• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Ma Yali, Guo Sujuan. Spatial heterogeneity of photosynthetic characteristics in Chinese chestnut canopy[J]. Journal of Beijing Forestry University, 2020, 42(10): 71-83. DOI: 10.12171/j.1000-1522.20200059
Citation: Ma Yali, Guo Sujuan. Spatial heterogeneity of photosynthetic characteristics in Chinese chestnut canopy[J]. Journal of Beijing Forestry University, 2020, 42(10): 71-83. DOI: 10.12171/j.1000-1522.20200059

Spatial heterogeneity of photosynthetic characteristics in Chinese chestnut canopy

More Information
  • Received Date: March 05, 2020
  • Revised Date: April 02, 2020
  • Available Online: September 27, 2020
  • Published Date: October 24, 2020
  •   Objective  Canopy is an important part of the interaction between trees and external environment. The study on spatial variation law of photosynthesis in different parts of Chinese chestnut canopy provides a theoretical basis for revealing Chinese chestnut canopy productivity.
      Method  The 8-year-old Chinese chestnut trees were used as tested materials, the Li-6400 portable photosynthesis measurement system was used to determine the diurnal changes of photosynthesis in different canopies and positions of the Chinese chestnut canopy in July, fruit collection was carried out to determine the economic traits of nuts in September. Variance analysis, path analysis and regression analysis were done on the base of indexes.
      Result  (1) The daily dynamics of photosynthetic rate (Pn) in the upper east, middle east, south middle, and lower south showed a unimodal curve distribution; the rest of the region showed a bimodal curve, and the areas showing a bimodal curve distribution all presented a “midday depression” phenomenon at 13:00. The daily dynamics of water use efficiency (WUE) in each canopy area presented a bimodal curve. (2) In the vertical direction of the canopy, the deficient vapor pressure (VpdL) and intercellular CO2 concentration (Ci) were shown as “lower > middle > upper”. The maximum values were 2.13 kPa, 274.93 μmol/mol, and the minimum values were 1.95 kPa, 258.75 μmol/mol; photosynthetic rate, stomatal conductance (Gs), transpiration rate (Tr), photosynthetically active radiation (PAR), WUE and carboxylation efficiency (Vc) presented a “upper > middle > lower” phenomenon. The SPAD and specific leaf area (SLA) had significant differences in the vertical canopy (P < 0.05), and both showed “lower > middle > upper”. (3) In different directions in the canopy, the strongest photosynthetic capacity was in the east, but the photosynthetic indexes were not significantly different compared with the vertical canopy. The SPAD only had significantly difference in the east, west and north directions. The SLA was not significantly different in varied directions. (4) Path analysis showed that the main factors affecting Pn were Tr, WUE, Vc, VpdL, Gs, air temperature (Ta) and Ci, only Ta had an inhibitory effect on the Pn; Tr and VpdL were the physiological and environmental factors that had the greatest influence on Chinese chestnut photosynthesis.(5)In the vertical canopy, the Pn was significantly or extremely significantly and positively correlated with the single fruit mass, bur nut rate and yield per unit area, and the correlation coefficients were 0.872, 0.965 and 0.958, respectively. In the horizontal canopy, the Pn was significantly positively correlated with the single fruit mass and yield per unit area, and the correlation coefficients were 0.777 and 0.487, respectively. A comprehensive analysis of the horizontal and vertical canopy showed that the Pn was significantly or extremely significantly and positively correlated with the single fruit mass, bur nut rate and yield per unit area, with correlation coefficients of 0.600, 0.669 and 0.532, respectively.
      Conclusion  The photosynthesis of Chinese chestnut has obvious spatial heterogeneity, and the difference between photosynthetic index and fruit yield is the result of synthesis of vertical and horizontal canopy. In Chinese chestnut production, pruning should be reasonable to improve the efficiency for solar energy utilization in the lower and middle part of canopy, so as to increase the fruit yield.
  • [1]
    夏国威, 孙晓梅, 陈东升, 等. 日本落叶松冠层光合特性的空间变化[J]. 林业科学, 2019, 55(6):13−21. doi: 10.11707/j.1001-7488.20190602.

    Xia G W, Sun X M, Chen D S, et al. Spatial variation of photosynthetic characteristics in canopy of Larix kaempferi[J]. Scientia Silvae Sinicae, 2019, 55(6): 13−21. doi: 10.11707/j.1001-7488.20190602.
    [2]
    夏国威, 陈东升, 孙晓梅, 等. 日本落叶松冠层光合生理参数的空间异质性研究[J]. 林业科学研究, 2018, 31(6):130−137.

