Genetic variation of needle morphology and anatomical traits and physiological traits among Pinus tabuliformis geographic populations
-
摘要:目的针叶作为松树生命活动的重要器官,其不同地理种群的形态解剖特征与生理指标的关联尚待阐明,两者间联系可以为认识油松适应性变异提供新的视角。方法本研究在对来自油松全分布区不同生境的8个地理种群田间对比试验基础上,分析了4年生苗木次生针叶形态解剖指标、蒸腾与光合生理指标变异及两类指标间的相关关系。结果(1)针叶粗细、维管束、气孔和树脂道指标在地理群体间存在显著遗传变异;(2)各生理指标在地理种群间有极显著遗传差异;(3)针叶的净光合速率、蒸腾速率和胞间CO2浓度与形态解剖指标均存在不同紧密程度的正相关;(4)种群的胞间CO2浓度与产地年降水和1月均温与年降水比值呈显著正相关,气孔限制值与年降水量和1月均温/年降水量成显著负相关;(5)种群针叶的气孔线数与经度成显著正相关,而树脂道数与经度显著负相关,但与海拔成显著正相关;树脂道面积和叶肉面积比值与经度和纬度成显著负相关。结论遗传相对稳定的针叶形态解剖指标差异可在一定程度上反映地理种群间的光合生理差异,种群间存在针叶气孔量和调节能力随降水量及其维持力减低而提高趋势,树脂道数量及相对截面积随降水量降低而降低的适应性进化趋势。该发现为认识针叶形态解剖特性与光合生理指标关系,松种的适应性进化以及遗传改良提供了理论参考。Abstract:Objective Needles are the important organs of physiological activities in pine species, but the relationship between morphological and anatomical characteristics and physiological traits of diffenent geographical populations are still unclarified. Thus, assessing the association between the two kinds of traits could provide a new perspective for understanding the adaptive variation of Pinus tabuliformis.Method Based on the common garden test of 8 geographic populations which collected in different habitats from the whole distribution area of Pinus tabuliformis, we assessed the variation of morphological and anatomical traits, transpiration and photosynthetic physiological traits of secondary needles of 4-year-old seedlings, and evaluated the correlation between traits.Result (1) Significant genetic variations were found among geographical populations in needle thickness, vascular bundle, stomatal and resin canal traits; (2) significant genetic diversity of physiological traits was found among geographical populations, except for water use efficiency; (3) the net photosynthetic rate, transpiration rate and intercellular CO2 concentration were positively correlated with morphological and anatomical traits; (4) the intercellular CO2 concentration of populations was significantly positively correlated with the annual precipitation and the average temperature of January/ annual precipitation, the stomatal limitation value was significantly negatively correlated with annual precipitation and average temperature of January/annual precipitation; (5) the number of stomatal lines was significantly positively correlated with longitude, while resin canal number was significantly negatively correlated with the longitude but was significantly positively correlated with the altitude. Resin canal area/mesophyll area was significantly negatively correlated with longitude and latitude.Conclusion Variation of needle traits could reflect the photosynthetic physiological diversity among geographical populations. The number of needle stomata and regulation capacity of stomata would increase with the decreased precipitation, and the change of the number of resin canal mesophyll area. This study provided a theoretical reference for understanding the relationship between the anatomical and anatomical characteristics of the needles and photosynthetic physiological traits, and adaptive evolution of the pine species and genetic improvement.
