• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Fan Xiuhua, Zhang Baoquan, Fan Chunyu. Effects of species diversity and structural diversity on productivity in different succession stages of typical natural forest in Changbai Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2021, 43(12): 1-8. DOI: 10.12171/j.1000-1522.20210071
Citation: Fan Xiuhua, Zhang Baoquan, Fan Chunyu. Effects of species diversity and structural diversity on productivity in different succession stages of typical natural forest in Changbai Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2021, 43(12): 1-8. DOI: 10.12171/j.1000-1522.20210071

Effects of species diversity and structural diversity on productivity in different succession stages of typical natural forest in Changbai Mountains of northeastern China

More Information
  • Received Date: March 10, 2021
  • Revised Date: April 28, 2021
  • Accepted Date: November 22, 2021
  • Available Online: November 25, 2021
  • Published Date: January 04, 2022
  •   Objective  Thoroughly exploring the relationship between species and structural diversity and productivity is an important prerequisite for the improvement of both forest biodiversity and productivity, and is of great significance for forest scientific management. In this study, three typical forest communities in Changbai Mountains of northeastern China were selected as the research object to analyze the relationship between species and structural diversity and productivity in different succession stages. The early, middle and late stages of communities were represented by the secondary poplar-birch forest, coniferous-broadleaved mixed forest and broadleaved Korean pine forest.
      Method  Multiple regression models were built for the comparison of the correlations between different diversity indices and productivity, based on the regression results, the best index was determined to represent for species and structural diversity, and then the structural equation model was built to compare the relative importance of species and structural diversity on productivity.
      Result  In the early succession stage, the relationship between species richness, DBH evenness and productivity was the most significant and the effects of these two diversity indices on productivity were similar but not strong. In the middle succession stage, the relationship between species richness, DBH Shannon index and productivity was the most significant, they both had positive effects on productivity, and the effects of species diversity on productivity was stronger than that of structural diversity. In the late stage of succession, there was no significant correlation between species diversity as well as structural diversity and productivity.
      Conclusion  The relationship between species diversity as well as structural diversity and productivity of Changbai Mountains natural forest community is related to the succession stage, and the niche complementary effect is significant in the middle succession stage. Species diversity and structure optimization can improve community productivity.
  • [1]
    Cardinale B J, Duffy J. E, Gonzalez A, et al. Biodiversity loss and its impact on humanity[J]. Nature, 2012, 486: 59. doi: 10.1038/nature11148
    [2]
    Balvanera P, Siddique I, Dee L, et al. Linking biodiversity and ecosystem services: current uncertainties and the necessary next steps[J]. Bioscience, 2013, 64(1): 49−57.
    [3]
    Grime J P. Competitive exclusion in herbaceous vegetation[J]. Nature, 1973, 242: 344−347. doi: 10.1038/242344a0
    [4]
    Loreau M, Hector A. Partitioning productivity selection and complementarity in biodiversity experiments[J]. Nature, 2001, 412: 72−76. doi: 10.1038/35083573
    [5]
    Adler P B, Seabloom E W, Borer E T, et al. Productivity is a poor predictor of plant species richness[J]. Science, 2011, 333: 1750. doi: 10.1126/science.1204498
    [6]
    Mori A S, Lertzman K P, Gustafsson L. Biodiversity and ecosystem services in forest ecosystems: a research agenda for applied forest ecology[J]. Journal of Applied Ecology, 2017, 54(1): 12−27. doi: 10.1111/1365-2664.12669
    [7]
    Cavanaugh K C, Gosnell J S, Davis S L, et al. Carbon storage in tropical forests correlates with taxonomic diversity and functional dominance on a global scale[J]. Global Ecology & Biogeography, 2014, 23(5): 563−573.
    [8]
    Luo W X, Liang J J, Gatti R C, et al. Parameterization of biodiversity-productivity relationship and its scale dependency using georeferenced tree-level data[J]. Journal of Ecology, 2019, 107(3): 1106−1119. doi: 10.1111/1365-2745.13129
    [9]
    Duffy J E, Godwin C M, Cardinale B J. Biodiversity effects in the wild are common and as strong as key drivers of productivity[J]. Nature, 2017, 549: 261. doi: 10.1038/nature23886
    [10]
    Liang J, Crowther T W, Picard N, et al. Positive biodiversity-productivity relationship predominant in global forests [J/OL]. Science, 2016, 354: aaf8957 [2018−02−19]. https://www.science.org/doi/10.1126/science.aaf8957.
    [11]
    Vilà M, Vayreda J, Gracia C, et al. Does tree diversity increase wood production in pine forests?[J]. Oecologia, 2003, 135(2): 299−303. doi: 10.1007/s00442-003-1182-y
    [12]
    Zhang Y, Chen H Y H, Reich P B. Forest productivity increases with evenness, species richness and trait variation: a global meta-analysis[J]. Journal of Ecology, 2012, 100: 742−749. doi: 10.1111/j.1365-2745.2011.01944.x
    [13]
    Lohbeck M, Poorter L, Martínezramos M, et al. Biomass is the main driver of changes in ecosystem process rates during tropical forest succession[J]. Ecology, 2015, 96(5): 1242−1252. doi: 10.1890/14-0472.1
    [14]
    Tobner C M, Paquette A, Gravel D, et al. Functional identity is the main driver of diversity effects in young tree communities[J]. Ecology Letters, 2016, 19(6): 638−647. doi: 10.1111/ele.12600
    [15]
    Cadotte M W. Functional traits explain ecosystem function through opposing mechanisms[J]. Ecology Letters, 2017, 20(8): 989. doi: 10.1111/ele.12796
    [16]
    Naeem S. Ecosystem consequences of biodiversity loss: the evolution of a paradigm[J]. Ecology, 2002, 83: 1537−1552. doi: 10.1890/0012-9658(2002)083[1537:ECOBLT]2.0.CO;2
    [17]
    Hooper D U, Chapin F S, Ewel J J, et al. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge[J]. Ecological Monographs, 2005, 75(1): 3−35. doi: 10.1890/04-0922
    [18]
    Ruijven J V, Berendse F. Diversity-productivity relationships: initial effects, long-term patterns, and underlying mechanisms[J]. Proceedings of the National Academy of Sciences, 2005, 102(3): 695−700. doi: 10.1073/pnas.0407524102
    [19]
    Tilman D, Reich P B, Knops J M. Biodiversity and ecosystem stability in a decade-long grassland experiment[J]. Nature, 2006, 441: 629−632. doi: 10.1038/nature04742
    [20]
    Zhang C, Zhao Y, Zhao X, et al. Species-habitat associations in a northern temperate forest in China[J]. Silva Fennica, 2012, 46(4): 501−519.
    [21]
    Maire G L, Nouvellon Y, Christina M, et al. Tree and stand light use efficiencies over a full rotation of single- and mixed-species Eucalyptus grandis, and Acacia mangium plantations[J]. Forest Ecology & Management, 2013, 288(1): 31−42.
    [22]
    Pretzsch H. Canopy space filling and tree crown morphology in mixed-species stands compared with monocultures[J]. Forest Ecology & Management, 2014, 327: 251−264.
    [23]
    Forrester D I, Bauhus J. A review of processes behind diversity, productivity relationships in forests[J]. Current Forestry Reports, 2016, 2(1): 1−17. doi: 10.1007/s40725-016-0027-y
    [24]
    Tilman D, Knops J, Wedin D, et al. The influence of functional diversity and composition on ecosystem processes[J]. Science, 1997, 277: 1300−1302. doi: 10.1126/science.277.5330.1300
    [25]
    Tilman D, Reich P B, Knops J, et al. Diversity and productivity in a long-term grassland experiment[J]. Science, 2001, 294: 843−845. doi: 10.1126/science.1060391
    [26]
    张全国, 张大勇. 生物多样性与生态系统功能: 进展与争论[J]. 生物多样性, 2002, 10(1):49−60. doi: 10.3321/j.issn:1005-0094.2002.01.008