    Xia G W, Chen D S, Sun X M, et al. Spatial heterogeneity of photosynthetic and physiological parameters in Larix kaempferi crown[J]. Forest Research, 2018, 31(6): 130−137.
    [3]
    Hirose T, Werger M J A. Maximizing daily canopy photosynthesis with respect to the leaf nitrogen allocation pattern in the canopy[J]. Oecologia, 1987, 72(4): 520−526. doi: 10.1007/BF00378977.
    [4]
    Sakowska K, Alberti G, Genesio L, et al. Leaf and canopy photosynthesis of a chlorophyll deficient soybean mutant[J]. Plant Cell and Environment, 2018, 41(6): 1427−1437. doi: 10.1111/pce.13180.
    [5]
    O’Rourke P A, Terjung W H. Relative influence of city structure on canopy photosynthesis[J]. International Journal of Biometeorology, 1981, 25(1): 1−19. doi: 10.1007/BF02184432.
    [6]
    Kurachi N, Hagihara A, Hozumi K. Canopy photosynthetic production in a Japanese larch forest (Ⅱ): estimation of the canopy photosynthetic production[J]. Ecological Research, 1993, 8(3): 349−361. doi: 10.1007/BF02347194.
    [7]
    Suwa R, Hagihara A. Seasonal changes in canopy photosynthesis and foliage respiration in a Rhizophora stylosa stand at the northern limit of its natural distribution[J]. Wetlands Ecology and Management, 2007, 16(4): 313−321.
    [8]
    胡耀升, 么旭阳, 刘艳红. 辽东栎冠层光合生理特性的空间异质性[J]. 生物学杂志, 2014, 31(1):33−36. doi: 10.3969/j.issn.2095-1736.2014.01.033.

    Hu Y S, Yao X Y, Liu Y H. Spatial heterogeneity of photosynthetic characteristics of Quercus wutaishanica canopy[J]. Journal of Biology, 2014, 31(1): 33−36. doi: 10.3969/j.issn.2095-1736.2014.01.033.
    [9]
    刘强, 董利虎, 李凤日, 等. 长白落叶松冠层光合作用的空间异质性[J]. 应用生态学报, 2016, 27(9):2789−2796.

    Liu Q, Dong L H, Li F R, et al. Spatial heterogeneity of canopy photosynthesis for Larix olgensis[J]. Chinese Journal of Applied Ecology, 2016, 27(9): 2789−2796.
    [10]
    张赟齐, 高世轮, 卫星杓, 等. 光合模型对无患子叶片光合响应参数计算结果的影响[J]. 北京林业大学学报, 2019, 41(4):32−40.

    Zhang Y Q, Gao S L, Wei X B, et al. Effects of photosynthetic models on the calculation results of photosynthetic response parameters in Sapindus mukorossi leaves[J]. Journal of Beijing Forestry University, 2019, 41(4): 32−40.
    [11]
    李六林, 季兰. 欧榛光合特性及影响因子的研究[C]//中国园艺学会第七届青年学术讨论会论文集. 北京: 中国园艺学会, 2006: 52−57.

    Li L L, Ji L. Studies on photosynthetic characteristics and influencing factors of Corylus avella[C]//Proceedings of the 7th Youth Symposium of Chinese Horticultural Society. Beijing: Chinese Society for Horticultural Society, 2006: 52−57.
    [12]
    牛莹莹, 廖康, 赵世荣, 等. 不同栽植密度库尔勒香梨冠层光合有效辐射变化规律研究[J]. 新疆农业科学, 2016, 53(3):420−428.

    Niu Y Y, Liao K, Zhao S R, et al. Study on PAR change rule of Korla fragrant pear canopy in different planting densities[J]. Xinjiang Agricultural Sciences, 2016, 53(3): 420−428.
    [13]
    张继祥, 魏钦平, 张静, 等. 苹果密植园与间伐园树冠层内叶片光合潜力比较[J]. 应用生态学报, 2009, 20(12):2898−2904.

    Zhang J X, Wei Q P, Zhang J, et al. Leaf photosynthetic potential in canopy layers of un-thinned and thinned apple orchards[J]. Chinese Journal of Applied Ecology, 2009, 20(12): 2898−2904.
    [14]
    周连第, 兰彦平, 韩振海. 板栗品种资源分子水平遗传多样性研究[J]. 华北农学报, 2006, 21(3):81−85. doi: 10.3321/j.issn:1000-7091.2006.03.019.

