• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Zhou Chaofan, Zhang Huiru, Xu Qigang, Lei Xiangdong. Analysis of inter-layer structure based on the relationship of neighboring trees[J]. Journal of Beijing Forestry University, 2019, 41(5): 66-75. DOI: 10.13332/j.1000-1522.20190051
Citation: Zhou Chaofan, Zhang Huiru, Xu Qigang, Lei Xiangdong. Analysis of inter-layer structure based on the relationship of neighboring trees[J]. Journal of Beijing Forestry University, 2019, 41(5): 66-75. DOI: 10.13332/j.1000-1522.20190051

Analysis of inter-layer structure based on the relationship of neighboring trees

More Information
  • Received Date: January 17, 2019
  • Revised Date: March 07, 2019
  • Available Online: April 29, 2019
  • Published Date: April 30, 2019
  • ObjectiveForest layer is a kind of structure on vertical scale of stand spatial structure, which is also a research hotspot of stand spatial structure at present. The study of forest layer mostly focuses on the methods of forest layer division and the analysis of the structure of each forest layer. However, there were few studies on the relationship between forest layers. Detailed analysis of stand structure is very helpful for precise forest management. Exploring the distribution of forest layer structure and its relationship with growth can enrich the theoretical basis of structured forest management, and also has certain guiding value for the construction of competition index.
    MethodBased on the relationship between neighboring trees, the distribution of target trees and neighboring trees in the upper, middle and lower forest layers was distinguished. Five cases of stand level rate (L) were refined to 45 types of " forest layer structure types”. The distribution of forest layer structure of Q. mongolica forest was deeply analyzed with L and forest layer structure types, then the relationship between them and DBH increment was discussed.
    Result(1) The forest layer structure of Q. mongolica forest is more complex: four neighboring trees in the structural unit of the target wood were less in the same layer with the target wood, while cases of two or three neighboring trees distributing in different layers with the target wood were more common. In the target tree structure unit, the five trees tended to distribute in three forest layers or in two adjacent forest layers, and the more trees distributed in the middle layer, the more quantity of this sort of " forest layer structure type” was. (2) The significant difference of DBH increment between the stand level rate type of the Q. mongolica forest was: the lower layer > the upper layer > the middle layer; when the neighboring trees in the same layer ranged from 4 to 0, the growth of the underlying trees had a significant downward trend, the upper trees had a significant upward trend, while the role of the neighboring trees in the middle layer was complicated, resulting in no significant change in the growth. (3) The forest layer factors affecting the growth of upper target trees in Q. mongolica forest were relatively simple, mainly the lateral extrusion of the neighboring trees in the upper layer; while the effects of forest layer factors on the growth of lower and middle forest layers in Q. mongolica forest were more complicated. The middle object wood was mainly affected by the cover of upper layer trees, followed by the lateral extrusion of the middle layer trees; the lower target wood was mainly affected by the cover of the middle layer, followed by the lateral extrusion of the lower layer or the cover of the upper layer.
    ConclusionThe " forest layer structure type” constructed in this paper has a good effect in analyzing the quantity distribution of forest layer structure and explaining the size of DBH increment. It can systematically and comprehensively analyze the inter-layer structure.
  • [1]
    惠刚盈, Klaus von Gadow, 等. 结构化森林经营原理[M]. 北京: 中国林业出版社, 2016.

    Hui G Y, Gadow K V, et al. The principle of structured forest management [M]. Beijing: China Forestry Publishing House, 2016.
    [2]
    惠刚盈, 胡艳波. 混交林树种空间隔离程度表达方式的研究[J]. 林业科学研究, 2001, 14(1):23−27. doi: 10.3321/j.issn:1001-1498.2001.01.004

    Hui G Y, Hu Y B. Research on the expression of spatial isolation of mixed forest species[J]. Forest Research, 2001, 14(1): 23−27. doi: 10.3321/j.issn:1001-1498.2001.01.004
    [3]
    惠刚盈, Gadow K V, Albert M. 一个新的林分空间结构参数: 大小比数[J]. 林业科学研究, 1999, 12(1):1−6. doi: 10.3321/j.issn:1001-1498.1999.01.001

    Hui G Y, Gadow K V, Albert M. A new parameter for stand spatial structure: neighbourhood comparison[J]. Forest Research, 1999, 12(1): 1−6. doi: 10.3321/j.issn:1001-1498.1999.01.001
    [4]
    惠刚盈. 角尺度: 一个描述林木个体分布格局的结构参数[J]. 林业科学, 1999, 35(1):39−44.