-
-
表 1 油松种群采集地点
Table 1 Sampling population of P. tabuliformis
采集地点 Collection site 缩写 Abbreviation 经度 Longitude 纬度 Latitude 海拔 Elevation/m 1 九寨沟,四川 Jiuzhaigou, Sichuan JZGPT 103°47′E 33°18′N 2 393 2 宁陕,陕西 Ningshan, Shaanxi NSPT 108°23′E 33°29′N 1 423 3 卢氏,河南 Lushi, Henan LSPT 110°49′E 33°44′N 1 713 4 灵空山,山西 Lingkongshan, Shanxi LKSPT 112°20′E 36°37′N 1 664 5 互助,青海 Huzhu, Qinghai HZPT 102°58′E 36°58′N 2 299 6 方山,陕西 Fangshan, Shaanxi FSPT 111°33′E 37°56′N 1 941 7 松山,北京 Songshan, Beijing SSPT 115°49′E 40°31′N 885 8 宁城,内蒙古 Ningcheng, Inner Mongolia NCPT 118°58′E 42°17′N 1 300 表 2 油松针叶形态解剖指标
Table 2 Needle morphological and anatomical traits in P. tabuliformis
指标 Trait 测量性状 Measrured trait 形态指标 Morphological trait 针叶长 Needle long (NL)/cm 针叶厚 Needle thickness (NT)/mm 针叶宽 Needle width (NW)/mm 针叶截面积 Needle section area (NSA)/mm2 针叶截面周长 Needle section perimeter (NSP)/mm 叶肉面积 Mesophyll area (MA)/mm2 针叶背面气孔线数 Number of stomatal rows on convex side of needle (CSRN) 针叶腹面气孔线数 Number of stomatal rows on flat side of needle (FSRN) 针叶背面2 mm内气孔数 Number of stomata in a 2 mm depth on convex side of needle (CSR2N) 针叶腹面2 mm内气孔数 Number of stomata in a 2 mm depth on flat side of needle (FSR2N) 针叶背面2 mm内气孔密度 Stomata density in a 2 mm depth on convex side of needle (CSD) 针叶腹面2 mm内气孔密度 Stomata density in a 2 mm depth on flat side of needle (FSD) 针叶2 mm内平均气孔密度 Mean stomata density in a 2 mm depth of needle (MSD) 解剖指标 Anatomical trait 维管束宽 Vascular bundle width (VBW)/mm 维管束厚 Vascular bundle thickness (VBT)/mm 维管束周长 Vascular bundle perimeter (VBP)/mm 维管束面积 Vascular bundle area (VBA)/mm2 树脂道个数 Resin canals number (RCN) 树脂道面积 Resin canals area (RCA)/mm2 树脂道周长 Resin canals perimeter (RCP)/mm 树脂道面积/叶肉面积 Resin canals area/Mesophyll area (RCA/MA) 叶肉面积/维管束面积 Mesophyll area/Vascular bundle area (MA/VBA) 叶肉面积/树脂道面积 + 叶肉面积 Mesophyll area/Resin canals area + Vascular bundle area (MA/RCA + VBA) 表 3 针叶形态解剖指标方差分析表
Table 3 ANOVA of morphological and anatomical traits among populations
性状
Trait均方Mean square 方差分量 Variance component/% 群体遗传力(H2) 群体(7)
Population (7)群体内个体(88)
Individuals in population (88)残差(179)
Residual (179)群体(7)
Population (7)群体内个体(88)
Individuals in population (88)残差(179)
Residual (179)CSRN 11.037 4.756 0.946 11.422** 61.869** 26.709 0.910 FSRN 14.056 3.538 0.653 18.411** 58.261** 23.328 0.950 CSR2N 8.427 8.163 4.243 3.706* 45.121** 51.173 0.500 FSR2N 7.936 7.151 3.483 4.104* 46.492** 49.404 0.560 CSD 0.001 3.79 × 10− 4 1.75 × 10− 4 5.642* 47.374** 46.984 0.690 FSD 0.001 2.42 × 10− 4 8.40 × 10− 5 13.404** 49.576** 37.020 0.900 MSD 0.001 2.41 × 10− 4 7.36 × 10− 5 10.624** 53.961** 35.415 0.880 NL 55.497 15.648 1.061 20.017** 70.148** 9.836 0.980 NW 0.212 0.091 0.006 14.062** 75.887** 10.051 0.970 NT 0.114 0.030 0.003 20.158** 66.020** 13.822 0.970 NSA 0.241 