    Zhang Q G, Zhang D Y. Biodiversity and ecosystem functioning: recent advances and controversies[J]. Biodiversity Science, 2002, 10(1): 49−60. doi: 10.3321/j.issn:1005-0094.2002.01.008
    [27]
    Ma Z, Liu H, Mi Z, et al. Climate warming reduces the temporal stability of plant community biomass production [J/OL]. Nature Communications, 2017, 8: 15378 [2018−03−15]. https://www.nature.com/articles/ncomms15378.
    [28]
    Chesson P. Mechanisms of maintenance of species diversity[J]. Annual Review of Ecology & Systematics, 2000, 31(1): 343−366.
    [29]
    Clark J S. Individuals and the variation needed for high species diversity in forest trees[J]. Science, 2010, 327: 1129−1132. doi: 10.1126/science.1183506
    [30]
    McElhinny C, Gibbons P, Brack C, et al. Forest and woodland stand structural complexity: its definition and measurement[J]. Forest Ecology and Management, 2005, 218: 1−24. doi: 10.1016/j.foreco.2005.08.034
    [31]
    Varga P, Chen H Y, Klinka K. Tree-size diversity between single- and mixed-species stands in three[J]. Canadian Journal of Forest Research, 2005, 35(3): 593−601. doi: 10.1139/x04-193
    [32]
    Liang J, Buongiorno J, Monserud R A, et al. Effects of diversity of tree species and size on forest basal area growth, recruitment, and mortality[J]. Forest Ecology and Management, 2007, 243(1): 116−127. doi: 10.1016/j.foreco.2007.02.028
    [33]
    Dănescu A, Albrecht A T, Bauhus J. Structural diversity promotes productivity of mixed, uneven-aged forests in southwestern Germany[J]. Oecologia, 2016, 182(2): 319−333. doi: 10.1007/s00442-016-3623-4
    [34]
    谭凌照, 范春雨, 范秀华. 吉林蛟河阔叶红松林木本植物物种多样性及群落结构与生产力的关系[J]. 植物生态学报, 2017, 41(11):1149−1156. doi: 10.17521/cjpe.2016.0321