    Hui G Y. The neighborhood pattern: a new structure parameter for describing distribution of forest tree position[J]. Scientia Silvae Sinicae, 1999, 35(1): 39−44.
    [5]
    胡艳波, 惠刚盈, 戚继忠, 等. 吉林蛟河天然红松阔叶林的空间结构分析[J]. 林业科学研究, 2003, 16(5):523−530. doi: 10.3321/j.issn:1001-1498.2003.05.002

    Hu Y B, Hui G Y, Qi J Z, et al. Analysis of the spatial structure of natural Korean pine broadleaved forest[J]. Forest Research, 2003, 16(5): 523−530. doi: 10.3321/j.issn:1001-1498.2003.05.002
    [6]
    惠刚盈, 胡艳波, 赵中华. 基于相邻木关系的树种分隔程度空间测度方法[J]. 北京林业大学学报, 2008, 30(4):131−134. doi: 10.3321/j.issn:1000-1522.2008.04.023

    Hui G Y, Hu Y B, Zhao Z H. Evaluating tree species segregation based on neighborhood spatial relationships[J]. Journal of Beijing Forestry University, 2008, 30(4): 131−134. doi: 10.3321/j.issn:1000-1522.2008.04.023
    [7]
    惠刚盈. 基于相邻木关系的林分空间结构参数应用研究[J]. 北京林业大学学报, 2013, 35(4):1−8.

    Hui G Y. Studies on the application of stand spatial structure parameters based on the relationship of neighborhood trees[J]. Journal of Beijing Forestry University, 2013, 35(4): 1−8.
    [8]
    惠刚盈, 胡艳波, 赵中华. 结构化森林经营研究进展[J]. 林业科学研究, 2018, 31(1):85−93.

    Hui G Y, Hu Y B, Zhao Z H. Research progress of structure-based forest management[J]. Forestry Research, 2018, 31(1): 85−93.
    [9]
    吕延杰, 杨华, 张青, 等. 云冷杉天然林林分空间结构对胸径生长量的影响[J]. 北京林业大学学报, 2017, 39(9):41−47.

    Lü Y J, Yang H, Zhang Q, et al. Effects of spatial structure on DBH increment of natural spruce-fir forest[J]. Journal of Beijing Forestry University, 2017, 39(9): 41−47.
    [10]
    Li Y, Hui G, Zhao Z, et al. The bivariate distribution characteristics of spatial structure in natural Korean pine broad-leaved forest[J]. Journal of Vegetation Science, 2012, 23(6): 1180−1190. doi: 10.1111/jvs.2012.23.issue-6
    [11]
    Li Y, Ye S, Hui G, et al. Spatial structure of timber harvested according to structure-based forest management[J]. Forest Ecology and Management, 2014, 322: 106−116. doi: 10.1016/j.foreco.2014.02.042
    [12]
    Pommerening A. Evaluating structural indices by reversing forest structural analysis[J]. Forest Ecology and Management, 2006, 224(3): 266−277. doi: 10.1016/j.foreco.2005.12.039
    [13]
    张会儒, 武纪成, 杨洪波, 等. 长白落叶松−云杉−冷杉混交林林分空间结构分析[J]. 浙江农林大学学报, 2009, 26(3):319−325. doi: 10.3969/j.issn.2095-0756.2009.03.005

    Zhang H R, Wu J C, Yang H B, et al. Spatial structure of mixed larch-spruce-fir stands[J]. Journal of Zhejiang A & F University, 2009, 26(3): 319−325. doi: 10.3969/j.issn.2095-0756.2009.03.005
    [14]
    胡艳波, 惠刚盈. 基于相邻木关系的林木密集程度表达方式研究[J]. 北京林业大学学报, 2015, 37(9):1−8.

    Hu Y B, Hui G Y. How to describe the crowding degree of trees based on the relationship of neighboring trees[J]. Journal of Beijing Forestry University, 2015, 37(9): 1−8.
    [15]
    曹小玉, 李际平. 林分空间结构指标研究进展[J]. 林业资源管理, 2016(4):65−73.