0.103 0.009 13.460** 72.203** 14.337 0.960 NSP 1.436 0.727 0.147 9.866** 62.794** 27.339 0.900 MA 0.102 0.044 0.007 12.118** 65.788** 22.094 0.930 VBA 0.031 0.014 0.001 13.255** 76.229** 10.516 0.970 VBW 0.086 0.031 0.003 15.662** 71.914** 12.424 0.970 VBT 0.044 0.013 0.001 17.931** 68.005** 14.065 0.970 VBP 0.556 0.211 0.014 15.486** 73.834** 10.680 0.970 RCN 14.056 3.538 0.653 18.078** 65.690** 16.232 0.970 RCA 5.63 × 10− 6 2.50 × 10− 6 4.38 × 10− 7 11.482** 64.242** 24.276 0.970 RCP 0.072 0.0617 0.058 2.961 32.072 64.967 0.190 RCA/MA 2.84 × 10− 4 1.66 × 10− 4 3.45 × 10− 5 8.604** 63.408** 27.988 0.870 MA/VBA + RCA 0.157 0.154 0.115 1.473 28.151 70.376 0.200 VBA/RCA 410.920 642.240 381.510 1.775 21.547 76.678 0.230 注: *P < 0.05; **P < 0.01。Notes: *P < 0.05; **P < 0.01. 表 4 不同种群间形态解剖指标的差异
Table 4 Difference of morphology and anatomical traits among populations
项目 Item FSPT HZPT JZGPT LKSPT LSPT NCPT NSPT SSPT CSRN 7.830±1.790 6.360±1.355 6.970±1.082 7.690±1.636 7.640±1.397 8.060±1.391 7.200±1.346 7.830±1.630 FSRN 5.740±1.502 5.060±1.194 4.890±0.854 6.170±1.276 6.610±1.202 6.330±1.216 5.290±1.017 6.060±1.603 CSR2N 21.340±2.363 21.690±2.012 21.830±2.524 21.860±2.38 22.330±2.330 22.390±2.193 21.140±2.158 22.110±2.681 FSR2N 20.89±1.728 20.810±2.584 21.140±2.127 20.970±1.647 21.080±2.322 21.940±1.836 20.460±2.513 20.360±2.180 CSD 0.078±0.021 0.071±0.015 0.071±0.014 0.080±0.015 0.071±0.016 0.078±0.014 0.071±0.014 0.074±0.014 FSD 0.056±0.014 0.054±0.013 0.048±0.009 0.062±0.014 0.058±0.013 0.059±0.009 0.050±0.009 0.052±0.009 MSD 0.067±0.016 0.063±0.011 0.060±0.009 0.071±0.011 0.064±0.012 0.068±0.010 0.061±0.009 0.063±0.009 NL 144.030±22.481 123.030±26.691 146.610±21.459 134.640±20.913 164.580±13.586 141.840±29.551 132.660±30.076 150.030±24.685 NW 1.096±0.224 0.977±0.134 1.078±0.143 1.052±0.204 1.217±0.142 1.172±0.181 1.082±0.167 1.173±0.218 NT 0.683±0.136 0.610±0.066 0.723±0.088 0.660±0.110 0.759±0.083 0.777±0.097 0.671±0.106 0.749±0.136 NSP 3.035±1.026 2.636±0.343 2.990±0.413 2.891±0.508 3.268±0.318 3.187±0.454 2.918±0.412 3.151±0.739 NSA 0.611±0.292 0.447±0.110 0.593±0.165 0.544±0.210 0.681±0.134 0.672±0.190 0.541±0.155 0.672±0.237 MA 4.032±2.435 2.961±0.774 3.656±0.907 3.489±1.403 4.399±0.983 4.312±1.234 3.386±1.020 4.344±1.326 VBW 0.61±0.103 0.508±0.091 0.596±0.099 0.585±0.119 0.663±0.075 0.632±0.101 0.589±0.100 0.654±0.148 VBT 0.395±0.076 0.338±0.048 0.437±0.064 0.385±0.072 0.427±0.067 0.447±0.066 0.398±0.071 0.426±0.089 VBP 1.643±0.271 1.396±0.206 1.675±0.272 1.587±0.295 1.784±0.200 1.756±0.273 1.615±0.254 1.749±0.371 VBA 0.198±0.067 0.144±0.041 0.214±0.071 0.188±0.075 0.231±0.053 0.233±0.074 0.192±0.061 0.227±0.104 RCN 4.600±1.802 6.330±1.549 5.810±3.106 3.970±1.082 4.250±1.628 4.150±1.349 5.000±1.831 3.970±1.108 RCP 0.257±0.56 