• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Chang Xu, Qiu Xincai, Liu Xin, Peng Daoli, Cheng Shun. Soil fertility quality evaluation of pure and mixed Larix principis-rupprechtii forests in Saihanba, Hebei Province of northern China[J]. Journal of Beijing Forestry University, 2021, 43(8): 50-59. DOI: 10.12171/j.1000-1522.20210189
Citation: Chang Xu, Qiu Xincai, Liu Xin, Peng Daoli, Cheng Shun. Soil fertility quality evaluation of pure and mixed Larix principis-rupprechtii forests in Saihanba, Hebei Province of northern China[J]. Journal of Beijing Forestry University, 2021, 43(8): 50-59. DOI: 10.12171/j.1000-1522.20210189

Soil fertility quality evaluation of pure and mixed Larix principis-rupprechtii forests in Saihanba, Hebei Province of northern China

More Information
  • Received Date: May 16, 2021
  • Revised Date: June 20, 2021
  • Available Online: July 21, 2021
  • Published Date: August 30, 2021
  •   Objective  In this study, soil quality index (SQI) was used to evaluate the effects of different mixed modes on soil fertility quality in Larix principis-rupprechtii forests, in order to provide theoretical basis for proper management and soil fertility recovery.
      Method  The pure Larix principis-rupprechtii stands (LP), mixed Larix principis-rupprechtii and Betula platyphylla stands (BL), and mixed Larix principis-rupprechtii and Pinus sylvestris var. mongolica stands (ML) were selected as the research objects in Saihanba Mechanical Forest Farm of Hebei Province, northern China. The soils of 0−20 cm soil depths were collected and analyzed to investigate the soil physicochemical and biological properties. SQI was used to evaluate soil fertility quality. SQI was determined in three steps by selecting a minimum data set (MDS) through principal component analysis, scoring the MDS indicators using non-linear scoring functions, and integrating the indicator scores into a SQI using the weighted additive equation.
      Result  There were different degrees of differences in soil physicochemical and biological properties among different mixed modes. Compared with LP, the soil physicochemical and biological properties of BL were significantly improved. The soil physicochemical conditions in ML were worse than those in LP. And there were no obvious differences in soil biological properties in ML and LP. The MDS consisted of soil microbial biomass nitrogen, total phosphorus, and ammonia nitrogen among 17 soil fertility quality indicators. There were significant differences in the SQI among three mixed modes, which were showed as: BL (0.59) > LP (0.47) > ML (0.39).
      Conclusion  The soil fertility quality differed significantly among varied mixed modes. The mixed Larix principis-rupprechtii and Betula platyphylla stands in Saihanba Mechanical Forest Farm can improve soil fertility. Soil fertility quality evaluation based on SQI by indexing approach can provide the basis for evaluating forest soil quality of other species and regions.
  • [1]
    国家林业和草原局. 中国森林资源报告[M]. 北京: 中国林业出版社, 2019.

    National Forestry and Grassland Administration. Chinese forest resources report[M]. Beijing: China Forestry Publishing House, 2019.
    [2]
    陈立新, 陈祥伟, 段文标. 落叶松人工林凋落物与土壤肥力变化的研究[J]. 应用生态学报, 1998, 9(6):581−586.

    Chen L X, Chen X W, Duan W B. Larch litter and soil fertility[J]. Chinese Journal of Applied Ecology, 1998, 9(6): 581−586.
    [3]
    Bone J, Barraclough D, Eggleton P, et al. Prioritising soil quality assessment through the screening of sites: the use of publicly collected data[J]. Land Degrad Develop, 2014, 25(3): 251−266. doi: 10.1002/ldr.2138
    [4]
    闫德仁, 刘永军, 张幼军. 落叶松人工林土壤养分动态[J]. 东北林业大学学报, 2003, 31(3):16−18.

    Yan D R, Liu Y J, Zhang Y J. Dynamic of soil nutrients under larch plantation[J]. Journal of Northeast Forestry University, 2003, 31(3): 16−18.
    [5]
    程旭, 吴彦强, 刘广营, 等. 迹地更新营造白桦、落叶松混交林试验[J]. 河北林业科技, 2005(2):12−22.