    Tan L Z, Fan C Y, Fan X H. Relationships between species diversity or community structure and productivity of woody-plants in a broadleaved Korean pine forest in Jiaohe, Jilin, China[J]. Chinese Journal of Plant Ecology, 2017, 41(11): 1149−1156. doi: 10.17521/cjpe.2016.0321
    [35]
    Long J N, Shaw J D. The influence of compositional and structural diversity on forest productivity[J]. Forestry, 2010, 289(83): 121−128.
    [36]
    Ryan M G, Stape J L, Binkley D, et al. Factors controlling Eucalyptus productivity: how water availability and stand structure alter production and carbon allocation[J]. Forest Ecology and Management, 2010, 259: 1695−1703. doi: 10.1016/j.foreco.2010.01.013
    [37]
    Cardinale B J, Ives A R, Inchausti P. Effects of species diversity on the primary productivity of ecosystems: extending our spatial and temporal scales of inference[J]. Oikos, 2004, 104(3): 437−450. doi: 10.1111/j.0030-1299.2004.13254.x
    [38]
    Cardinale B J, Matulich K L, Hooper D U, et al. The functional role of producer diversity in ecosystems[J]. American Journal of Botany, 2011, 98(3): 572−592. doi: 10.3732/ajb.1000364
    [39]
    Lasky J R, Uriarte M, Boukili V K, et al. The relationship between tree biodiversity and biomass dynamics changes with tropical forest succession[J]. Ecology Letters, 2014, 17(9): 1158−1167. doi: 10.1111/ele.12322
    [40]
    Arroyo-Rodríguez V, Melo F P, Martínezramos M, et al. Multiple successional pathways in human-modified tropical landscapes: new insights from forest succession, forest fragmentation and landscape ecology research[J]. Biological Reviews, 2017, 92(1): 326−340. doi: 10.1111/brv.12231
    [41]
    Ma W, He J, Yang Y, et al. Environmental factors covary with plant diversity-productivity relationships among Chinese grassland sites[J]. Global Ecology & Biogeography, 2010, 19(2): 233−243.
    [42]
    Hao M H, Zhang C, Zhao X, et al. Functional and phylogenetic diversity determine woody productivity in a temperate forest[J]. Ecology & Evolution, 2018, 8(5): 2395−2406.
    [43]
    Zhang Y, Chen H Y H. Individual size inequality links forest diversity and above-ground biomass[J]. Journal of Ecology, 2015, 103(5): 1245−1252. doi: 10.1111/1365-2745.12425
    [44]
    Fox J, Monette G. Generalized collinearity diagnostics[J]. Journal of the American Statistical Association, 1992, 87: 178−183. doi: 10.1080/01621459.1992.10475190
    [45]
    Fox J. Applied regression analysis and generalized linear models [M]. 2nd ed. London: Sage Publications, 2008.
    [46]
    Bell T, Newman J A, Silverman B W, et al. The contribution of species richness and composition to bacterial services[J]. Nature, 2005, 436: 1157−1160. doi: 10.1038/nature03891
    [47]
    Jonsson M. Species richness effects on ecosystem functioning increase with time in an ephemeral resource system[J]. Acta Oecologica, 2006, 29(1): 72−77. doi: 10.1016/j.actao.2005.08.002
    [48]
    Pacala S, Tilman D. The transition from sampling to complementarity[M]. Princeton: Princeton University Press, 2002: 151−166.
    [49]
    宋晓谕, 张仁懿, 李新娥, 等. 甘南亚高山草甸弃耕演替过程中的物种多样性与生产力变化模式及相互关系研究[J]. 草业学报, 2010, 19(6):1−8. doi: 10.11686/cyxb20100601

    Song X Y, Zhang R Y, Li X E, et al. Relationship between biodiversity productivity and their dynamics during the succession in abandoned croplands of sub-alpine meadows[J]. Acta Prataculturae Sinica, 2010, 19(6): 1−8. doi: 10.11686/cyxb20100601
    [50]
    Yao J, Huang J, Ding Y, et al. Ecological uniqueness of species assemblages and their determinants in forest communities[J]. Diversity and Distributions, 2021, 27(3): 454−462.
  • Related Articles