    Cao X Y, Li J P. Research progress on indicators of stand spatial structure[J]. Forestry Resource Management, 2016(4): 65−73.
    [16]
    王宏翔, 胡艳波, 赵中华, 等. 林分空间结构参数: 角尺度的研究进展[J]. 林业科学研究, 2014, 27(6):841−847.

    Wang H X, Hu Y B, Zhao Z H, et al. Progress in stand spatial structure parameter: the uniform angle index[J]. Forest Research, 2014, 27(6): 841−847.
    [17]
    庄崇洋, 黄清麟, 马志波, 等. 林层划分方法综述[J]. 世界林业研究, 2014, 27(6):34−40.

    Zhuang C Y, Huang Q L, Ma Z B, et al. Review on defining methods for canopy stratification[J]. World Forestry Research, 2014, 27(6): 34−40.
    [18]
    孟宪宇. 测树学[M]. 3版. 北京: 中国林业出版社, 2006.

    Meng X Y. Forest measurement [M]. 3rd ed. Beijing: China Forestry Publishing House, 2006.
    [19]
    玉宝, 张秋良, 王立明. 中幼龄兴安落叶松过伐林垂直结构综合特征[J]. 林业科学, 2015, 51(1):132−139.

    Yu B, Zhang Q L, Wang L M. Comprehensive characteristics of the vertical structure of middle young over cutting forest of Larix gmelinii[J]. Scientia Silvae Sinicae, 2015, 51(1): 132−139.
    [20]
    陈科屹, 张会儒, 雷相东, 等. 云冷杉过伐林垂直结构特征分析[J]. 林业科学研究, 2017, 30(3):450−459.

    Chen K Y, Zhang H R, Lei X D, et al. Analysis of vertical structure characteristics for spruce-fir over-cutting forest[J]. Forestry Research, 2017, 30(3): 450−459.
    [21]
    安慧君. 阔叶红松林空间结构研究[D]. 北京: 北京林业大学, 2003.

    An H J. Study on the spatial structure of broad-leaved Korean pine forest[D]. Beijing: Beijing Forestry University, 2003.
    [22]
    吕勇, 臧颢, 万献军, 等. 基于林层指数的青椆混交林林层结构研究[J]. 林业资源管理, 2012(3):81−84. doi: 10.3969/j.issn.1002-6622.2012.03.018

    Lü Y, Zang H, Wan X J, et al. Storey structure study of Cyclobalanopsis myrsinaefolia mixed stand based on storey index[J]. Forestry Resource Management, 2012(3): 81−84. doi: 10.3969/j.issn.1002-6622.2012.03.018
    [23]
    Zenner E K, Hibbs D E. A new method for modeling the heterogeneity of forest structure[[J]. Forest Ecology & Management, 2000, 129(1): 75−87.
    [24]
    惠刚盈, 胡艳波, 赵中华, 等. 基于交角的林木竞争指数[J]. 林业科学, 2013, 49(6):68−73.

    Hui G Y, Hu Y B, Zhao Z H, et al. A forest competition index based on intersection angle[J]. Scientia Silvae Sinicae, 2013, 49(6): 68−73.
    [25]
    汤孟平, 陈永刚, 施拥军, 等. 基于Voronoi图的群落优势树种种内种间竞争[J]. 生态学报, 2007, 27(11):4707−4716. doi: 10.3321/j.issn:1000-0933.2007.11.039

    Tang M P, Chen Y G, Shi Y J, et al. Intraspecific and interspecific competition analysis of community dominant plant populations based on Voronoi diagram[J]. Acta Ecologica Sinica, 2007, 27(11): 4707−4716. doi: 10.3321/j.issn:1000-0933.2007.11.039
    [26]
    陈科屹, 张会儒, 雷相东. 天然次生林蒙古栎种群空间格局[J]. 生态学报, 2018, 38(10):3462−3470.