    Cheng X, Wu Y Q, Liu G Y, et al. Experiment on renewal of site to build mixed birch and larch forest[J]. The Journal of Hebei Forestry Science and Technology, 2005(2): 12−22.
    [6]
    刘世荣, 李春阳. 落叶松人工林养分循环过程与潜在地力衰退趋势的研究[J]. 东北林业大学学报, 1993, 21(2):19−24.

    Liu S R, Li C Y. Nutrient cycling and stability of soil fertility in larch plantation in the eastern part of northern China[J]. Journal of Northeast Forestry University, 1993, 21(2): 19−24.
    [7]
    范辉华. 杉木、拟赤杨混交对杉木持续生长的影响[J]. 林业科学研究, 2001, 14(4):455−458. doi: 10.3321/j.issn:1001-1498.2001.04.018

    Fan H H. Influence of miture with Alniphyllum fortunei on sustainable growth of Chinese fir[J]. Forest Research, 2001, 14(4): 455−458. doi: 10.3321/j.issn:1001-1498.2001.04.018
    [8]
    Nakajima T, Lal R, Jiang S. Soil quality index of a crosby silt loam in central Ohio[J]. Soil and Tillage Research, 2015, 146(part B): 323−328.
    [9]
    Qiu X C, Peng D L, Wang H B, et al. Minimum data set for evaluation of stand density effects on soil quality in Larix principis-rupprechtii plantations in North China[J/OL]. Ecological Indicators, 2019, 103: 236−247 [2021−01−02]. https://doi.org/10.1016/j.ecolind.2019.04.010.
    [10]
    骆东奇, 白洁, 谢德体. 论土壤肥力评价指标和方法[J]. 土壤与环境, 2002, 11(2):202−205.

    Luo D Q, Bai J, Xie D T. Research on evaluation norm and method of soil fertility[J]. Soil and Environmental Sciences, 2002, 11(2): 202−205.
    [11]
    Raiesi F. A minimum data set and soil quality index to quantify the effect of land use conversion on soil quality and degradation in native rangelands of upland arid and semiarid regions[J/OL]. Ecological Indicators, 2017, 75: 307−320 [2020−12−29]. http://dx.doi.org/10.1016/j.ecolind.2016.12.049.
    [12]
    Guo L L, Sun Z G, Zhu O Y, et al. A comparison of soil quality evaluation methods for Fluvisol along the lower Yellow River[J/OL]. Catena, 2017, 152: 135−143 [2020−12−20]. http://dx.doi.org/10.1016/j.catena.2017.01.015.
    [13]
    Dose H L, Fortuna A, Cihacek L J, et al. Biological indicators provide short term soil health assessment during sodic soil reclamation[J/OL]. Ecological Indicators, 2015, 58: 244−253 [2020−12−01]. http://dx.doi.org/10.1016/j.ecolind.2015.05.059.
    [14]
    覃其云, 曹继钊, 李军, 等. 马尾松人工幼林土壤肥力变化及其综合评价研究[J]. 中南林业科技大学学报, 2013, 33(3):64−69.

    Qin Q Y, Cao J Z, Li J, et al. Comprehensive evaluation on soil fertility variations in Pinus massoniana young plantation[J]. Journal of Central South University of Forestry & Technology, 2013, 33(3): 64−69.
    [15]
    孙宇, 李际平, 曹小玉, 等. 不同龄组杉木生态公益林土壤肥力综合评价[J]. 林业资源管理, 2019(1):57−62.

    Sun Y, Li J P, Cao X Y, et al. Comprehensive evaluation of soil fertility of Cunninghamia lanceolata ecological public welfare forests in different age groups[J]. Forest Resources Management, 2019(1): 57−62.
    [16]
    杨晓娟, 王海燕, 刘玲, 等. 东北过伐林区不同林分类型土壤肥力质量评价研究[J]. 生态环境学报, 2012, 21(9):1553−1560.

    Yang X J, Wang H Y, Liu L, et al. Evaluation of soil fertility quality under different forest stands in over-logged forest region, northeast China[J]. Ecology and Environmental Sciences, 2012, 21(9): 1553−1560.
    [17]
    岳西杰, 葛玺祖, 王旭东. 基于GIS的黄土丘陵沟壑区土壤质量评价研究:以陕西省长武县为例[J]. 干旱地区农业研究, 2011, 29(3):144−149.

