• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Lin Youwei, Cai Tijiu, Duan Liangliang. Snow hydrological characteristics of Larix gmelinii forest in northern Daxing'an Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2018, 40(6): 72-80. DOI: 10.13332/j.1000-1522.20170389
Citation: Lin Youwei, Cai Tijiu, Duan Liangliang. Snow hydrological characteristics of Larix gmelinii forest in northern Daxing'an Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2018, 40(6): 72-80. DOI: 10.13332/j.1000-1522.20170389

Snow hydrological characteristics of Larix gmelinii forest in northern Daxing'an Mountains of northeastern China

More Information
  • Received Date: October 31, 2017
  • Revised Date: January 16, 2018
  • Published Date: May 31, 2018
  • ObjectiveTo provide more scientific data support and theoretical basis for the future snow cover evaporation measurement and regional water resurces requlation, the snow hydrological characteristics in the natural forest of Larix gmelinii was studied in northern Daxing'an Mountains of northeastern China. The snowfall interception and snow cover characteristics were systematically studied from the end of October 2015 to the beginning of May 2016.
    MethodDuring the observation period, the snowfall of 16 snowfalls, as well as the snow depth, snow density and snow water equivalent in the forest were periodically observed and statistically analyzed.
    Result(1) With the decreasing of snowfall level, the interception rate of Larix gmelinii forest showed a gradual increasing trend, which was 6.50% (blizzard), 9.04% (heavy snow), 9.8% (moderate snow), 15.7% (light snow). It can be seen that the maximum interception rate of snowfall in Larix gmelinii forest occurred in light snow, and the smallest occurred in blizzard. (2) The difference between the depth of snow inside Larix gmelinii forest and that outside the forest was not significant. Among them, the deepest snow depth in larch forest was 68.6cm, and that in outer space was 74.8cm. (3) The density of snow inside and outside the forest decreased with the input of snowfall in the early stage of observation, and did not increase in the absence of snowfall. Snowmelt as the temperature rises, the snow density will decrease faster. (4) Reaching the maximum between April 24 and April 29, with a decrease of 0.07 and 0.11g/cm3, respectively; the reduction of snow equivalent rate reached the maximum between April 24 and April 29, 30.2 and 46.4mm, respectively.
    ConclusionCompared with the open space outside the forest, the Larix gmelinii forest has little effect on the snow depth, snow cover density and snow water equivalent, indicating that the effect of Larix gmelinii forest on the hydrological characteristics of snow cover is not obvious. The daily change of snow evapotranspiration in this area showed a single-peak curve variation. The daily evaporation and evaporation rates in the snow-covered period were 0.04mm and 0.2×10-3mm/h, respectively. Daily evaporation fluctuated between 0.02-0.14mm. During the snowmelt period, the average daily evaporation and evaporation rates were 0.38mm and 1.51×10-3mm/h, respectively, and the factors were analyzed using the grey correlation degree. It is concluded that net radiation is the main factor influencing snowcover evaporation in Larix gmelinii forest.
  • [1]
    刘世荣, 常建国, 孙鹏森.森林水文学:全球变化背景下的森林与水的关系[J].植物生态学报, 2007, 31(5):753-756. http://d.old.wanfangdata.com.cn/Periodical/zwstxb200705001

    Liu S R, Chang J G, Sun P S. Forest hydrology: forest and water in a context of global change[J]. Journal of Plant Ecology, 2007, 31 (5):753-756. http://d.old.wanfangdata.com.cn/Periodical/zwstxb200705001
    [2]
    盛后财, 蔡体久, 琚存勇.小兴安岭白桦林降水转化过程元素特征分析[J].北京林业大学学报, 2015, 37(2):59-66. doi: 10.13332/j.cnki.jbfu.2015.02.009

    Sheng H C, Cai T J, Ju C Y. Element characteristics in the precipitation conversion process in Betula platyphlla forest of Xiaoxing'an Mountains, northeastern China[J]. Journal of Beijing Forestry University, 2015, 37 (2):59-66. doi: 10.13332/j.cnki.jbfu.2015.02.009
    [3]
    王增艳, 车涛. 2002—2009年中国干旱区积雪时空分布特征[J].干旱区研究, 2012, 29(3): 464-467. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ghqyj201203014