    Chen K Y, Zhang H R, Lei X D. Spatial pattern of Quercus mongolica in natural secondary forest[J]. Acta Ecologica Sinica, 2018, 38(10): 3462−3470.
    [27]
    Kohyama T. Size-structured tree populations in gap-dynamic forest: the forest architecture hypothesis for the stable coexistence of species[J]. Journal of Ecology, 1993, 81(1):131−143.
    [28]
    Latham P A, Zuuring H R, Coble D W. A method for quantifying vertical forest structure[J]. Forest Ecology & Management, 1998, 104(1-3): 157−170.
    [29]
    罗耀华, 陈庆诚, 张鹏云. 兴隆山阴暗针叶林空间格局及其利用光能的对策[J]. 生态学报, 1984, 4(1):10−20.

    Luo Y H, Chen Q C, Zhang P Y. The spatial pattern of coniferous forest in Xinglongshan Mountain and its strategies in using sun light energy[J]. Acta Ecologica Sinica, 1984, 4(1): 10−20.
    [30]
    Gadow K V, Zhang C Y, Whenkell C, et al. Forest structure and diversity[M]//Pukkala T, Gadow K V. Continuous cover forestry. Dordrecht: Springer, 2012: 29−83.
    [31]
    李际平, 封尧, 赵春燕, 等. 基于Voronoi图的角尺度分析方法探讨: 以湖南省平江县福寿林场为例[J]. 林业资源管理, 2015(4):33−39.

    Li J P, Feng Y, Zhao C Y, et al. Discussion on the analysis method of uniform angle index based in Voronoi diagram: take Fushou Forest Farm as a example[J]. Forest Resources Management, 2015(4): 33−39.
  • Related Articles

    [1]Fan Xiuhua, Zhang Baoquan, Fan Chunyu. Effects of species diversity and structural diversity on productivity in different succession stages of typical natural forest in Changbai Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2021, 43(12): 1-8. DOI: 10.12171/j.1000-1522.20210071
    [2]Peng Jieying, Xie Yuanming, Liu Wenzhen, Yan Yan. Relationship between tree species richness and productivity of Quercus aliena var. acutiserrata forest in Xiaolongshan Mountain, Gansu Province of northwestern China[J]. Journal of Beijing Forestry University, 2021, 43(11): 11-19. DOI: 10.12171/j.1000-1522.20200192
    [3]Jiang Xiaolei, Hao Qing, Li Wei, Sun Zhenyuan. Species distribution and diversity characteristics of secondary plant communities in Laoshan Mountain of Qingdao, Shandong Province of eastern China[J]. Journal of Beijing Forestry University, 2020, 42(8): 22-33. DOI: 10.12171/j.1000-1522.20190414
    [4]Jin Suo, Bi Haojie, Liu Jia, Liu Yuhang, Wang Yu, Qi Jinqiu, Hao Jianfeng. Effects of stand density on community structure and species diversity of Cupressus funebris plantation in Yunding Mountain, southwestern China[J]. Journal of Beijing Forestry University, 2020, 42(1): 10-17. DOI: 10.12171/j.1000-1522.20190202
    [5]ZHAO Tian-liang. Species diversity of Larix principis-rupprechtii communities in Shanxi Province of northern China[J]. Journal of Beijing Forestry University, 2017, 39(6): 45-50. DOI: 10.13332/j.1000-1522.20170067
    [6]LIU Sheng-dong, GAO Wen-tao, LI Yan, SHI Ying, MENG Qing-fan. Comparative study of Cerambycidae species diversity in different forest stands of southern Zhangguangcai Mountains, northeastern China.[J]. Journal of Beijing Forestry University, 2015, 37(5): 110-118. DOI: 10.13332/j.1000-1522.20140287
    [7]WANG Bing, SONG Qing-feng.. Value assessing methods of species diversity conservation in forest ecosystem[J]. Journal of Beijing Forestry University, 2012, 34(2): 155-160.
    [8]YUE Yong-jie, , YU Xin-xiao, NIU Li-li, SUN Qing-yan, LI Jin-hai, WU Jun. Structural characteristics of plant communities and species diversity in Wuling Mountain, Beijing.[J]. Journal of Beijing Forestry University, 2008, 30(supp.2): 165-170.
    [9]LI Rui, ZHANG Ke-bin, WANG Bai-tian, YANG Xiao-hui, QIAO Feng, YANG Jun-jie, YANG Li. Plant species diversity of wetland-dry grassland ecosystem: Taking Yanchi County, Ningxia Hui Autonomous Region as an example[J]. Journal of Beijing Forestry University, 2006, 28(5): 12-17.
    [10]NAN Hai-long, HAN Hai-rong, MA Qin-yan, YI Li-ta, KANG Feng-feng. Species diversity of herb and shrub layers in gaps of a mixed conifer broad-leaved forest in Taiyue Mountain of Shanxi Province[J]. Journal of Beijing Forestry University, 2006, 28(2): 52-56.
  • Cited by