    Yue X J, Ge X Z, Wang X D. GIS-based research on soil quality evaluation in the loess hilly gully region: a case study of Changwu County[J]. Agricultural Research in the Arid Areas, 2011, 29(3): 144−149.
    [18]
    Qi Y B, Darilek J L, Huang B, et al. Evaluating soil quality indices in an agricultural region of Jiangsu Province, China[J]. Geoderma, 2009, 149(3−4): 325−334. doi: 10.1016/j.geoderma.2008.12.015
    [19]
    Cheng J J, Ding C F, Li X G, et al. Soil quality evaluation for navel orange production systems in central subtropical China[J/OL]. Soil and Tillage Research, 2016, 155: 225−232 [2019−12−01]. https://doi.org/10.1016/j.still.2015.08.015.
    [20]
    乔云发, 钟鑫, 苗淑杰, 等. 基于最小数据集的东北风沙土农田耕层土壤质量评价指标[J]. 水土保持研究, 2019, 26(4):132−138.

    Qiao Y F, Zhong X, Miao S J, et al. Evaluation indicators of soil quality in plough layer of aeolian sandy land in Northeast China based on minimum date set[J]. Research of Soil and Water Conservation, 2019, 26(4): 132−138.
    [21]
    郭剑波, 赵国强, 贾书刚, 等. 施肥对高寒草原草地质量指数及土壤性质影响的综合评价[J]. 草业学报, 2020, 29(9):85−93.

    Guo J B, Zhao G Q, Jia S G, et al. Comprehensive evaluetion of effects of fertilization on grassland quality index and soil properties in alpine steppe[J]. Acta Prataculturae Sinica, 2020, 29(9): 85−93.
    [22]
    李洁, 滑磊, 任启文, 等. 冀西北3种植被恢复类型土壤理化性质差异及肥力评价[J]. 生态环境学报, 2020, 29(8):1540−1546.

    Li J, Hua L, Ren Q W, et al. Physicochemical properties difference and fertility evaluation of soil within three types vegetation restoration in northwest Hebei[J]. Ecology and Environmental Sciences, 2020, 29(8): 1540−1546.
    [23]
    郝宝宝, 艾宁, 刘广全, 等. 陕北风沙区不同植被类型土壤养分特征与肥力评价[J]. 福建农林大学学报(自然科学版), 2020, 49(5):678−682.

    Hao B B, Ai N, Liu G Q, et al. Soil nutrient characteristics and fertility evaluation of different vegetation types in aeolian sand region of northern Shaanxi[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2020, 49(5): 678−682.
    [24]
    张连金, 赖光辉, 孙长忠, 等. 北京九龙山不同林分土壤肥力诊断与综合评价[J]. 中南林业科技大学学报, 2017, 37(1):1−6.

    Zhang L J, Lai G H, Sun C Z, et al. Diagnosis and comprehensive evaluation on soil fertility of different stands in Beijing Jiulong Mountain[J]. Journal of Central South University of Forestry & Technology, 2017, 37(1): 1−6.
    [25]
    Imaz M J, Virto I, Bescansa P, et al. Soil quality indicator response to tillage and residue management on semi-arid Mediterranean cropland[J]. Soil and Tillage Research, 2010, 107(1): 17−25. doi: 10.1016/j.still.2010.02.003
    [26]
    扈梦梅, 田龙, 吴亚楠, 等. 塞罕坝华北落叶松人工林间伐和混交改造对大型土壤动物群落结构的影响[J]. 林业科学, 2019, 55(11):153−162.