    Wang Z Y, Che T. Spatiotemporal distribution of snow cover in arid regions in China[J]. Arid Zone Research, 2012, 29(3): 464-467. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ghqyj201203014
    [4]
    Wei X, Liu S, Zhou G, et al. Hydrological processes in major types of Chinese forest[J]. Hydrological Processes, 2005, 19(1):63-75. http://cn.bing.com/academic/profile?id=ccec2017c9ca1ef970d1dedffceb46a4&encoded=0&v=paper_preview&mkt=zh-cn
    [5]
    Dozlier J. Snow, snowmelt, rain, runoff, and chemistry in a Sierra Nevada Watershed[Z]. Final Report to California Air Resources Board, 1989: 16-26.
    [6]
    Martinet J. Rango A. Paramenter values for snowmelt runoff modeling[J]. Journa1 of Hydrology, 1986, 84(3-4):197-219. http://cn.bing.com/academic/profile?id=6a99879c59f02f9b9a5b642dcab50102&encoded=0&v=paper_preview&mkt=zh-cn
    [7]
    Sokratov S A. Parameters influencing the recrystallization rate of snow[J]. Cold Regions Science and Technology, 2001, 33(2-3): 263-274. doi: 10.1016/S0165-232X(01)00053-2
    [8]
    Pomeroy J W, Brun E. Physical properties of snow[M]//Jones H G, Pomeroy J W, Walker D A, et al. Snow ecology: an interdisciplinary examination of snow-covered ecosystems. Cambridge: Cambridge University Press, 2001: 45-126.
    [9]
    白重媛, 大畑哲夫.天山乌鲁木齐河源1号冰川夏季消融期内反射率的变化[J].冰川冻土, 1989, 11(4): 311-324. http://www.cnki.com.cn/Article/CJFDTotal-BCDT198904002.htm

    Bai Z Y, Ohata T. Variations of albedo on the glacier No.1 at the head water of Urumqi River, Tianshan Moutains, during the summer ablation period[J]. Journal of Glaciology and Geocryology, 1989, 11(4): 311-324. http://www.cnki.com.cn/Article/CJFDTotal-BCDT198904002.htm
    [10]
    谢应钦, 张金生.雪层内太阳的穿透辐射[J].冰川冻土, 1988, 10(2): 135-142. http://www.cnki.com.cn/Article/CJFDTOTAL-BCDT198802004.htm

    Xie Y Q, Zhang J S. Solar penetration radiation in snow layers[J]. Journal of Glaciology and Geocryology, 1988, 10(2):135-142. http://www.cnki.com.cn/Article/CJFDTOTAL-BCDT198802004.htm
    [11]
    Kormos P R, Marks D, McNamara J P, et al. Snow distribution, melt and surface water inputs to the soil in the mountain rain-snow transition zone[J]. Journal of Hydrology, 2014, 519:190-204. doi: 10.1016/j.jhydrol.2014.06.051
    [12]
    Schelker J, Kuglerová L, Eklöf K, et al. Hydrological effects of clear-cutting in a boreal forest-snowpack dynamics, snowmelt and streamflow responses[J]. Journal of Hydrology, 2013, 484: 105-114. doi: 10.1016/j.jhydrol.2013.01.015
    [13]
    Michael A, Rawlins, Kyle C, et al. Remote sensing of snow thaw at the pan-Arctic scale using the seawinds scatterometer[J]. Journal of Hydrology, 2005, 312(1-4):294-311. doi: 10.1016/j.jhydrol.2004.12.018
    [14]
    Bernier P Y. Microwave remote sensing of snowpack properties: potential and limitations[J]. Nordic Hydrology, 1987, 18(1): 1-20. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_bac5a3a177fc5f9ac0af5e29a5f820e4
    [15]
    王雪芹, 张元明, 蒋进, 等.古尔班通古特沙漠南部沙垄水分动态:兼论积雪融化和冻土变化对沙丘水分分异作用[J].冰川冻土, 2006, 28(2):262-268. doi: 10.3969/j.issn.1000-0240.2006.02.017

