 m 950 m 1 050 m WCT/℃[24] 15.55 15.21 14.87 14.53 14.19 13.51 WCH/%[24] 77.17 77.63 78.10 78.56 79.03 79.96 RIA/mm[25] 644.25 658.97 673.69 688.41 703.13 732.57 ACT5/℃[25] 2 388.28 2 329.44 2 270.61 2 211.77 2 152.94 2 035.27 Pair/Pa 92.21 ± 0.04a 92.16 ± 0.01b 91.89 ± 0.02c 91.74 ± 0.03d 91.31 ± 0.06e 89.58 ± 0.01f TN/% 0.28 ± 0.08ab 0.17 ± 0.05b 0.25 ± 0.07b 0.29 ± 0.07ab 0.46 ± 0.10a 0.18 ± 0.03b TC/% 6.71 ± 1.06b 7.38 ± 1.47ab 7.99 ± 1.36ab 7.66 ± 2.21ab 11.91 ± 1.76a 4.02 ± 1.18b TP/% 0.43 ± 0.07a 0.36 ± 0.03a 0.30 ± 0.04a 0.36 ± 0.03a 0.41 ± 0.04a 0.34 ± 0.02a pH 5.41 ± 0.12a 5.31 ± 0.11ab 5.63 ± 0.26a 5.18 ± 0.06ab 5.20 ± 0.13ab 4.87 ± 0.06b WCs/% 0.44 ± 0.01c 0.67 ± 0.02a 0.57 ± 0.01b 0.47 ± 0.01c 0.56 ± 0.01b 0.56 ± 0.02b 注:WCT. 林下年均温;WCH. 林下年均大气湿度;RIA. 年降水量;ACT5. 年积温;Pair. 大气压强;TN. 土壤全氮;TC. 土壤全碳;TP. 土壤全磷;WCs. 土壤含水量。下同。Notes: WCT, annual within-crown air temperature; WCH, annual within-crown air humidity; RIA, annual precipitation; ACT5, annual accumulated temperature > 5 ℃; Pair, atmospheric pressure; TN, soil total N; TC, soil total C; TP, soil total P; WCs, soil water content. The same below. -
[1] Saleska S R, Shaw M R, Fischer M L, et al. Plant community composition mediates both large transient decline and predicted long-term recovery of soil carbon under climate warming[J]. Global Biogeochemical Cycles, 2002, 16(4): 1−18.
[2] Dunne J A, Saleska S R, Fischer M L, et al. Integrating experimental and gradient methods in ecological climate change research[J]. Ecology, 2004, 85(4): 904−916. doi: 10.1890/03-8003
[3] Fukami T, Wardle D A. Long-term ecological dynamics: reciprocal insights from natural and anthropogenic gradients[J]. Pro-ceedings of the Royal Society of London B Biological Sciences, 2005, 272: 2105−2115. doi: 10.1098/rspb.2005.3277
[4] IPCC (Intergovernmental Panel on Climate Change). Working group I contribution to the IPCC fifth assessment report climate change 2013: the physical science basis[M]//Thomas F S, Dahe Q, Gian-Kasper P, et al. Observations: atmosphere and surface. Cambridge: Cambridge University Press, 2013.
[5] Fang O, Wang Y, Shao X. The effect of climate on the net primary productivity (NPP) of Pinus koraiensis, in the Changbai Mountains over the past 50 years[J]. Trees, 2015, 30(1): 1−14.
[6] 高志涛, 吴晓春. 蒙古栎地理分布规律的探讨[J]. 防护林科技, 2005(2):83−84. doi: 10.3969/j.issn.1005-5215.2005.01.034 Gao Z T, Wu X C. Discussion on geographic distribution law of Quercus mongolica[J]. Protection Forest Science and Technology, 2005(2): 83−84. doi: 10.3969/j.issn.1005-5215.2005.01.034
[7] 张春雨, 赵秀海, 赵亚洲. 长白山温带森林不同演替阶段群落结构特征[J]. 植物生态学报, 2009, 33(6):1090−1100. doi: 10.3773/j.issn.1005-264x.2009.06.009 Zhang C Y, Zhao X H, Zhao Y Z. Community structure in different successional stages in north temperate forests of Changbai Mountains, China[J]. Chinese Journal of Plant Ecology, 2009, 33(6): 1090−1100. doi: 10.3773/j.issn.1005-264x.2009.06.009
[8] Kobe R K. Sapling growth as a function of light and landscape-level variation in soil water and foliar nitrogen in northern Michigan[J]. Oecologia, 2006, 147(1): 119−133. doi: 10.1007/s00442-005-0252-8
[9] Günter S, Gonzalez P, Álvarez G, et al. Determinants for successful reforestation of abandoned pastures in the Andes: soil condi-tions and vegetation cover[J]. Forest Ecology and Management, 2009, 258(2): 81−91. doi: 10.1016/j.foreco.2009.03.042
[10] 郭志华, 张旭东, 黄玲玲, 等. 落叶阔叶树种蒙古栎(Quercus mongolica)对林缘不同光环境光能和水分的利用[J]. 生态学报, 2006, 26(4):1047−1056. doi: 10.3321/j.issn:1000-0933.2006.04.010 Guo Z H, Zhang X D, Huang L L, et al. Solar energy and water utilization of Quercus mongolica, a deciduous broadleaf tree, in different light regimes across the edge of a deciduous broad leaved forest[J]. Acta Ecologica Sinica, 2006, 26(4): 1047−1056. doi: 10.3321/j.issn:1000-0933.2006.04.010
[11] 吴家兵, 关德新, 张弥, 等. 长白山地区蒙古栎光合特性[J]. 中国科学院大学学报, 2006, 23(4):548−554. Wu J B, Guan D X, Zhang M, et al. Photosynthetic characteristics of Quercus mongolica in region of Changbai Mountain[J]. Journal of the Graduate School of the Chinese Academy of Sciences, 2006, 23(4): 548−554.