    Zhou L D, Lan Y P, Han Z H. Study on heritance diversity of Chinese chestnut (Castanea mollissima) variety resources at molecula level[J]. Acta Agriculturae Boreali-Sinica, 2006, 21(3): 81−85. doi: 10.3321/j.issn:1000-7091.2006.03.019.
    [15]
    张丽, 郭素娟, 孙慧娟, 等. 硼砂和蔗糖对板栗果实非结构性碳水化合物含量的影响[J]. 果树学报, 2018, 35(3):319−325.

    Zhang L, Guo S J, Sun H J, et al. Effects of borax and sucrose on the non-structural carbohydrate content in Chinese chestnut fruit[J]. Journal of Fruit Science, 2018, 35(3): 319−325.
    [16]
    张俊杰, 陈宗游, 韩愈, 等. 不同砧木嫁接对‘桂栗一号’大果锥栗苗木生长及光合特性的影响[J]. 中国农业科技导报, 2018, 20(3):10−19.

    Zhang J J, Chen Z Y, Han Y, et al. Effects of different rootstocks on growth and photosynthetic characteristics of large-fruit Castanen henryi ‘Guili 1’[J]. Journal of Agricultural Science and Technology, 2018, 20(3): 10−19.
    [17]
    田寿乐, 孙晓莉, 沈广宁, 等. 尿素与磷酸二氢钾配施对板栗光合特性及生长结实的影响[J]. 应用生态学报, 2015, 26(3):747−754.

    Tian S L, Sun X L, Shen G N, et al. Effects of compound fertilizer of (NH2)2CO and KH2PO4 on the chestnut photosynthesis characteristics, growth and fruiting[J]. Chinese Journal of Applied Ecology, 2015, 26(3): 747−754.
    [18]
    陈锦璞. 锰对‘石门早硕’板栗光合特性及矿质营养的影响[D]. 泰安: 山东农业大学, 2013.

    Chen J P. Effect of MnSO4 on photosynthetic characteristics and mineral nutrition in ‘Shi-men-zao-shuo’ chestnut tree[D]. Taian: Shandong Agriculture University, 2013.
    [19]
    彭方仁, 黄宝龙. 密植板栗树光合特性的研究[J]. 浙江农林大学学报, 1997, 14(2):151−154.

    Peng F R, Huang B L. Photosynthetic characteristics of chestnuts in high density planting orchards[J]. Journal of Zhejiang Forestry College, 1997, 14(2): 151−154.
    [20]
    张亦弛, 郭素娟, 孙传昊. 生长延缓剂对板栗叶片解剖结构及非结构性碳水化合物的影响[J]. 北京林业大学学报, 2020, 42(1):46−53. doi: 10.12171/j.1000-1522.20180437.

    Zhang Y C, Guo S J, Sun C H. Effects of growth retardants on anatomy and non-structural carbohydrates of chestnut leaves[J]. Journal of Beijing Forestry University, 2020, 42(1): 46−53. doi: 10.12171/j.1000-1522.20180437.
    [21]
    郑元, 赵忠, 周慧, 等. 刺槐树冠光合作用的空间异质性[J]. 生态学报, 2010, 30(23):6399−6408.

    Zheng Y, Zhao Z, Zhou H, et al. Spatial heterogeneity of canopy photosynthesis in black locust plantations[J]. Acta Ecologica Sinica, 2010, 30(23): 6399−6408.
    [22]
    姜丽芬, 石福臣, 王化田, 等. 叶绿素计SPAD-502在林业上应用[J]. 生态学杂志, 2005, 24(12):1543−1548. doi: 10.3321/j.issn:1000-4890.2005.12.034.

    Jiang L F, Shi F C, Wang H T, et al. Application tryout of chlorophyll meter SPAD-502 in forestry[J]. Chinese Journal of Ecology, 2005, 24(12): 1543−1548. doi: 10.3321/j.issn:1000-4890.2005.12.034.
    [23]
    张亦弛, 郭素娟, 孙传昊. 生长延缓剂对板栗枝条的促壮效应和叶片发育及生理的影响[J]. 西北农林科技大学学报(自然科学版), 2019, 47(9):79−89.

    Zhang Y C, Guo S J, Sun C H. Effects of growth retardants on branches growth, leaves development andphysiology of chestnut[J]. Journal of Northwest A&F University (Natural Science Edition), 2019, 47(9): 79−89.
    [24]
    宋小园, 朱仲元, 刘艳伟, 等. 通径分析在SPSS逐步线性回归中的实现[J]. 干旱区研究, 2016, 33(1):108−113.