0.131±0.021 0.183±0.042 0.160±0.035 0.179±0.036 0.169±0.042 0.162±0.036 0.251±0.396 RCA 0.01±0.007 0.007±0.003 0.014±0.011 0.007±0.004 0.010±0.008 0.009±0.006 0.010±0.006 0.010±0.006 RCA/MA 0.002±0.001 0.003±0.001 0.004±0.002 0.002±0.001 0.002±0.002 0.002±0.001 0.003±0.002 0.002±0.001 MA/VBA 20.142±8.609 21.320±5.298 17.724±3.130 19.048±4.247 19.687±4.902 19.077±3.831 18.139±3.734 20.135±3.021 MA/RCA+VBA 19.262±8.195 20.204±4.803 16.768±3.152 18.340±4.162 18.903±4.870 18.371±3.604 17.294±3.676 19.285±2.851 表 5 油松地理种群间针叶光合生理指标方差分析表
Table 5 ANOVA of photosynthesis traits among populations
性状
Trait均方 Mean square 方差分量 Variance component/% 群体
遗传力
(H2)群体(7)
Population (7)群体内个体(88)
Individuals in population (88)残差(192)
Residual (192)群体(7)
Population (7)群体内个体(88)
Individuals in population (88)残差(192)
Residual (192)Pn 2.672 0.215 0.129 29.563** 22.819 47.618 0.940 Tr 0.600 0.068 0.012 42.231** 20.941 36.828 0.970 Gs 0.001 2.91 × 10− 5 1.05 × 10− 5 8.282** 26.311 65.407 0.710 Ci 3 2476 7 577 8 701 33.922** 37.048** 29.030 0.970 Ls 0.221 0.051 0.058 8.401** 26.386 65.214 0.710 WUE 5.572 1.470 0.987 9.521** 39.297** 51.182 0.810 注:*P < 0.05;**P < 0.01。Notes: *P < 0.05; **P < 0.01. 表 6 不同种群间光合与蒸腾指标的差异
Table 6 Difference of photosynthesis and transpiration traits among populations
项目 Item Pn Gs Ci Tr Ls WUE FSPT 2.041 ± 0.864 0.02 ± 0.009 193.907 ± 67.662 0.83 ± 0.273 0.496 ± 0.175 2.552 ± 0.99 HZPT 1.838 ± 0.756 0.017 ± 0.007 168.596 ± 115.99 0.686 ± 0.217 0.562 ± 0.3 2.919 ± 1.609 JZGPT 1.682 ± 0.651 0.015 ± 0.006 182.781 ± 54.292 0.692 ± 0.241 0.526 ± 0.14 2.569 ± 0.984 LKSPT 1.918 ± 0.755 0.019 ± 0.008 194.091 ± 48.804 0.788 ± 0.286 0.496 ± 0.125 2.646 ± 1.103 LSPT 2.372 ± 0.858 0.024 ± 0.01 196.833 ± 46.789 0.935 ± 0.283 0.488 ± 0.121 2.625 ± 0.847 NCPT 1.844 ± 0.678 0.017 ± 0.007 181.829 ± 60.644 0.692 ± 0.221 0.528 ± 0.157 2.863 ± 1.232 NSPT 1.454 ± 0.676 0.012 ± 0.006 108.102 ± 453.737 0.533 ± 0.249 0.719 ± 1.173 3.692 ± 4.469 SSPT 2.039 ± 0.801 0.022 ± 0.011 201.971 ± 52.490 0.835 ± 0.311 0.474 ± 0.136 2.62 ± 1.163 表 7 光合指标与形态解剖指标相关性分析表
Table 7 Pearson correlation analysis between photosynthesis traits and needle morphological traits
项目 Item Pn Gs Ci Tr Ls WUE FSRN 0.635** 0.561** − 0.205 0.570** 0.026 − 0.159 CSRN 0.587** 0.529** − 0.197 0.575** − 0.002 − 0.220 FSR2N 0.317* 0.267 0.009 0.250 − 0.161 − 0.190 CSR2N 0.490** 0.415** − 0.055 0.371* − 0.149 − 0.215 CSD 0.326 0.284 − 0.308 0.362 0.162 0.520 FSD 0.459 0.441 − 0.206 0.460 0.132 0.722* MSD 0.428 0.397 − 0.268 0.447 0.153 0.674* NL 0.417** 0.475** 0.068 0.349* − 0.162 − 0.003 NW 0.525** 0.489** − 0.113 0.561** − 0.060 − 0.261 NT 0.514** 0.429** − 0.199 0.503** 0.047 − 0.234 MA 0.510** 0.458** − 0.117 0.546** − 0.033 − 0.244 NSA 0.531** 0.482** − 0.122 0.553** − 0.036 − 0.249 