[12] 张弥, 吴家兵, 关德新, 等. 长白山阔叶红松林主要树种光合作用的光响应曲线[J]. 应用生态学报, 2006, 17(9):1575−1578. doi: 10.3321/j.issn:1001-9332.2006.09.004 Zhang M, Wu J B, Guan D X, et al. Light response curve of dominant tree species photosynthesis in broadleaved Korean pine forest of Changbai Mountain[J]. Chinese Journal of Applied Ecology, 2006, 17(9): 1575−1578. doi: 10.3321/j.issn:1001-9332.2006.09.004
[13] 许中旗, 黄选瑞, 徐成立, 等. 光照条件对蒙古栎幼苗生长及形态特征的影响[J]. 生态学报, 2009, 29(3):1121−1128. doi: 10.3321/j.issn:1000-0933.2009.03.008 Xu Z Q, Huang X R, Xu C L, et al. The impacts of light conditions on the growth and morphology of Quercus mongolica seedlings[J]. Acta Ecologica Sinica, 2009, 29(3): 1121−1128. doi: 10.3321/j.issn:1000-0933.2009.03.008
[14] Körner C. The use of ‘altitude’ in ecological research[J]. Trends in Ecology and Evolution, 2007, 22(11): 569−574. doi: 10.1016/j.tree.2007.09.006
[15] Angert A L. Growth and leaf physiology of monkeyflowers with different altitude ranges[J]. Oecologia, 2006, 148(2): 183−94. doi: 10.1007/s00442-006-0361-z
[16] Dornbos D L, Martzke M R, Gries K, et al. Physiological competitiveness of autumn olive compared with native woody competitors in open field and forest understory[J]. Forest Ecology and Management, 2016, 372: 101−108. doi: 10.1016/j.foreco.2016.03.051
[17] Herrick J D, Thomas R B. Effects of CO2 enrichment on the photosynthetic light response of sun and shade leaves of canopy sweetgum (Liquidambar styraciflua) in a forest ecosystem[J]. Tree Physiology, 1999, 19(12): 423−423.
[18] Marin F R, Ribeiro R V, Marchiori P E R. How can crop modeling and plant physiology help to understand the plant responses to climate change? A case study with sugarcane[J]. Theoretical and Experimental Plant Physiology, 2014, 26(1): 1−15. doi: 10.1007/s40626-014-0004-4
[19] Callaway R M, Delucia E H, Schlesinger W H. Biomass allocation of montane and desert ponderosa pine: an analog for response to climate change[J]. Ecology, 1994, 75(5): 1474−1481. doi: 10.2307/1937470
[20] Frazer G W, Fournier R A, Trofymow J A, et al. A comparison of digital and film fisheye photography for analysis of forest canopy structure and gap light transmission[J]. Agricultural and Forest Meteorology, 2001, 109(4): 258−263.
[21] Schollenberger C J. A rapid approximate method for determining soil organic matter[J]. Soil Science, 1927, 24: 65−68. doi: 10.1097/00010694-192707000-00008
[22] Mitchell A K. Acclimation of pacific yew (Taxus brevifolia) foliage to sun and shade[J]. Tree Physiology, 1998, 18: 749−757. doi: 10.1093/treephys/18.11.749
[23] Berenblum I, Chain E. An improved method for the colorimetric determination of phosphate[J]. Biochemical Journal, 1938, 32(2): 295−298. doi: 10.1042/bj0320295
[24] Yan C, Han S, Zhou Y, et al. Needle δ13C and mobile carbohydrates in Pinus koraiensis in relation to decreased temperature and increased moisture along an elevational gradient in NE China[J]. Trees, 2013, 27(2): 389−399. doi: 10.1007/s00468-012-0784-6
[25] Fan B, Sang W, Axmacher J C. Forest vegetation responses to climate and environmental change: a case study from Changbai Mountain, NE China[J]. Forest Ecology and Management, 2012, 262(11): 2052−2060.