    Song X Y, Zhu Z Y, Liu Y W, et al. Application of path analysis in stepwise linear regression SPSS[J]. Arid Zone Research, 2016, 33(1): 108−113.
    [25]
    李六林, 季兰. 杂种榛子不同方位叶片光合作用的日变化[J]. 林业科学, 2006, 42(12):50−56.

    Li L L, Ji L. Diurnal variation in photosynthesis of differently directional leaves in hybrid hazels (Corylus heterophylla × Corylus avellana)[J]. Scientia Silvae Sinicae, 2006, 42(12): 50−56.
    [26]
    杨晓玲, 杨晴, 郭守华, 等. 燕龙板栗光合作用及其相关因素的日变化[J]. 经济林研究, 2008, 26(1):67−70. doi: 10.3969/j.issn.1003-8981.2008.01.014.

    Yang X L, Yang Q, Guo S H, et al. Diurnal variations of photosynthesis in Yanlong chestnut and some related factors[J]. Nonwood Forest Research, 2008, 26(1): 67−70. doi: 10.3969/j.issn.1003-8981.2008.01.014.
    [27]
    刘庆忠, 董合敏, 刘鹏, 等. 板栗的光合特性研究[J]. 果树学报, 2005, 22(4):335−338.

    Liu Q Z, Dong H M, Liu P, et al. Studies on the photosynthetic characteristics of chestnut trees[J]. Journal of Fruit Science, 2005, 22(4): 335−338.
    [28]
    曹阳, 文国宇, 李茂军, 等. 种植密度对烤烟光合特性日变化及其主要化学成分的影响[J]. 南京农业大学学报, 2019, 42(4):641−647. doi: 10.7685/jnau.201811015.

    Cao Y, Wen G Y, Li M J, et al. Effect of plant density on diurnal changes of photosynthetic characteristics and its main chemical components of flue-cured tobacco (Nicotiana tabacum L.)[J]. Journal of Nanjing Agricultural University, 2019, 42(4): 641−647. doi: 10.7685/jnau.201811015.
    [29]
    唐雨薇, 魏新宇, 李晨, 等. 三峡库区柑橘树冠光合特征的空间异质性[J]. 湖北农业科学, 2016, 55(19):5025−5029.

    Tang Y W, Wei X Y, Li C, et al. Spatial heterogeneity of canopy photosynthesis of citrus plantation in Three Gorges Reservior Region[J]. Hubei Agricultural Sciences, 2016, 55(19): 5025−5029.
    [30]
    黄良帅, 韩海荣, 牛树奎, 等. 华北落叶松冠层光合生理特性的空间异质性[J]. 南京林业大学学报(自然科学版), 2017, 41(2):193−197.

    Huang L S, Han H R, Niu S K, et al. Spatial heterogeneity of canopy photosynthesis in Larix principis-rupprechtii Mayr. plantations[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2017, 41(2): 193−197.
    [31]
    臧润国, 刘华, 张新平, 等. 天山中部天然林分中不同龄级天山云杉光合特性[J]. 林业科学, 2009, 45(5):60−68. doi: 10.3321/j.issn:1001-7488.2009.05.009.

    Zang R G, Liu H, Zhang X P, et al. Photosynthetic characteristics of Picea schrenkiana var. tianschanica of different age classes in a natural stand in the central part of Tianshan Mountains[J]. Scientia Silvae Sinicae, 2009, 45(5): 60−68. doi: 10.3321/j.issn:1001-7488.2009.05.009.
    [32]
    Gao Y B, Zheng W W, Zhang C, et al. High temperature and high light intensity induced photoinhibition of bayberry (Myrica rubra Sieb . et Zucc.) by disruption of D1 turnover in photosystem Ⅱ[J]. Scientia Horticulturae, 2019, 248: 132−137. doi: 10.1016/j.scienta.2019.01.007.
    [33]
    高清华, 叶正文, 章镇, 等. 设施栽培中早熟甜油桃的光合特性研究[J]. 农业现代化研究, 2006, 27(4):307−310. doi: 10.3969/j.issn.1000-0275.2006.04.018.

