• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
WANG Dong-zhi, ZHANG Dong-yan, ZHANG Zhi-dong, HUANG Xuan-rui. Prediction model for basal area of Larix principis-rupprechtii plantation in Saihanba of Hebei Province, northern China[J]. Journal of Beijing Forestry University, 2017, 39(7): 10-17. DOI: 10.13332/j.1000-1522.20170072
Citation: WANG Dong-zhi, ZHANG Dong-yan, ZHANG Zhi-dong, HUANG Xuan-rui. Prediction model for basal area of Larix principis-rupprechtii plantation in Saihanba of Hebei Province, northern China[J]. Journal of Beijing Forestry University, 2017, 39(7): 10-17. DOI: 10.13332/j.1000-1522.20170072

Prediction model for basal area of Larix principis-rupprechtii plantation in Saihanba of Hebei Province, northern China

More Information
  • Received Date: March 09, 2017
  • Revised Date: March 26, 2017
  • Published Date: June 30, 2017
  • It is a scientific problem to be solved urgently in the process of forest management that how to realize area compatibility between whole-stand growth model and an individual-tree model and improve the prediction accuracy. In this paper, data from 105 permanent sample plots of Larix principis-rupprechtii plantation were used to develop both whole-stand growth model and individual-tree model. In a first step, using Gauss-Newton algorithm, a whole-stand growth model and an individual-tree model were established. In a second step, the single tree survival probability equation was fitted based on the logistic equation in different forms. Finally, the best combinations obtained in each step were compared. Regarding the disaggregation of predicted stand density, the approach based on considering the intercept of the logistic function for tree survival as a specific parameter of each sample plot and optimizing its value produced the best results. The results showed that the prediction model of stand density, stand basal area and individual basal area had a good predictive effect, and can explain more than 90% of the variance in the constraint parameter methods. In the decomposition method, survival probability of single trees and stand density were predicted based on the logistic equation. The area under the ROC curve obtained by the test was 0.906, which indicated that the equation could predict the survival probability of forest trees. In combination forecasting methods, the combination forecasting method had the best effect using different levels of optimal model. When predicting the stand density and basal area, the combination forecasting equation had the highest accuracy, and the stand level model was the second, and the accuracy of the single tree level model was the lowest. The combined forecasting method can predict the stand density, tree survival, stand basal area and tree basal area. The method improves the prediction accuracy of the model, and provides a reference for the prediction of stand growth, dynamic change of spatial structure and management effect evaluation.
  • [1]
    ZHANG S, AMATEIS R L, BURKHART H E. Constraining individual tree diameter increment and survival models for loblolly pine plantations[J]. Forest Science, 1997, 43(6): 414-423. http://europepmc.org/abstract/AGR/IND21235335
    [2]
    CIESZEWSKI C J. Comparing fixed-and variable-base-age site equations having single versus multiple asymptotes[J]. Forest Science, 2002, 48(1): 7-23. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ027400739/
    [3]
    TEWARI V P, ÁLVAREZ-GONZALEZ J G, GARCÍA O. Developing a dynamic growth model for teak plantations in India[J]. Forest Ecosystems, 2014, 1(1): 9-17. doi: 10.1186/2197-5620-1-9
    [4]
    RITCHIE M W, HANN D W. Implications of disaggregation in forest growth and yield modeling[J]. Forest Science, 1997, 43 (2): 223-233. http://europepmc.org/abstract/AGR/IND21235281
    [5]
    QIN J, CAO Q V. Using disaggregation to link individual-tree and whole-stand growth models[J]. Canadian Journal of Forest Research, 2006, 36: 953-960. doi: 10.1139/x05-284
    [6]
    GONZALEZ J G, ZINGG A, GADOW K V. Estimating growth in beech forests: a study based on longterm experiments in Switzerland[J]. Annals of Forest Science, 2009, 307(9): 1-13. doi: 10.1051%2Fforest%2F2009113
    [7]
    RITCHIE M W, HANN D W. Implications of disaggregation in forest growth and yield modeling[J]. Forest Science, 1997, 43 (2): 223-233. http://europepmc.org/abstract/AGR/IND21235281
    [8]
    BURKHART H E, TOME M. Modeling forest trees and stands[M]. Berlin: Springer, 2012.
    [9]
    陈清, 张令峰, 傅松玲.树木年龄和断面积对加拿大北方林树木死亡率的影响[J].应用生态学报, 2011, 22(9): 2477-2481. http://d.old.wanfangdata.com.cn/Periodical/yystxb201109038