[26] Ye Z P. A new model for relationship between irradiance and the rate of photosynthesis in Oryza sativa[J]. Photosynthetica, 2007, 45(4): 637−640. doi: 10.1007/s11099-007-0110-5
[27] Reich P B, Walters M B, Ellsworth D S, et al. Relationships of leaf dark respiration to leaf nitrogen, specific leaf area and leaf life-span: a test across biomes and functional groups[J]. Oecologia, 1998, 114(4): 471−482. doi: 10.1007/s004420050471
[28] Fryer J H, Ledig F T. Microevolution of the photosynthetic temperature optimum in relation to elevational complex gradient[J]. Canadian Journal of Botany, 1972, 50(6): 1231−1235. doi: 10.1139/b72-149
[29] Cabrera H M, Rada F, Cavieres L. Effects of temperature on photosynthesis of two morphologically contrasting plant species along an altitudinal gradient in the tropical high Andes[J]. Oecologia, 1998, 114(2): 145−152. doi: 10.1007/s004420050430
[30] Kumar T A, Charan T B. Temperature-stress-induced impairment of chlorophyll biosynthetic reactions in cucumber and wheat[J]. Plant Physiology, 1998, 117(3): 851−858. doi: 10.1104/pp.117.3.851
[31] 赵娟, 宋媛, 毛子军. 蒙古栎幼苗光合作用以及叶绿素荧光对温度和降水交互作用的响应[J]. 北京林业大学学报, 2013, 35(1):64−71. Zhao J, Song Y, Mao Z J. Response in photosynthesis and chlorophyll fluorescence of Quercus mongolica seedlings to the interaction of temperature and precipitation[J]. Journal of Beijing Forestry University, 2013, 35(1): 64−71.
[32] Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis[J]. Annual Review of Plant Physiology, 1982, 33(1): 74−79.
[33] 王淼, 李秋荣, 郝占庆, 等. 土壤水分变化对长白山主要树种蒙古栎幼树生长的影响[J]. 应用生态学报, 2004, 15(10):1765−1770. doi: 10.3321/j.issn:1001-9332.2004.10.012 Wang M, Li Q R, Hao Z Q, et al. Effects of soil water regimes on the growth of Quercus mongolica seedlings in Changbai Mountains[J]. Chinese Journal of Applied Ecology, 2004, 15(10): 1765−1770. doi: 10.3321/j.issn:1001-9332.2004.10.012
[34] 赵娟. 气候变化背景下模拟温度升高和降水变化对蒙古栎种子萌发和幼苗生长的影响[D]. 哈尔滨: 东北林业大学, 2013: 14−16. Zhao J. Study on the impact of climate change on seed germination and seedling growth of Quercus mongalica[D]. Harbin: Northeast Forestry University, 2013: 14−16.
[35] Stephanie D C, Margaretj S, Lawren S. Leaf trait diversification and design in seven rare taxa of the Hawaiian Plantago radiation[J]. International Journal of Plant Sciences, 2009, 170(1): 61−75. doi: 10.1086/593111
[36] Scheepens J F, Frei E S, Stöcklin J. Genotypic and environmental variation in specific leaf area in a widespread alpine plant after transplantation to different altitudes[J]. Oecologia, 2010, 164(1): 141−150. doi: 10.1007/s00442-010-1650-0
[37] Luo J, Zang R, Li C. Physiological and morphological variations of Picea asperata populations originating from different altitudes in the mountains of southwestern China[J]. Forest Ecology and Management, 2005, 221(1−3): 285−290.
[38] 李东胜, 史作民, 刘世荣, 等. 南北样带温带区栎属树种幼苗功能性状的变异研究[J]. 林业科学研究, 2013, 26(2):156−162. doi: 10.3969/j.issn.1001-1498.2013.02.005 Li D S, Shi Z M, Liu S R, et al. Variation of functional traits of Quercus seedlings from different provenances of temperate zone of NSTEC[J]. Forest Research, 2013, 26(2): 156−162. doi: 10.3969/j.issn.1001-1498.2013.02.005
[39] 冯秋红, 史作民, 董莉莉, 等. 南北样带温带区栎属树种功能性状对气象因子的响应[J]. 生态学报, 2010, 30(21):5781−5789. Feng Q H, Shi Z M, Dong L L, et al. The response of functional traits of Quercus species to meteorological factors in temperate zone of NSTEC[J]. Acta Ecologica Sinica, 2010, 30(21): 5781−5789.