    Periodical cited type(17)

    1. 张佳旺,董希斌,郭奔,刘慧,张莹,任允泽,滕弛,宋梓恺,张雨晨. 天然落叶松林不同演替阶段空间结构参数的多元分布. 东北林业大学学报. 2024(03): 1-9 .
    2. 王迤翾,朱宁华,周光益,袁星明,江岱,董妍妍,颜润芝. 湘西石漠化区湿地松-马褂木人工混交林林分结构及土壤理化性质研究. 广西植物. 2024(03): 477-487 .
    3. 韩艳英,盛基峰,李垚,大布穷,叶彦辉. 西藏原始林芝云杉林空间结构参数分布特征. 西北林学院学报. 2023(01): 146-152 .
    4. 淦江,杜虎,宋同清,彭晚霞,曾馥平,黄国勤. 中亚热带喀斯特常绿落叶阔叶林空间结构特征. 西北植物学报. 2023(05): 846-855 .
    5. 张岚棋,李丽,杨华,谢伊. 基于AHP-CRITIC组合赋权法的长白山天然林空间结构优化调整. 北京林业大学学报. 2023(08): 74-83 . 本站查看
    6. 黄露波 ,甄贞 ,赵颖慧 . 基于多源LiDAR的阔叶红松林林分空间结构特征分析. 中南林业科技大学学报. 2023(08): 36-50 .
    7. 娄明华,杨同辉,王卫兵,毛建方,徐婧,章建红. 四明山黄山松针阔混交林林分空间结构参数多元分布特征. 林业与环境科学. 2023(04): 12-20 .
    8. 罗建琼,缪宁,薛盼盼,张远东,王晖. 人工-天然混交林研究综述. 陆地生态系统与保护学报. 2023(06): 78-87 .
    9. 袁星明,朱宁华,周光益,党鹏,尚海. 湘西喀斯特地区42年生湿地松-樟树人工混交林空间结构研究. 中南林业科技大学学报. 2022(04): 49-58 .
    10. 王志康,祝乐,许晨阳,李艳,耿增超,王强,刘莉丽,秦一郎,杜旭光. 秦岭天然林凋落物去除对土壤团聚体稳定性及细根分布的影响. 生态学报. 2022(13): 5493-5503 .
    11. 刘磊,萨如拉,高明龙,王子瑞,铁牛. 大兴安岭北部白桦次生林空间结构多元分析. 西部林业科学. 2022(05): 118-126 .
    12. 和敬渊,王新杰,王开,郭韦韦,刘丽,王福增. 杨桦次生林林分空间结构参数多元分布研究. 北京林业大学学报. 2021(02): 22-33 . 本站查看
    13. 薛卫星,郭秋菊,艾训儒,姚兰,朱江,黄阳祥,李玮宜,罗西,刘毅. 鹅掌楸天然林物种组成与林分空间结构特征研究. 林业科学研究. 2021(02): 166-173 .
    14. 崔玉华,韩有志,张梦弢,杨秀清,赵占合. 不同干扰强度下针阔混交林树种空间格局及种间关联性. 应用生态学报. 2021(06): 2053-2060 .
    15. 孙明港,王新杰. 长白山地区白桦红松混交林结构特征分析. 西北林学院学报. 2021(05): 18-27 .
    16. 徐美玲,农明川,欧光龙. 思茅松天然林林分空间结构分析. 西南林业大学学报(自然科学). 2020(03): 122-130 .
    17. 李燕,刘成功. 天目山天然混交林群落优势树种种群结构与空间格局. 基因组学与应用生物学. 2020(12): 5744-5757 .

    Other cited types(12)

Catalog

    Article views (1898) PDF downloads (114) Cited by(29)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return