    CHEN Q, ZHANG L F, FU S L. Effects of tree age and basal area on boreal forest tree mortality in Canada[J]. Chinese Journal of Applied Ecology, 2011, 22(9): 2477-2481. http://d.old.wanfangdata.com.cn/Periodical/yystxb201109038
    [10]
    雷相东, 李永慈, 向玮.基于混合模型的单木断面积生长模型[J].林业科学, 2009, 45(1): 74-80. doi: 10.3321/j.issn:1001-7488.2009.01.014

    LEI X D, LI Y C, XIANG W. Individual basal area growth model using multi-level linear mixed model with repeated measures[J]. Scientia Silvae Sinicae, 2009, 45(1): 74-80. doi: 10.3321/j.issn:1001-7488.2009.01.014
    [11]
    符利勇, 唐守正, 张会儒, 等.基于多水平非线性混合效应蒙古栎林单木断面积模型[J].林业科学研究, 2015, 28(1): 23-31. http://d.old.wanfangdata.com.cn/Periodical/lykxyj201501004

    FU L Y, TANG S Z, ZHANG H R, et al. Multilevel nonlinear mixed-effects basal area models for individual trees of Quercus mongolica[J]. Forest Research, 2015, 28(1): 23-31. http://d.old.wanfangdata.com.cn/Periodical/lykxyj201501004
    [12]
    倪成才, 王庆丰.火炬松人工林胸高断面积差分模型的拟合与筛选[J].北京林业大学学报, 2011, 33(3): 1-7. doi: 10.3969/j.issn.1671-6116.2011.03.001

    NI C C, WANG Q F. Model selection and fit of algebraic difference models for basal area of loblolly pine plantations[J]. Journal of Beijing Forestry University, 2011, 33(3): 1-7. doi: 10.3969/j.issn.1671-6116.2011.03.001
    [13]
    李春明, 唐守正.基于非线性混合模型的落叶松云冷杉林分断面积模型[J].林业科学, 2010, 46(7): 106-113. http://d.old.wanfangdata.com.cn/Periodical/lykx201007016

    LI C M, TANG S Z. The basal area model of mixed stands of Larix olgensis, Abies nephrolepis and Picea jezoensis based on nonlinear mixed model[J]. Scientia Silvae Sinicae, 2010, 46(7): 106-113. http://d.old.wanfangdata.com.cn/Periodical/lykx201007016
    [14]
    张雄清, 张建国, 段爱国.杉木人工林林分断面积生长模型的贝叶斯法估计[J].林业科学研究, 2015, 28(4): 538-542. doi: 10.3969/j.issn.1001-1498.2015.04.013

    ZHANG X Q, ZHANG J G, DUAN A G. Application of bayesian method in stand basal area prediction of Chinese fir plantation[J]. Forest Research, 2015, 28(4): 538-542. doi: 10.3969/j.issn.1001-1498.2015.04.013
    [15]
    张雄清, 雷渊才, 陈新美.林分断面积组合预测模型权重确定的比较[J].林业科学, 2011, 47(7): 36-41. http://d.old.wanfangdata.com.cn/Periodical/lykx201107006

    ZHANG X Q, LEI Y C, CHEN X M. Comparison of weight computation in stand basal area combined model[J]. Scientia Silvae Sinicae, 2011, 47(7): 36-41. http://d.old.wanfangdata.com.cn/Periodical/lykx201107006
    [16]
    VALBUENA P, DELPESO C, BRAVO F. Stand density management diagrams for two mediterranean pine species in eastern spain[J]. Investigación Agraria: Sistemas Recursos Forestales, 2008, 17(2): 97-104. doi: 10.5424/srf/2008172-01026
    [17]
    ZHANG X, LEI Y, CAO Q V, et al. Improving tree survival prediction with forecast combination and disaggregation[J]. Canadian Journal of Forest Research, 2011, 41: 1928-1935. doi: 10.1139/x11-109
    [18]
    ANDREA H, CAO Q V, ALVAREZ J G, et al. Compatibility of whole-stand and individual-tree models using composite estimators and disaggregation[J]. Forest Ecology and Management, 2015, 348(11): 46-56 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=38160e55b539dc3a70a82cf617f9ea25
    [19]
    ARANDA D U, GRANDAS J A, ALVAREZ J G, et al. Site quality curves for birch stands in north-western Spain[J]. Silva Fennica, 2006, 40 (4): 631-644. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e6b7779e4c77cdd32c556b781c213438
    [20]
    王冬至, 张冬燕, 王方, 等.塞罕坝主要立地类型针阔混交林树高曲线构建[J].北京林业大学学报, 2016, 38(10): 7-14. doi: 10.13332/j.1000-1522.20150359