    Gao Q H, Ye Z W, Zhang Z, et al. Photosynthetic characteristic in precocious and sweet nectarine trees in greenhouse[J]. Research of Agricultural Modernization, 2006, 27(4): 307−310. doi: 10.3969/j.issn.1000-0275.2006.04.018.
    [34]
    穆宏平, 叶万辉, 陈贻竹, 等. 不同磷营养水平对朱砂根和山血丹光合作用及生长的影响[J]. 武汉植物学研究, 2008, 26(5):514−519.

    Mu H P, Ye W H, Chen Y Z, et al. Photosynthesis and growth of and under different phosphorus nutrition levels[J]. Journal of Wuhan Botanical Research, 2008, 26(5): 514−519.
    [35]
    唐凤德, 武耀祥, 韩士杰, 等. 长白山阔叶红松林叶片气孔导度与环境因子的关系[J]. 生态学报, 2008, 28(11):5649−5655. doi: 10.3321/j.issn:1000-0933.2008.11.050.

    Tang F D, Wu Y X, Han S J, et al. Relationship of stamatal conductance of leaf with environmental factors in broadlcaved Korean pine forest at Changbai Mountain[J]. Acta Ecologica Sinica, 2008, 28(11): 5649−5655. doi: 10.3321/j.issn:1000-0933.2008.11.050.
    [36]
    胡昌浩, 董树亭, 岳寿松, 等. 高产夏玉米群体光合速率与产量关系的研究[J]. 作物学报, 1993, 19(1):63−69. doi: 10.3321/j.issn:0496-3490.1993.01.009

    Hu C H, Dong S T, Yue S S, et al. Studies on the relationship between canopy apparent photosynthesis rate and grain yield in high yielding summer corn (Zea may L.)[J]. Acta Agronomica Sinica, 1993, 19(1): 63−69. doi: 10.3321/j.issn:0496-3490.1993.01.009
    [37]
    郭素娟, 熊欢, 李广会, 等. 树体结构对板栗冠层光辐射与光合特征及产量的影响[J]. 东北林业大学学报, 2014, 42(1):14−18. doi: 10.3969/j.issn.1000-5382.2014.01.004.

    Guo S J, Xiong H, Li G H, et al. Effect of chestnut (Castanea mollissima Bl.) tree structure on canopy light radiation, photosynthesis and yield[J]. Journal of Northeast Forestry University, 2014, 42(1): 14−18. doi: 10.3969/j.issn.1000-5382.2014.01.004.
    [38]
    曹永慧, 周本智, 王小明, 等. 冠层高度对毛竹叶片光合生理特性的影响[J]. 西北植物学报, 2016, 36(11):2256−2266. doi: 10.7606/j.issn.1000-4025.2016.11.2256.

    Cao Y H, Zhou B Z, Wang X M, et al. Effects of canopy height on photosynthetic physiology characteristics of Phyllostachys pubescens leaves[J]. Acta Botanica Boreali-Occidentalia Sinica, 2016, 36(11): 2256−2266. doi: 10.7606/j.issn.1000-4025.2016.11.2256.
    [39]
    霍宏, 王传宽. 冠层部位和叶龄对红松光合蒸腾特性的影响[J]. 应用生态学报, 2007, 18(6):1181−1186. doi: 10.3321/j.issn:1001-9332.2007.06.002.

    Huo H, Wang C K. Effects of canopy position and leaf age on photosynthesis and transpiration of Pinus koraiensis[J]. Chinese Journal of Applied Ecology, 2007, 18(6): 1181−1186. doi: 10.3321/j.issn:1001-9332.2007.06.002.
    [40]
    商天其, 孙志鸿. 香樟幼龄林不同叶龄叶片的光合特征和单萜释放规律[J]. 应用与环境生物学报, 2019, 25(1):89−99.

    Shang T Q, Sun Z H. Photosynthetic characteristics and monoterpenes emission are related to foliage ontogeny in Cinnamomum camphora[J]. Chin J Appl Environ Biol, 2019, 25(1): 89−99.
    [41]
    张小全, 徐德应, 赵茂盛. 林冠结构、辐射传输与冠层光合作用研究综述[J]. 林业科学研究, 1999, 12(4):411−421. doi: 10.3321/j.issn:1001-1498.1999.04.014.

    Zhang X Q, Xu D Y, Zhao M S. Review of canopy structure, radiation transmission and canopy photosynthesis[J]. Forest Research, 1999, 12(4): 411−421. doi: 10.3321/j.issn:1001-1498.1999.04.014.
    [42]
    Wei X, Otieno D, Ko J, et al. Conditional variations in temperature response of photosynthesis, mesophyll and stomatal control of water use in rice and winter wheat[J]. Field Crops Research, 2016, 199: 77−88. doi: 10.1016/j.fcr.2016.09.016.
    [43]
    李勇, 韩海荣, 康峰峰, 等. 油松人工林冠层光合生理特性的空间异质性[J]. 东北林业大学学报, 2013, 41(4):32−35. doi: 10.3969/j.issn.1000-5382.2013.04.008.