    Wang X Q, Zhang Y M, Jiang J, et al. Variation pattern of soil water content in longitudinal dune in the southern part of Gurbantêggêt Desert: how snowmelt and frozen soil change affect the soil moisture[J]. Journal of Glaciology & Geocryology, 2006, 28(2):262-268. doi: 10.3969/j.issn.1000-0240.2006.02.017
    [16]
    王贺, 蔡体久, 满秀玲, 等.小兴安岭不同类型人工林林内积雪特征[J].水土保持学报, 2012, 26(6):263-267, 273. http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb201206052

    Wang H, Cai T J, Man X L, et al. Characteristics of snowpack in different planted forests of Xiaoxing'anling[J]. Journal of Soil and Water Conservation, 2012, 26(6):263-267, 273. http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb201206052
    [17]
    李奕, 蔡体久, 盛后财, 等.大兴安岭地区天然樟子松林降雪截留及积雪特征[J].水土保持学报, 2014, 28(5):124-128. http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb201405022

    Li Y, Cai T J, Sheng H C, et al. Characteristics of the snow interception and the snowpack in Scotch pine forest in Great Xing'an Mountains[J]. Journal of Soil and Water Conservation, 2014, 28(5):124-128. http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb201405022
    [18]
    俞正祥, 蔡体久, 朱宾宾.大兴安岭北部主要森林类型林内积雪特征[J].北京林业大学学报, 2015, 37(12):100-107. doi: 10.13332/j.1000-1522.20150175

    Yu Z X, Cai T J, Zhu B B. Characteristics of snowpack in major forest types of northern Daxing' anling Mountains, northeastern China[J]. Journal of Beijing Forestry University, 2015, 37(12):100-107. doi: 10.13332/j.1000-1522.20150175
    [19]
    Zhang J, Ashjian C, Campbell R, et al. The influence of sea ice and snow cover and nutrient availiability on the formation of massive under-ice phytoplankton blooms in the Chukchi Sea[J]. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 2015, 118:122-135. doi: 10.1016/j.dsr2.2015.02.008
    [20]
    Golding D L, Swanson R H. Snow distribution patterns in clearings and adjacent forest[J]. Water Resources Research, 1986, 22(13): 1931-1940. doi: 10.1029/WR022i013p01931
    [21]
    Martinee J. Expected snow loads on structure from incomplete hydrological data[J]. Journal of Glaciology, 1977, 19(81):185-195. doi: 10.1017/S0022143000029270
    [22]
    Wever N, Schmid L, Heilig A, et al. Verification of the multi-layer SNOWPACK model with different water transport schemes[J]. The Cryosphere, 2015, 9(6): 2271-2293. doi: 10.5194/tc-9-2271-2015
    [23]
    杨俊华, 秦翔, 吴锦奎, 等.祁连山老虎沟流域春季积雪属性的分布及变化特征[J].冰川冻土, 2012, 34(5):1092-1093. http://d.old.wanfangdata.com.cn/Periodical/bcdt201205010

    Yang J H, Qin X, Wu J K, et al. Distribution and variation of spring snow cover in Laohugou Watershed of the Qilian Mountains[J]. Journal of Glaciology and Geocryology, 2012, 34(5):1092-1093. http://d.old.wanfangdata.com.cn/Periodical/bcdt201205010
    [24]
    高培, 魏文寿, 刘明哲.中国西天山季节性积雪热力特征分析[J].高原气象, 2012, 31(4): 1075-1078. http://d.old.wanfangdata.com.cn/Periodical/gyqx201204022

    Gao P, Wei W S, Liu M Z. Characteristic analysis on temperature change in snow layer in Western Tianshan Mountain in China[J]. Plateau Meteorology, 2012, 31(4): 1075-1078. http://d.old.wanfangdata.com.cn/Periodical/gyqx201204022
    [25]
    陆恒, 魏文寿, 刘明哲, 等.季节性森林积雪融雪期雪层含水率垂直廓线与时间变化特征[J].地理研究, 2011, 30(7):1245-1248. http://d.old.wanfangdata.com.cn/Periodical/dlyj201107010

    Lu H, Wei W S, Liu M Z, et al. A study on the vertical profile of forest snow liquid water content and variation with time in the snowmelt period[J]. Geographical Research, 2011, 30(7):1245-1248. http://d.old.wanfangdata.com.cn/Periodical/dlyj201107010
    [26]
    刘家霖, 满秀玲.降雨和非降雨日兴安落叶松天然林蒸腾及蒸散发特征[J].生态学报, 2017, 37(15):5059-5069. http://d.old.wanfangdata.com.cn/Periodical/stxb201715014