    WANG D Z, ZHANG D Y, WANG F, et al. Height curve construction of needle and broadleaved mixed forest under main site types in Saihanba, Hebei of northern China[J]. Journal of Beijing Forestry University, 2016, 38(10): 7-14. doi: 10.13332/j.1000-1522.20150359
    [21]
    GARCIA O. A parsimonious dynamic stand model for interior spruce in British Columbia[J]. Forest Science, 2011, 57 (4): 265-280. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=47de0ae6bf440ef1a8dd3cec62145e98
    [22]
    GARCIA O. Building a dynamic growth model for trembling aspen in western Canada without age data[J]. Canadian Journal of Forest Research, 2013, 43 (3): 256-265. doi: 10.1139/cjfr-2012-0366
    [23]
    GARCIA O, BURKHART H E, AMATEIS R L. A biologically-consistent stand growth model for loblolly pine in the Piedmont physiographic region, USA[J]. Forest Ecology and Management, 2011, 262 (11): 2035-2041. doi: 10.1016/j.foreco.2011.08.047
    [24]
    CAO Q V. Linking individual-tree and whole-stand models for forest growth and yield prediction[J]. Forest Ecosystems, 2014, 1: 1-8. doi: 10.1186/2197-5620-1-1
    [25]
    JUMA R, PUKKALA T, DEMIGUEL S, et al. Evaluation of different approaches to individual tree growth and survival modelling using data collected at irregular intervals-a case study for Pinus patula in Kenya[J]. Forest Ecosystems, 2014, 8(1): 1-14. doi: 10.1186/s40663-014-0014-3
    [26]
    BATES J M, GRANGER C W J. The combination of forecasts[J]. A Quarterly Journal of Operations Research, 1969, 20 (4): 451-468. doi: 10.1057/jors.1969.103
    [27]
    VANCLAY J K. Modelling forest growth and yield: application to mixed tropical forests[M]. Wallingford: CAB International, 1994.
    [28]
    ZHANG X, LEI Y. A linkage among whole-stand model, individual-tree model and diameter-distribution model[J]. Journal of Forest Science, 2010, 56: 600-608. doi: 10.17221/102/2009-JFS
    [29]
    CRECENTE-CAMPO F, SOARES P, TOME M, et al. Modelling annual individual-tree growth and mortality of Scots pine with data obtained at irregular measurement intervals and containing missing observations[J]. Forest Ecology and Management, 2010, 260: 1965-1974. doi: 10.1016/j.foreco.2010.08.044
    [30]
    CAO Q V. Prediction of annual diameter growth and survival for individual trees from periodic measurements[J]. Forest Science, 2000, 46: 127-131. http://europepmc.org/abstract/AGR/IND22301989
    [31]
    NORD-LARSEN T. Modeling individual-tree growth from data with highly irregular measurement intervals[J]. Forest Science, 2006, 52: 198-208.
    [32]
    CAO Q V, STRUB M. Evaluation of four methods to estimate parameters of an annual tree survival and diameter growth model[J]. Forest Science, 2008, 54 (6): 617-624. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=456a6d7c29b0fedca89786f7af26405a
    [33]
    WYKOFF W R. A basal area increment model for individual conifers in the northern Rocky Mountains[J]. Forest Science, 1990, 36 (4): 1077-1104. http://europepmc.org/abstract/AGR/IND91008565
    [34]
    MONSERUD R A, STERBA H. A basal area increment model for individual trees growing in even-and uneven-aged forest stands in Austria[J]. Forest Ecology and Management, 1996, 80 (3): 57-80. https://www.sciencedirect.com/science/article/pii/0378112795036385
  • Related Articles