NSP 0.545** 0.509** − 0.106 0.538** − 0.070 − 0.219 VBA 0.526** 0.485** − 0.125 0.520** − 0.032 − 0.227 VBT 0.451** 0.386** − 0.180 0.436** 0.041 − 0.213 VBP 0.565** 0.516** − 0.141 0.550** − 0.033 − 0.249 VBW 0.611** 0.555** − 0.140 0.585** − 0.054 − 0.268 RCA 0.484** 0.444** − 0.051 0.485** − 0.095 − 0.245 RCN − 0.136 0.031 0.009 0.039 − 0.044 − 0.055 RCP 0.224 0.182 − 0.050 0.293* − 0.038 − 0.209 MA/VBA 0.395 0.378 − 0.031 0.390 0.215 0.119 RCA/MA 0.020 0.042 0.093 0.108 0.080 − 0.224 MA/VBA + RCA 0.389 0.372 − 0.031 0.383 0.216 0.118 VBA/TRCA 0.206 0.368 0.383 0.481 − 0.482 − 0.285 注: *P<0.05; **P<0.01。n=40。Notes: *P<0.05; **P<0.01. n=40. 表 8 光合指标、形态解剖指标与地理环境、生长因子间相关性分析表
Table 8 Pearson correlation analysis among photosynthesis traits, morphological needle traits and environmental factors
项目 Item Longitude Latitude Elevation AT AP ATJ AT/AP ATJ/AP Pn 0.409 0.419 − 0.376 − 0.226 − 0.261 − 0.593 − 0.039 − 0.472 Gs 0.462 0.276 − 0.359 − 0.037 − 0.046 − 0.421 − 0.040 − 0.251 Ci − 0.192 − 0.721* 0.372 0.443 0.804** 0.716* − 0.303 0.870** Ls 0.007 0.653 − 0.205 − 0.623 − 0.831** − 0.674* 0.160 − 0.833** Tr 0.504 0.306 − 0.336 − 0.042 − 0.058 − 0.456 − 0.030 − 0.263 WUE 0.406 0.565 − 0.465 − 0.127 − 0.525 − 0.558 0.350 − 0.598 FSRN 0.797* 0.506 − 0.606 0.245 − 0.168 − 0.479 0.427 − 0.412 CSRN 0.845** 0.575 − 0.664 0.343 − 0.213 − 0.523 0.529 − 0.452 FSR2N 0.259 0.376 0.031 0.030 − 0.419 − 0.281 0.495 − 0.426 CSR2N 0.378 0.547 − 0.415 − 0.089 − 0.494 − 0.510 0.381 − 0.607 FSD 0.546 0.462 − 0.208 0.021 − 0.344 − 0.474 0.383 − 0.441 CSD 0.581 0.659 − 0.332 − 0.013 − 0.566 − 0.673* 0.488 − 0.638 MSD 0.599 0.586 − 0.281 0.008 − 0.473 − 0.600 0.460 − 0.564 NT 0.551 0.351 − 0.504 0.344 − 0.088 − 0.215 0.448 − 0.239 NW 0.593 0.287 − 0.575 0.335 0.058 − 0.227 0.290 − 0.196 NL 0.313 − 0.195 − 0.255 0.496 0.497 0.214 0.020 0.309 MA 0.627 0.428 − 0.510 0.192 − 0.120 − 0.398 0.307 − 0.333 NSP 0.594 0.298 − 0.502 0.337 0.026 − 0.248 0.315 − 0.207 NSA 0.597 0.357 − 0.511 0.293 − 0.049 − 0.297 0.338 − 0.253 RCP 0.438 0.269 − 0.391 0.119 − 0.011 − 0.322 0.057 − 0.150 RCA 0.446 0.090 − 0.480 0.507 0.205 − 0.039 0.257 0.010 RCN − 0.910** − 0.474 0.720* − 0.517 0.066 0.337 − 0.595 0.233 VBW 0.614 0.273 − 0.590 0.399 0.083 − 0.227 0.301 − 0.170 VBT 0.468 0.205 − 0.430 0.499 0.040 − 0.037 0.471 − 0.076 VBA 0.557 0.252 − 0.513 0.454 0.055 − 0.140 0.401 − 0.131 VBP 0.576 0.243 − 0.532 0.454 0.084 − 0.151 0.370 − 0.129 RCA/MA − 0.849** − 0.746* 0.527 − 0.031 0.475 0.641 − 0.557 0.560 MA/VBA + RCA 0.037 0.017 0.019 − 0.369 0.045 − 0.185 0.003 − 0.012 MA/VBA 0.039 0.019 0.013 − 0.368 0.044 − 0.188 0.002 − 0.007 注:*P < 0.05;**P < 0.01。n = 8。Longitude为 经度(E),Latitude为纬度(N),Elevation为海拔(m),AT为年均温(℃),AP为年降水量(mm),ATJ为1月均温(℃),AT/AP为年均温/年降水量的值,ATJ/AP为1月均温/年降水量的值。Notes: * means P < 0.05; ** means P < 0.01; n = 8. Longitude, longitude (E); latitude, latitude (N); elevation, elevation (m); AT, annual temperature (℃); AP, annual precipitation (mm); ATJ, average temperature of January; AT/AP, annual temperature/annual precipitation; ATJ/AP, average temperature of January/annual precipitation. -