    Hu M M, Tian L, Wu Y N, et al. Influences of thinning and mixed transformation of Larix principis-rupprechtii plantations on the community structure of soil macro faunal in Saihanba Area[J]. Scientia Silvae Sinicae, 2019, 55(11): 153−162.
    [27]
    李文博, 吕振刚, 黄选瑞, 等. 塞罕坝华北落叶松人工林生产力及其空间分布预测[J]. 自然资源学报, 2019, 34(7):1365−1375. doi: 10.31497/zrzyxb.20190702

    Li W B, Lü Z G, Huang X R, et al. Predicting productivity and spatial distribution of Larix principis-rupprechtii plantation[J]. Journal of Natural Resources, 2019, 34(7): 1365−1375. doi: 10.31497/zrzyxb.20190702
    [28]
    方文静, 蔡琼, 朱江玲, 等. 华北地区落叶松林的分布、群落结构和物种多样性[J]. 植物生态学报, 2019, 43(9):742−752. doi: 10.17521/cjpe.2018.0244

    Fang W J, Cai Q, Zhu J L, et al. Distribution, community structures and species diversity of larch forests in North China[J]. Chinese Journal of Plant Ecology, 2019, 43(9): 742−752. doi: 10.17521/cjpe.2018.0244
    [29]
    刘欣. 华北落叶松不同林型凋落物对土壤性质影响的研究[D]. 北京: 北京林业大学, 2019.

    Liu X. Study on the effects of different forest type litters about Larix principis-rupprechtii on the soil properties[D]. Beijing: Beijing Forestry University, 2019.
    [30]
    刘欣, 彭道黎, 邱新彩. 华北落叶松不同林型土壤理化性质差异[J]. 应用与环境生物学报, 2018, 24(4):735−743.

    Liu X, Peng D L, Qiu X C. Differences in soil physicochemical properties between different forest types of Larix principis-rupprechtii[J]. Chinese Journal of Applied & Environmental Biology, 2018, 24(4): 735−743.
    [31]
    张宇辰, 彭道黎. 间伐对塞罕坝华北落叶松人工林土壤活性有机碳的影响[J]. 应用与环境生物学报, 2020, 26(4):961−968.

    Zhang Y C, Peng D L. Effects of thinning on the soil active organic carbon of Larix principis-rupprechtii plantations in Saihanba[J]. Chinese Journal of Applied & Environmental Biology, 2020, 26(4): 961−968.
    [32]
    鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000.

    Bao S D. Soil and agricultural chemistry analysis[M]. Beijing: China Agriculture Press, 2000.
    [33]
    吴然, 康峰峰, 韩海荣, 等. 山西太岳山不同林龄华北落叶松林土壤微生物特性[J]. 生态学杂志, 2016, 35(12):3183−3190.

    Wu R, Kang F F, Han H R, et al. Soil microbial properties in Larix principis-rupprechtii plantations of different ages in Mt. Taiyue, Shanxi, China[J]. Chinese Journal of Ecology, 2016, 35(12): 3183−3190.
    [34]
    关松荫. 土壤酶及其研究法[M]. 北京: 中国农业出版社, 1983.

    Guan S Y. Soil enzyme and its research method[M]. Beijing: China Agricultural Press, 1983.
    [35]
    Li P, Zhang T, Wang X, et al. Development of biological soil quality indicator system for subtropical China[J/OL]. Soil & Tillage Research, 2013, 126: 112−118 [2020−12−12]. http://dx.doi.org/10.1016/j.still.2012.07.011.
    [36]
    Shao G D, Ai J J, Sun Q W, et al. Soil quality assessment under different forest types in the Mount Tai, central Eastern China[J/OL]. Ecological Indicators, 2020, 115: 106439 [2020−12−12]. https://doi.org/10.1016/j.ecolind.2020.106439.
    [37]
    Askari M S, Holden N M. Indices for quantitative evaluation of soil quality under grassland management[J/OL]. Geoderma, 2014, 230−231: 131−142 [2020−12−12]. https://doi.org/10.1016/j.geoderma.2014.04.019.
    [38]
    秦娟, 唐心红, 杨雪梅. 马尾松不同林型对土壤理化性质的影响[J]. 生态环境学报, 2013, 22(4):598−604.

    Qin J, Tang X H, Yang X M. Effects of soil physical and chemical properties on different forest types of Pinus massoniana[J]. Ecology and Environmental Sciences, 2013, 22(4): 598−604.
    [39]
    谷会岩, 金靖博, 陈祥伟, 等. 采伐干扰对大兴安岭北坡兴安落叶松林土壤化学性质的影响[J]. 土壤通报, 2009, 40(2):272−275.