[40] Fabbro T, Körner C. Altitudinal differences in flower traits and reproductive allocation[J]. Flora-Morphology Distribution Func-tional Ecology of Plants, 2004, 199(70): 70−81.
[41] Delucia E H, Maherali H, Carey E V. Climate-driven changes in biomass allocation in pines[J]. Global Change Biology, 2000, 6(5): 587−593. doi: 10.1046/j.1365-2486.2000.00338.x
[42] 程徐冰, 吴军, 韩士杰, 等. 减少降水对长白山蒙古栎叶片生理生态特性的影响[J]. 生态学杂志, 2011, 30(9):1908−1914. Cheng X B, Wu J, Han S J, et al. Effects of decreased rainfall on Quercus mongolica leaf eco-physiological characteristics[J]. Chinese Journal of Ecology, 2011, 30(9): 1908−1914.
[43] Morecroft M D, Woodward F I. Experiments on the causes of altitudinal differences in the leaf nutrient contents, size and δ13C of Alchemilla alpina[J]. New Phytologist, 1996, 134(3): 471−479. doi: 10.1111/nph.1996.134.issue-3
[44] 侯颖, 王开运, 牛德奎, 等. CO2浓度和温度升高对木本植物养分含量、分配的影响[J]. 江西农业大学学报, 2006, 28(1):95−100. doi: 10.3969/j.issn.1671-6523.2006.01.028 Hou Y, Wang K Y, Niu D K, et al. Effects of elevated CO2 and temperature to plant nutrient content and allocation[J]. Acta Agriculturae Universitatis Jiangxiensis, 2006, 28(1): 95−100. doi: 10.3969/j.issn.1671-6523.2006.01.028
[45] Körner C H. Functional plant ecology of high mountain ecosystems[M]. Beijing: Science Press, 2008.
-
期刊类型引用(11)
1. 赵熙来,周正,葛锐,罗伟豪,马旭彤,蒋慧,苏华维. 残次香梨与乳酸菌组合对四翅滨藜青贮的影响. 中国饲料. 2024(17): 155-161 . 百度学术
2. 张衡锋,杨绮,韦庆翠,张焕朝. 盐胁迫对10个品种紫薇的影响及其耐盐性综合评价. 东北林业大学学报. 2023(09): 34-40 . 百度学术
3. 李雨欣,罗秀丽,张婷婷,康宇乾,王鹏,江行玉,周扬. 盐胁迫下海马齿生理指标变化及相关基因表达分析. 农业生物技术学报. 2022(07): 1279-1289 . 百度学术
4. 刘鹤莹,张嫚,翟中葳,杨鹏,支苏丽,沈仕洲,张克强. 大薸对奶厅废水主要污染物的去除效果研究. 农业环境科学学报. 2022(11): 2525-2538 . 百度学术
5. 王涛,蒙仲举,张佳鹏,雷虹娟,张格. NaCl胁迫对紫穗槐幼苗生长及生理特性的影响. 西北林学院学报. 2021(01): 25-30 . 百度学术
6. 刘学良,姚俊修,刘翠兰,李善文,任飞,李庆华,吴海涛,翟红莲,吴德军,邢世岩,高红萍. 7个接骨木无性系苗木对盐胁迫的生理响应与评价. 中南林业科技大学学报. 2021(01): 37-44+79 . 百度学术
7. 鲁俊倩,武舒,钟姗辰,张伟溪,苏晓华,张冰玉. ‘84K’杨组氨酸激酶基因PaHK3a的表达及功能分析. 北京林业大学学报. 2021(02): 46-53 . 本站查看
8. 丁丁,王红宝,郑伶杰,左永梅,韩民利,吴新海,郭艳超. 不同品种茶菊对NaCl胁迫的生理响应及耐盐性评价. 植物生理学报. 2021(03): 692-702 . 百度学术
9. 赵佳伟,李清亚,路斌,李艳,朱玉菲,栗浩,路丙社. 不同品种北美豆梨对NaCl胁迫的生理响应及耐盐性评价. 植物生理学报. 2019(01): 23-31 . 百度学术
10. 邹晓君,列志旸,薛立. NaCl胁迫对4种园林植物养分含量和贮量的影响. 华南农业大学学报. 2018(06): 77-84 . 百度学术
11. 杨传宝,孙超,李善文,姚俊修,刘敬国,矫兴杰. 白杨派无性系苗期耐盐性综合评价及筛选. 北京林业大学学报. 2017(10): 24-32 . 本站查看
其他类型引用(5)