[1] 张凯. 油松各器官功能性状及其对环境因子响应的研究[D]. 北京: 北京林业大学, 2016. Zhang K. The functional tratis of different organs of Pinus tabulaeformis and their response to environment[D]. Beijing: Beijing Forestry University, 2016.
[2] Meng J X, Chen X Y, Huang Y J, et al. Environmental contribution to needle variation among natural populations of Pinus tabuliformis[J]. Journal of Forestry Research, 2019, 30(4): 1311−1322.
[3] Xing F Q, Mao J F, Meng J X, et al. Needle morphological evidence of the homoploid hybrid origin of Pinus densata based on analysis of artificial hybrids and the putative parents, Pinus tabuliformis and Pinus yunnanensis[J]. Ecology & Evolution, 2014, 4(10): 1890−1902.
[4] McKown A D, Guy R D, Klápště J, et al. Geographical and environmental gradients shape phenotypic trait variation and genetic structure in Populus trichocarpa[J]. New Phytologist, 2014, 201(4): 1263−1276. doi: 10.1111/nph.12601
[5] Lande R. Adaptation to an extraordinary environment by evolution of phenotypic plasticity and genetic assimilation[J]. Journal of Evolutionary Biology, 2010, 22(7): 1435−1446.
[6] 高琼, 王维有, 孟景祥, 等. 油松 × 云南松杂种与亲本种和高山松的光合特性比较[J]. 北京林业大学学报, 2016, 38(2):37−43. Gao Q, Wang W Y, Meng J X, et al. Comparison of growth traits and photosynthetic physiology in Pinus tabuliformis from eight provenances of China[J]. Journal of Beijing Forestry University, 2016, 38(2): 37−43.
[7] 蒋万杰, 欧晓岚, 刘艳红. 北京松山油松当年生与往年生针叶光合生理特性[J]. 生态科学, 2018, 37(1):121−127. Jiang W J, Ou X L, Liu Y H. Photosynthetic characteristics in current and previous-year needles of Pinus tabulaeformis in the Songshan, Beijing, China[J]. Ecological Science, 2018, 37(1): 121−127.
[8] Wang M B, Gao F Q. Genetic variation in Chinese pine (Pinus tabulaeformis), a woody species endemic to China[J]. Biochemical Genetics, 2009, 47(1-2): 154−164. doi: 10.1007/s10528-009-9225-7
[9] Li W, Wang X, Li Y. Stability in and correlation between factors influencing genetic quality of seed lots in seed orchard of Pinus tabuliformis Carr. over a 12-year span[J/OL]. PLoS One, 2011, 6(8) (2011−08−24) [2018−10−20]. https://doi.org/10.1371/journal.pone.0023544.
[10] Wang B S, Mao J F, Gao J, et al. Colonization of the Tibetan Plateau by the homoploid hybrid pine Pinus densata[J]. Molecular Ecology, 2011, 20: 3796−3811. doi: 10.1111/mec.2011.20.issue-18
[11] 续九如, 李颖岳. 林业试验设计[M]. 北京: 中国农业出版社, 2014. Xu J R, Li Y Y. Experiments design in forestry[M]. Beijing: China Agricultural Press, 2014.