    Gu H Y, Jin J B, Chen X W, et al. Effects of logging disturbance on soil chemical properties of Larix gmelini forests in the northern slope on Greater Hinggan Mountains[J]. Chinese Journal of Soil Science, 2009, 40(2): 272−275.
    [40]
    丛高, 张志丹, 张晋京, 等. 长白山不同林型土壤有机碳特征[J]. 水土保持学报, 2019, 33(3):179−184.

    Cong G, Zhang Z D, Zhang J J, et al. Research on characteristics of soil organic carbon in different forest types in Changbai Mountain[J]. Journal of Soil and Water Consevation, 2019, 33(3): 179−184.
    [41]
    牛庆花, 郭宇嘉, 任子蓓, 等. 坝上地区典型防护林土壤改良效益[J]. 东北林业大学学报, 2019, 47(9):63−70.

    Niu Q H, Guo Y J, Ren Z B, et al. Improvement benefits on soil of typical shelterbelt stands in Bashang Area[J]. Journal of Northeast Forestry University, 2019, 47(9): 63−70.
    [42]
    陈立新, 陈祥伟, 史桂香, 等. 提高落叶松人工林林地质量的研究[J]. 东北林业大学学报, 1998, 26(3):6−11.

    Chen L X, Chen X W, Shi G X, et al. Study on improving the quality of forest land of larch plantations[J]. Journal of Northeast Forestry University, 1998, 26(3): 6−11.
    [43]
    邹莉, 唐庆明, 王轶. 落叶松、樟子松纯林及混交林土壤微生物的群落分布特征[J]. 东北林业大学学报, 2010, 38(11):63−64.

    Zou L, Tang Q M, Wang Y. Ecological distribution of soil microorganism in pure and mixed forests of Pinus sylvestris var. mongolica and Larix gmelini[J]. Journal of Northeast Forestry University, 2010, 38(11): 63−64.
    [44]
    Zhang W, Xu Y D, Gao D X, et al. Ecoenzymatic stoichiometry and nutrient dynamics along a revegetation chronosequence in the soils of abandoned land and Robinia pseudoacacia plantation on the Loess Plateau, China[J/OL]. Soil Biology and Biochemistry, 2019, 134: 1−14 [2020−12−01]. https://doi.org/10.1016/j.soilbio.2019.03.017.
    [45]
    林达, Dao Ngoc Chuong, 洪森先, 等. 间伐对杨树人工林土壤微生物量和氮含量的影响[J]. 森林与环境学报, 2016, 36(4):416−422.

    Lin D, Chuong D N, Hong S X, et al. Effects of thinning intensity and method on soil microbial biomass and nitrogen content in the poplar plantations[J]. Journal of Forest and Environment, 2016, 36(4): 416−422.
    [46]
    Lamb E G, Mengersen K L, Stewart K J, et al. Spatially explicit structural equation modeling[J]. Ecology, 2014, 95(9): 2434−2442. doi: 10.1890/13-1997.1
    [47]
    Hu L, Ade L J, Wu X W, et al. Changes in soil C: N: P stoichiometry and microbial structure along soil depth in two forest soils[J]. Forests, 2019, 10(2): 113. doi: 10.3390/f10020113
    [48]
    Sun J, Ma B B, Lu X Y. Grazing enhances soil nutrient effects: trade-offs between aboveground and belowground biomass in alpine grasslands of the Tibetan Plateau[J]. Land Degrad Develop, 2018, 29(2): 337−348. doi: 10.1002/ldr.2822
    [49]
    Jing X, Sanders N J, Shi Y, et al. The links between ecosystem multifunctionality and above- and belowground biodiversity are mediated by climate[J/OL]. Nature Communications, 2015, 6: 8159 [2020−12−12]. DOI: 10.1038/ncomms9159.
    [50]
    Kline R. Principals and practice of structural equation modeling[M]. New York: Guilford Press, 1998.
    [51]
    邓绍欢, 曾令涛, 关强, 等. 基于最小数据集的南方地区冷浸田土壤质量评价[J]. 土壤学报, 2016, 53(5):1326−1333.