    [1]Xu Pengfei, Zhang Houjiang, Xin Zhenbo, Yuan Jiangyu. Numerical simulation of neutral axis in transverse bending of tree trunk[J]. Journal of Beijing Forestry University, 2024, 46(8): 1-14. DOI: 10.12171/j.1000-1522.20240073
    [2]Xing Yuhua, Zhang Dapeng, Li Siying, Wang Pei. Integration and simulation analysis of temperature gradient based 3T and resistance-based evapotranspiration model[J]. Journal of Beijing Forestry University, 2024, 46(4): 115-126. DOI: 10.12171/j.1000-1522.20230198
    [3]Liu Haozheng, Wang Jianshan, Shi Guangyu. Effects of microfibril helix angle in the S2 layer of compression wood cell wall on the compressive toughness of it[J]. Journal of Beijing Forestry University, 2023, 45(4): 136-146. DOI: 10.12171/j.1000-1522.20220506
    [4]Zhang Xingxin, Zhang Kai, Zhao Liming, Deng Yuhui, Deng Lijia. Numerical simulation on wind-sand flow field at the bridge and roadbed transition section of Golmud-Korla Railway in northwestern China[J]. Journal of Beijing Forestry University, 2022, 44(2): 75-81. DOI: 10.12171/j.1000-1522.20210213
    [5]Yu Yongzhu, Guan Cheng, Zhang Houjiang, Yao Xiaorui, Zhang Dian, Xin Zhenbo. Numerical simulation on the influence of wall wood column defects on the safety of ancient building[J]. Journal of Beijing Forestry University, 2022, 44(1): 132-145. DOI: 10.12171/j.1000-1522.20210341
    [6]Liu Fangni, Yin Hao, Zhou Xu. Numerical simulation study on the influence of greening between buildings on sunlight conditions of building in residential area[J]. Journal of Beijing Forestry University, 2020, 42(12): 101-114. DOI: 10.12171/j.1000-1522.20200039
    [7]Ou Zina, Zhang Houjiang, Guan Cheng. Numerical simulation of the safety influence of defects on Qijia-beams of ancient timber building[J]. Journal of Beijing Forestry University, 2020, 42(4): 142-154. DOI: 10.12171/j.1000-1522.20190328
    [8]LI Yan-jie, XU Chen, LU Yuan-jia, ZHAO Dong. Finite element analysis and experiments on the drill of earth auger[J]. Journal of Beijing Forestry University, 2013, 35(2): 112-117.
    [9]HAO Yan-hua, ZHANG Xiang-xue, DING Xiao-kang, LIU Jiao. Analysis and measurement of ultrasonic acoustic emissions from the cavitation in xylem sap.[J]. Journal of Beijing Forestry University, 2012, 34(3): 36-40.
    [10]YANG Xue, CHEN Guang-yuan, FENG Li-ning, LI Jian-rong. Investigation of airflow uniformity at air-exchange device in drying kiln by numerical simulation[J]. Journal of Beijing Forestry University, 2011, 33(4): 113-117.
  • Cited by

    Periodical cited type(7)

    1. 高斯远,曹广超,刁二龙,何启欣,程梦园,邱巡巡,程国,赵美亮. 盛行风作用下柴木达盆地典型多花柽柳灌丛资源岛特征. 水土保持通报. 2022(04): 293-300 .
    2. 董正武,李生宇,毛东雷,雷加强. 古尔班通古特沙漠西南缘柽柳沙包土壤粒度分布特征. 水土保持学报. 2021(04): 64-72+79 .
    3. 王永兵,李亚萍. 古尔班通古特沙漠南缘梭梭固沙林土壤粒度的分异规律. 水土保持通报. 2020(03): 75-80 .
    4. 杨异婷. 坡度及旅游干扰对土壤粒度特征的影响. 绿色科技. 2019(02): 12-16 .
    5. 张帅,丁国栋,高广磊,赵媛媛,于明含,包岩峰,王春媛. 风沙区公路防积沙的新型防护栏研究. 北京林业大学学报. 2018(02): 90-97 . 本站查看
    6. 谭凤翥,王雪芹,王海峰,徐俊荣,袁鑫鑫. 柽柳灌丛沙堆及丘间地蚀积分布随背景植被变化的风洞实验. 干旱区地理. 2018(01): 56-65 .
    7. 安志山,张克存,谭立海,蔡迪文,张余. 论沙漠-绿洲过渡带的风沙防护效应. 干旱区研究. 2017(05): 1196-1202 .

    Other cited types(7)

Catalog

    Article views (1163) PDF downloads (159) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return