[12] Sultan S E. Evolutionary implications of phenotypic plasticity in plants[M]. New York: Springer, 1987: 127−178.
[13] Körner C, Neumayer M, Menendez-Riedl S P, et al. Functional morphology of mountain plants[J]. Flora, 1989, 182(5−6): 353−383. doi: 10.1016/S0367-2530(17)30426-7
[14] Beerling D, Kelly C. Evolutionary comparative analyses of the relationship between leaf structure and function[J]. New Phytologist, 1996, 134(1): 35−51. doi: 10.1111/nph.1996.134.issue-1
[15] 黄雨洁. 云南松针叶与油松种实性状的种群变异研究[D]. 北京: 北京林业大学, 2015. Huang Y J. Population genetic variation of Pinus yunnanensis needle and Pinus tabuliformis cone and seed taits[D]. Beijing: Beijing Forestry University, 2015.
[16] 郭丽丽, 张茜茜, 郝立华, 等. 大气CO2倍增条件下冬小麦气体交换对高温干旱及复水过程的响应[J]. 作物学报, 2019, 45(6):949−956. Guo L L, Zhang X X, Hao L H, et al. Responses of leaf gas exchange to high temperature and drought combination as well as re-watering of winter wheat under doubling atmospheric CO2 concentration[J]. Acta Agronomica Sinica, 2019, 45(6): 949−956.
[17] 张明明. 不同地区日本落叶松叶片解剖结构比较研究[D]. 哈尔滨: 东北林业大学, 2012. Zhang M M. Comparative study on leaf anatomical structure of Japanses larch in different areas[D]. Harbin: Northeast Forestry University, 2012.
[18] Xie Z S, Du H R, Xiang D F, et al. The changes of anatomical structure of vascular bundles and water transport in blueberry fruit during different growth and development stages[J]. Plant Physiology Journal, 2018, 54(1): 45−53.
[19] Peak D, Mott K A. A new, vapour-phase mechanism for stomatal responses to humidity and temperature[J]. Plant Cell & Environment, 2015, 34(1): 162−178.
[20] Hultine K R, Marshall J D. A comparison of three methods for determining the stomatal density of pine needles[J]. Journal of Experimental Botany, 2001, 52(355): 369−373. doi: 10.1093/jexbot/52.355.369
[21] Gilbert M E, Zwieniecki M A, Holbrook N M. Independent variation in photosynthetic capacity and stomatal conductance leads to differences in intrinsic water use efficiency in 11 soybean genotypes before and during mild drought[J]. Journal of Experimental Botany, 2011, 62(8): 2875−2887. doi: 10.1093/jxb/erq461
[22] Pensa M, Aalto T, Jalkanen R. Variation in needle-trace diameter in respect of needle morphology in five conifer species[J]. Trees, 2004, 18(3): 307−311. doi: 10.1007/s00468-003-0307-6
[23] Cole K L, Fisher J, Arundel S T, et al. Geographical and climatic limits of needle types of one-and two-needled pinyon pines[J]. Journal of Biogeography, 2008, 35(2): 257−269.
[24] 代剑峰, 高琼, 刘灏, 等. 高山松与亲本种多种群在高海拔生境下的苗期适应性研究[J]. 北京林业大学学报, 2012, 34(5):15−24. Dai J F, Gao Q, Liu H, et al. Seedling adaptation of hybrid pine Pinus densata and its parental species in the high elevation habitat[J]. Journal of Beijing Forestry University, 2012, 34(5): 15−24.