    Deng S H, Zeng L T, Guan Q, et al. Minimum dataset-based soil quality assessment of waterlogged paddy field in South China[J]. Acta Pedologica Sinica, 2016, 53(5): 1326−1333.
    [52]
    Nabiollahi K, Golmohamadi F, Taghizadeh-Mehrjardi R, et al. Assessing the effects of slope gradient and land use change on soil quality degradation through digital mapping of soil quality indices and soil loss rate[J/OL]. Geoderma, 2018, 318: 16−28 [2021−01−28]. https://doi.org/10.1016/j.geoderma.2017.12.024.
    [53]
    邵森. 山西太岳山针叶林土壤肥力随林龄和营林措施变化特征的研究[D]. 北京: 北京林业大学, 2018.

    Shao S. The study on the changes of soil quality in coniferous forest with age and silvicultural measures of Shanxi Taiyue Mountain[D]. Beijing: Beijing Forestry University, 2018.
    [54]
    边丽宁. 华北落叶松纯林与混交林生长、林下植被和枯落物差异分析[D]. 保定: 河北农业大学, 2018.

    Bian L N. Difference of growth, understory vegetation and litter in pure and mixed forests of Larix principis-rupprechti[D]. Baoding: Hebei Agricultural University, 2018.
    [55]
    谢博. 针阔混交林中针叶树种枯落物分解所受的化感影响[D]. 杨凌: 西北农林科技大学, 2017.

    Xie B. Allelopathic effects of broad-leaf litter on coniferous litter decomposition in coniferous and broadleaved mixed forest[D]. Yangling: Northwest A & F University, 2017.
    [56]
    刘增文, 杜良贞, 张晓曦, 等. 黄土高原不同树种枯落叶混合分解效应[J]. 生态学报, 2012, 32(8):2596−2602. doi: 10.5846/stxb201103110298

    Liu Z W, Du L Z, Zhang X X, et al. Effects of mix-leaf litter decomposition of different trees in the Loess Plateau[J]. Acta Ecologica Sinica, 2012, 32(8): 2596−2602. doi: 10.5846/stxb201103110298
  • Related Articles

    [1]Zhan Ting, Ren Jinyuan, Peng Yao, Cao Jinzhen. Influence of bamboo fiber particle size and addition ratio on the properties of bamboo fiber/polypropylene/CaCO3 composite[J]. Journal of Beijing Forestry University, 2024, 46(1): 131-140. DOI: 10.12171/j.1000-1522.20230262
    [2]Hao Qian, Wang Yida, Ge Ying, Zhou Jing, Liu Zhenbo. Acoustic vibration performance of birch veneer-metal copper mesh composites[J]. Journal of Beijing Forestry University, 2023, 45(1): 148-158. DOI: 10.12171/j.1000-1522.20220378
    [3]Lin Bin, Zhai Xueyong, Li Rui, Sun Lipeng, Zhang Yuanting, Yin Yuxue, Liu Zhenbo. Optimization of preparation process of birch veneer/glass fiber composite[J]. Journal of Beijing Forestry University, 2019, 41(4): 127-135. DOI: 10.13332/j.1000-1522.20190049
    [4]WANG Dan-dan, CAO Yang, WANG Cui-cui, WEI Wen-bang, ZHANG Shuang-bao. Effect of silane coupling agent on mechanical properties of eucalyptus veneer/polyvinyl chloride (PVC) composites[J]. Journal of Beijing Forestry University, 2016, 38(2): 120-123. DOI: 10.13332/j.1000-1522.20150258
    [5]ZHAO Jun-shi, XU Zheng-dong, WANG Jin-lin, ZHANG Shuang-bao. Influence of fiber-glass on mechanical properties of composite laminates.[J]. Journal of Beijing Forestry University, 2014, 36(2): 129-132.
    [6]SUN Feng, ZHOU Yong-dong, LI Xiao-ling, LvJian-xiong, HAN Chen-jing, ZHAN Man-jun. Effects of species, diameter and processing equipment on veneer recovery of Eucalyptus spp.[J]. Journal of Beijing Forestry University, 2013, 35(4): 128-133.
    [7]ZHANG Ying, YU Zhi-ming, WANG Nan.. Quantitative evaluation of veneer gelatinize process and its effect[J]. Journal of Beijing Forestry University, 2010, 32(4): 251-255.
    [8]GUO Hong-wu, WANG Jin-lin, LI Chun-sheng, YAN Hao-Peng. Light-induced discoloration and influencing factors of dyed veneer after painted.[J]. Journal of Beijing Forestry University, 2008, 30(4): 22-27.
    [9]ZHANG De-rong, YU Zhi-ming, LI Jian-zhang, JIN Xiao-juan. Technical parameters of Laminated Veneer Lumber manufactured with dyeing and fire-retardant treated veneers[J]. Journal of Beijing Forestry University, 2005, 27(3): 83-86.
    [10]WANG Zheng, ZHAO Xing-zhi, GUO Wen-jing. Process factors and performances of recycled plastic-wood fiber composites.[J]. Journal of Beijing Forestry University, 2005, 27(1): 1-5.
  • Cited by