    Liu J L, Man X L.Characteristics of transpiration and evapo-transpiration from natural Larix gmelinii forests on rainy and non-rainy days[J]. Acta Ecologica Sinica, 2017, 37(15):5059-5069. http://d.old.wanfangdata.com.cn/Periodical/stxb201715014
    [27]
    刘海亮, 蔡体久, 满秀玲, 等.小兴安岭主要森林类型对降雪、积雪和融雪过程的影响[J].北京林业大学学报, 2012, 34(2): 20-25. http://j.bjfu.edu.cn/article/id/9722

    Liu H L, Cai T J, Man X L, et al. Effects of major forest types of Xiaoxing'an Mountains on the process of snowfall, snow cover and snow melting[J]. Journal of Beijing Forestry University, 2012, 34(2):20-25. http://j.bjfu.edu.cn/article/id/9722
    [28]
    李辉东, 关德新, 吴家兵, 等.长白山阔叶红松林冬季雪面蒸发特征[J].应用生态学报, 2013, 24(4):1039-1046. http://d.old.wanfangdata.com.cn/Periodical/yystxb201304022

    Li H D, Guan D X, Wu J B, et al. Characteristics of evaporation over broadleaved Korean pine forest in Changbai Mountains, Northeast China during snow cover period in winter[J]. Chinese Journal of Applied Ecology, 2013, 24(4):1039-1046. http://d.old.wanfangdata.com.cn/Periodical/yystxb201304022
    [29]
    Mcjannet D, Vertessy R. Effects of thinning on wood production, leaf area index, transpiration and canopy Interception of a plantation subject to drought[J]. Tree Physiology, 2011, 21 (12/13): 1001-1008. http://cn.bing.com/academic/profile?id=de705ad9c3839e0d39309fb425d6fb00&encoded=0&v=paper_preview&mkt=zh-cn
    [30]
    Bulcock H H, Jewitt G P W. Spatial mapping of leaf area index using hyperspectral remote sensing for hydrological application with a particular focus on canopy interception[J]. Hydrology and Earth System Science, 2010, 14(2): 383-392. doi: 10.5194/hess-14-383-2010
    [31]
    Rutter N, Essery R, Pomeroy J, et al. Evaluation of forest snow processes models (SnowMIP2)[J/OL]. Journal of Geophysical Research: Atmospheres, 2009, 114[2017-08-11]. http://onlinelibrary.wiley.com/doi/10.1029/2008JD011063/full.
    [32]
    Varhola A, Coops N C, Weiler M, et al. Forest canopy effects on snow accumulation and ablation: an integrative review of empirical results[J]. Journal of Hydrology, 2010, 392(3): 219-233. http://cn.bing.com/academic/profile?id=e815be270bf9fff351eb43f73e52a547&encoded=0&v=paper_preview&mkt=zh-cn
    [33]
    Boon S. Snow ablation energy balance in a dead forest stand[J]. Hydrological Processes, 2009, 23(18): 2600-2610. doi: 10.1002/hyp.v23:18
    [34]
    Coughlan J C, Running S W. Regional ecosystem simulation: a general model for simulating snow accumulation and melt in mountainous terrain[J]. Landscape Ecology, 1997, 12(3):119-136. doi: 10.1023/A:1007933813251
    [35]
    Lee Y H, Mahrt L. An evaluation of snowmelt and sublimation over short vegetation in land surface modeling[J]. Hydrological Processes, 2004, 18: 3543-3557. doi: 10.1002/hyp.5799
    [36]
    Suzuki K, Nakai Y. Canopy snow influence on water and energy balances in a coniferous forest plantation in northern Japan[J]. Journal of Hydrology, 2008, 352(1): 126-138. http://cn.bing.com/academic/profile?id=483a6d8db5f9163138b01bbf53530c1b&encoded=0&v=paper_preview&mkt=zh-cn
    [37]
    Lundberg A, Calder I, Harding R. Evaporation of intercepted snow: measurement and modeling[J]. Journal of Hydrology, 1998, 206(3-4): 151-163. doi: 10.1016/S0022-1694(97)00016-4
  • Related Articles