    [1]Ren Qiwen, Wang Yuzhong, Xu Zhenhua, Zhang Shuzi. Carrying density of Larix principis-rupprechtii plantations based on water balance[J]. Journal of Beijing Forestry University, 2024, 46(7): 1-8. DOI: 10.12171/j.1000-1522.20240023
    [2]Hao Guobao, Wang Lidong, Li Yan, Li Fan, Cui Jingting, Jia Zhongkui. Effects of nitrogen addition on the branch CO2 efflux of Larix principis-rupprechtii[J]. Journal of Beijing Forestry University, 2023, 45(10): 28-35. DOI: 10.12171/j.1000-1522.20220336
    [3]Zhou Yunhong, Li Jianliang, Wang Lidong, Zou Jinlong, Liu Yanqing, Lu Jingxing, Zhao Wanning, Jia Zhongkui. Effects of thinning on litter decomposition of Larix principis-rupprechtii plantation[J]. Journal of Beijing Forestry University, 2021, 43(12): 29-37. DOI: 10.12171/j.1000-1522.20210114
    [4]Chang Xu, Qiu Xincai, Liu Xin, Peng Daoli, Cheng Shun. Soil fertility quality evaluation of pure and mixed Larix principis-rupprechtii forests in Saihanba, Hebei Province of northern China[J]. Journal of Beijing Forestry University, 2021, 43(8): 50-59. DOI: 10.12171/j.1000-1522.20210189
    [5]Wang Xiangzhen, Liu Yanqing, Zhou Yunhong, Wang Lidong, Si Ruixue, Lu Jingxing, Jia Zhongkui. Effects of different treatments on decomposition of Larix principis-rupprechtii tending residue[J]. Journal of Beijing Forestry University, 2021, 43(5): 15-23. DOI: 10.12171/j.1000-1522.20200345
    [6]Zhang Jianfei, Wang Chun, Xu Wenwen, Huang Xuanrui, Zhang Zhidong. Changes in soil nutrients and bacterial communities of Larix principis-rupprechtii plantations of different generations[J]. Journal of Beijing Forestry University, 2020, 42(3): 36-45. DOI: 10.12171/j.1000-1522.20190256
    [7]ZHAO Tian-liang. Species diversity of Larix principis-rupprechtii communities in Shanxi Province of northern China[J]. Journal of Beijing Forestry University, 2017, 39(6): 45-50. DOI: 10.13332/j.1000-1522.20170067
    [8]LIU Yu, GUO Jian-bin, WANG Yan-hui, LIU Ze-bin, DENG Xiu-xiu, ZHANG Tong, XIONG Wei, ZUO Hai-jun. Hydrological effects of forest litter of Larix principis-rupprechtii plantations with varying densities in Liupan Mountains of Ningxia, China.[J]. Journal of Beijing Forestry University, 2016, 38(8): 36-44. DOI: 10.13332/j.1000-1522.20160007
    [9]ZHAO Kuang-ji, WANG Li-dong, WANG Li-jun, JIA Zhong-kui, MA Lü-yi. Stock volume and productivity of Larix principis-rupprechtii in northern and northwestern China[J]. Journal of Beijing Forestry University, 2015, 37(2): 24-31. DOI: 10.13332/j.cnki.jbfu.2015.02.011
    [10]LI Qing-mei, LIU Yan, CHEN Huai-liang, MA Feng-yun, HOU Long-yu. Vigor and physiological properties of ultra-drying seeds of Larix principis-rupprechtii Mayr. and L. kaempferi(Lamb.)[J]. Journal of Beijing Forestry University, 2011, 33(2): 25-30.
  • Cited by

    Periodical cited type(4)

    1. 杨彬,郭志刚,王大岭,孙忠全,高欢,张骁. 长白落叶松人工林林分断面积生长模型的构建. 吉林林业科技. 2023(04): 13-15+42 .
    2. 贺鹏,陈振雄,刘宪钊. 湖南省马尾松和杉木林分断面积生长模型构建. 林业资源管理. 2021(05): 56-61 .
    3. 颜伟,段光爽,王一涵,孙钊,周桃龙,符利勇. 河南省栎类和杨树林分断面积和蓄积生长模型构建. 北京林业大学学报. 2019(06): 55-61 . 本站查看
    4. 王冬至,张冬燕,蒋凤玲,许中旗,张志东,黄选瑞. 三个主要树种单木生物量及其器官分配模型. 自然资源学报. 2018(08): 1390-1401 .

    Other cited types(2)

Catalog

    Article views (2402) PDF downloads (63) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return