    Periodical cited type(15)

    1. 李潇潇. 古建筑木构件损伤及耐久性研究综述. 低温建筑技术. 2025(01): 16-19 .
    2. 麻胜兰,陈志宁,邵顺安,姜绍飞,许跃飞. 基于声发射多参数耦合的木材裂缝检测方法. 建筑结构. 2024(02): 136-144 .
    3. 赵东,马荣宇,于立川,赵健,刘嘉辉. 基于经验模态分解和小波包能量熵的杉木加载过程中细观损伤监测与识别. 北京林业大学学报. 2024(03): 123-131 . 本站查看
    4. 刘佳,于孟言,高珊,陈昱龙,冯蔓萱,杜鑫宇. 基于AE-BP模型的杨木胶合板应力损伤识别. 中南林业科技大学学报. 2024(04): 169-179 .
    5. 张萌,王灵芝,李守宇,张庆文,杨宇彤. 不同变量圆竹建筑填充组合节点轴压损伤声发射特性研究. 林产工业. 2024(07): 17-22 .
    6. 刘陈陈,黄奥,李昇昊,陈昕煜,顾华志. 基于机器视/听觉的耐火材料蚀损行为表征评价研究进展. 钢铁研究学报. 2024(10): 1247-1266 .
    7. 何佳明,李猛,蔡高洁,胡彬,佘艳华. 不同含水率雪松木的裂纹演化规律试验研究. 科学技术与工程. 2023(05): 1888-1894 .
    8. 李猛,佘艳华,何学杰,王俊辉,何佳明. 基于PZT和DIC对木构件榫卯松动监测试验研究. 林产工业. 2023(06): 20-26 .
    9. 李猛,佘艳华,贺才豪,何佳明,陈迪. 不同温度下的柏木构件顺纹压缩损伤规律研究. 西南林业大学学报(自然科学). 2023(05): 153-163 .
    10. 赖菲,王明华,肖洒,丁锐,罗蕊寒,邓婷婷,李明. 应用声发射技术和图像分形理论对樟子松木材裂纹演化特征的检测. 东北林业大学学报. 2022(07): 89-93 .
    11. 邢雪峰,李善明,金菊婉,林兰英,周永东,傅峰. 高能微波处理辐射松木材的抗弯力学性能与损伤演化特征. 北京林业大学学报. 2022(08): 107-116 . 本站查看
    12. 邢雪峰,李善明,周永东,林兰英,傅峰. 声发射技术在木质材料损伤监测中的应用研究进展. 世界林业研究. 2022(06): 63-68 .
    13. 杨丽华. 基于数字林业技术加强林业管理的研究. 造纸装备及材料. 2022(11): 96-98 .
    14. 陈泽华,杨小军,张璐,董浩然,赵琦. 防腐处理胶合木的层间界面断裂韧性研究. 森林与环境学报. 2021(02): 219-224 .
    15. 杜永刚,周伟,刘朔,刘亚萍,刘佳,马连华. 含夹渣缺陷Q245R钢的声发射特性和DIC研究. 电子测量技术. 2021(18): 1-6 .

    Other cited types(9)

Catalog

    Article views (1911) PDF downloads (249) Cited by(24)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return