[25] Roberntz P, Stockfors J. Effects of elevated CO2 concentration and nutrition on net photosynthesis, stomatal conductance and needle respiration of field-grown Norway spruce trees[J]. Tree Physiology, 1998, 18(4): 233−241. doi: 10.1093/treephys/18.4.233
[26] Lin Y S, Medlyn B E, Ellsworth D S. Temperature responses of leaf net photosynthesis: the role of component processes[J]. Tree Physiology, 2012, 32(2): 219−231. doi: 10.1093/treephys/tpr141
[27] Caird M A, Richards J H, Donovan L A. Nighttime stomatal conductance and transpiration in C3 and C4 plants[J]. Plant Physiology, 2007, 143(1): 4−10. doi: 10.1104/pp.106.092940
[28] 罗彬莹, 刘卫东, 吴际友, 等. 干旱胁迫对樟树幼苗光合特性和水分利用的影响[J]. 中南林业科技大学学报, 2019, 39(5):49−55. Luo B Y, Liu W D, Wu J Y, et al. Effect of drought stress on photosynthetic characteristics and water use of Cinnamomum camphora seedlings[J]. Journal of Central South University of Forestry & Technology, 2019, 39(5): 49−55.
[29] 叶子飘, 郑卓, 康华靖, 等. 自然条件下中熟籼稻初穗期剑叶光合的气孔和非气孔限制特征[J]. 生态学杂志, 2019, 38(4):1004−1012. doi: 10.3969/j.issn.1674-3075.2014.02.001 Ye Z P, Zheng Z, Kang H J, et al. Stomatal and non-stomatal limitations on photosynthesis of flag leaf of medium mature indica rice at early earring stage under natural conditions[J]. Chinese Journal of Ecology, 2019, 38(4): 1004−1012. doi: 10.3969/j.issn.1674-3075.2014.02.001
[30] 潘瑞炽, 王晓菁, 李娘辉, 等. 植物生理学[M]. 北京: 高等教育出版社, 2012. Pan R C, Wang X J, Li N H, et al. Plant physiology[M]. Beijing:Higher Education Press, 2012.
[31] Sultan S. Phenotypic plasticity and plant adaptation[J]. Acta botanica neerlandica, 1995, 44(4): 363−383. doi: 10.1111/plb.1995.44.issue-4
[32] 张丹. 环境因子对红松光合作用及次生代谢产物的影响[D]. 哈尔滨: 东北林业大学, 2016. Zhang D. Effects of environment on photosynthesis and secondary metabolitesr of Korean pine[D]. Harbin: Northeast Forestry University, 2016.
[33] 赵海燕, 魏宁, 孙聪聪, 等. NaCl胁迫对银杏幼树组织解剖结构和光合作用的影响[J]. 北京林业大学学报, 2018, 40(11):28−41. Zhao H Y, Wei N, Sun C C, et al. Effects of salt stress on anatomic structure of tissue and photosynthesis in Ginkgo biloba seedlings[J]. Journal of Beijing Forestry University, 2018, 40(11): 28−41.
[34] 冮慧欣, 王嘉琪, 黄春岩, 等. 8种绿化树种光合特性及叶片解剖结构比较[J]. 植物研究, 2019, 39(1):10−16. Jiang H X, Wang J Q, Huang C Y, et al. Photosynthetic characteristics and leaf anatomical structure of eight tree species[J]. Bulletin of Botanical Research, 2019, 39(1): 10−16.
[35] 刘力铭, 孙志虎, 李开隆, 等. 养分添加对白桦叶片气孔和气体交换异质性影响研究[J]. 中南林业科技大学学报, 2019, 39(4):72−78. Liu L M, Sun Z H, Li K L, et al. Effects of nutrient addition on stomata and gas exchange heterogeneity of Betula platyplylla leaves[J]. Journal of Central South University of Forestry & Technology, 2019, 39(4): 72−78.
-
期刊类型引用(4)
1. 高郯,张铎,卢杰,王超,李江荣. 色季拉山高山松林降雨再分配及重金属元素的时空特征研究. 西南林业大学学报(自然科学). 2022(01): 115-123 . 百度学术
2. 陈新宇,孟景祥,周先清,袁虎威,钮世辉,李悦. 油松地理种群针叶形态解剖与生理指标遗传变异分析. 北京林业大学学报. 2019(07): 19-30 . 本站查看
3. 金微微,张会慧,滕志远,孙广玉,许楠. 乡土风箱果和紫叶风箱果及其杂交种F_1叶片的光合功能研究. 中南林业科技大学学报. 2018(04): 33-39 . 百度学术
4. 周丽,陈诗,朱存福,许玉兰,李悦,李伟,蔡年辉. 高山松不同种源苗木在云南松生境下的生物量与生长分析. 广东农业科学. 2017(02): 68-75 . 百度学术
其他类型引用(4)