    [1]Zhang Yun, Yu Yue, Cui Xiaoyang, Wang Haiqi. Spatiotemporal variations of soil moisture content in the Larix gmelinii forest under interference of experimental forest fire in northern Great Xing’an Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2020, 42(8): 94-101. DOI: 10.12171/j.1000-1522.20190182
    [2]Zhang Yun, Yu Yue, Cui Xiaoyang. Temporal and spatial change patterns on soil available phosphorus under an experimental forest fire in Larix gmelinii forests[J]. Journal of Beijing Forestry University, 2019, 41(2): 12-18. DOI: 10.13332/j.1000-1522.20180129
    [3]Li Xiang, Wang Yaming, Meng Chen, Li Jiao, Niu Jianzhi. A dynamic crown interception model based on simulated rainfall experiments of small trees[J]. Journal of Beijing Forestry University, 2018, 40(4): 43-50. DOI: 10.13332/j.1000-1522.20170348
    [4]ZHANG Zhu, WANG Chuan-kuan.. Temporal dynamics and vertical distribution of dissolved organic carbon in snowmelt runoff in a temperate deciduous forest in Maoershan region, northeastern China.[J]. Journal of Beijing Forestry University, 2016, 38(11): 1-8. DOI: 10.13332/j.1000-1522.20160114
    [5]WANG Xiao-hui, GUO Qing-xi, CAI Ti-jiu. Quantitative effect of topography and forest type on snow melting process in spring[J]. Journal of Beijing Forestry University, 2016, 38(2): 83-89. DOI: 10.13332/j.1000-1522.20150317
    [6]JI Ying, CAI Ti-jiu.. Canopy interception in original Korean pine forest: measurement and dividual simulation in Xiaoxing'an Mountains, northeastern China.[J]. Journal of Beijing Forestry University, 2015, 37(10): 41-49. DOI: 10.13332/j.1000-1522.20150084
    [7]LIU Hai-liang, CAI Ti-jiu, MAN Xiu-ling, CHAI Ru-shan, LANG Yan. Effects of major forest types of Xiaoxingan Mountains on the process of snowfall, snow cover and snow melting.[J]. Journal of Beijing Forestry University, 2012, 34(2): 20-25.
    [8]LI Zhou-yuan, ZHOU Jun-hui, LIANG Ying-mei. Lethal doseeffect correlations of chloride snowmelting agent on Euonymus japonicus[J]. Journal of Beijing Forestry University, 2012, 34(1): 64-69.
    [9]YAN Li, CAI Ti-jiu, LIU Hai-liang, BAI Yu. Characteristics of snowpack and snowmelt runoff chemistry in virgin Pinus koraiensis forest[J]. Journal of Beijing Forestry University, 2011, 33(4): 48-54.
    [10]WANG An-zhi, LIU Jian-mei, PEI Tie-fan, JIN Chang-jie. An experiment and model construction of rainfall interception by Picea koraiensis[J]. Journal of Beijing Forestry University, 2005, 27(2): 38-42.
  • Cited by

    Periodical cited type(5)

    1. 阿卜杜外力·阿卜杜克热木,安外尔·阿卜杜热伊木,肖正清,刘素红,比拉力·依明,玛丽亚木·玛木提,米尔扎提·依明. 基于无人机影像的天山雪岭云杉树冠降雪截留实验研究. 干旱区资源与环境. 2022(04): 163-170 .
    2. 李吉玫,张毓涛,张云云. 天山北坡融雪期林地、草地、裸地积雪特性及其影响因素分析. 灌溉排水学报. 2021(01): 106-114 .
    3. 马秀艳,蒋磊,宋艳宇,孙丽,宋长春,侯爱新,高晋丽,杜宇. 温度和水分变化对冻土区泥炭地土壤氮循环功能基因丰度的影响. 生态学报. 2021(17): 6707-6717 .
    4. 郭建平. 植物对降水截留的研究进展. 应用气象学报. 2020(06): 641-652 .
    5. 姚雪晗,杨帆,唐文莉,傅松玲. 合肥地区常绿景观树种冠层雨水截留能力研究. 西北农业学报. 2020(07): 1116-1122 .

    Other cited types(11)

Catalog

    Article views (1405) PDF downloads (21) Cited by(16)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return