    Li Y, Han H R, Kang F F, et al. Spatial heterogeneity of photosynthetic characterisitics of Pinus tabulaeformis canopy[J]. Journal of Northeast Forestry University, 2013, 41(4): 32−35. doi: 10.3969/j.issn.1000-5382.2013.04.008.
  • Related Articles

    [1]Xing Xiaoyi, Zhang Mengyuan, Li Xiaolu, Fan Shuxin, Dong Li. Spatial heterogeneity in leaf coloring date and the phenological response to thermal environment variations of Beijing landscape trees[J]. Journal of Beijing Forestry University, 2024, 46(1): 119-130. DOI: 10.12171/j.1000-1522.20210546
    [2]Xiong Kai, Zhao Yujuan, Chen Jian, Zhang Yun, Zhao Guangdong, Yang Hongguo, Shi Zuomin, Xu Gexi. Spatial heterogeneity of soil pH and nutrients in Miyaluo Subalpine dark coniferous forest of western Sichuan, southwestern China[J]. Journal of Beijing Forestry University, 2022, 44(2): 55-64. DOI: 10.12171/j.1000-1522.20200422
    [3]Chen Keyi, Zhang Huiru, Zhang Bo, He Youjun. Spatial distribution simulation of recruitment trees of natural secondary forest based on geographically weighted regression[J]. Journal of Beijing Forestry University, 2021, 43(2): 1-9. DOI: 10.12171/j.1000-1522.20200157
    [4]Liu Zhili, Bi Lianzhu, Songx Song Guohua, Wang Quanbo, Liu Qi, Jin Guangze. Spatial heterogeneity of leaf area index in a typical mixed broadleaved-Korean pine forest in Xiaoxing'an Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2018, 40(11): 1-11. DOI: 10.13332/j.1000-1522.20170468
    [5]WANG Xiao-hui, GUO Qing-xi, CAI Ti-jiu. Quantitative effect of topography and forest type on snow melting process in spring[J]. Journal of Beijing Forestry University, 2016, 38(2): 83-89. DOI: 10.13332/j.1000-1522.20150317
    [6]LIU Jin-hui, WANG Xue-qin, MA Yang, TAN Feng-zhu, .. Spatial heterogeneity of soil grain size on Tamarix ramosissima nebkhas and interdune in desert-oasis ecotone.[J]. Journal of Beijing Forestry University, 2015, 37(11): 89-99. DOI: 10.13332/j.1000-1522.20150067
    [7]GONG Jun-jie, YANG Hua, DENG Hua-feng. Spatial heterogeneity and complexity of forest landscape along the Ming Great Wall in Beijing.[J]. Journal of Beijing Forestry University, 2015, 37(5): 81-87. DOI: 10.13332/j.1000-1522.20140185
    [8]JI Jin-nan, WU Zhi-yang. Analyses of plant root additional cohesion heterogeneity at loess slope on the Loess Plateau. Journal of Beijing Forestry University[J]. Journal of Beijing Forestry University, 2014, 36(4): 30-35. DOI: 10.13332/j.cnki.jbfu.2014.04.009
    [9]WANG Yi-ping, WU Hong. Progress in research on diversity of canopy arthropods[J]. Journal of Beijing Forestry University, 2008, 30(2): 143-146.
    [10]BI Hua-xing, LI Xiao-yin, LIU Xin, LI Jun, GUO Meng-xia. Spatial heterogeneity of soil moisture using geological statistics method in the loess region of west Shanxi Province[J]. Journal of Beijing Forestry University, 2006, 28(5): 59-66.
  • Cited by

    Periodical cited type(11)

    1. 何秋玲,陈晓玉,杨申明,徐兴丽,向雪梅,王振吉. 无花果原花青素超声辅助提取工艺优化及抗氧化性研究. 生物化工. 2024(04): 1-7+12 .
    2. 林赛婷,田君飞,史荣祥,王欣莹,陈俊宇,王传浩,万小芳,陈广学. 微波辅助低共熔溶剂高效提取油茶壳原花青素的工艺优化. 应用化工. 2023(02): 398-403 .
    3. 焦思宇,许丁予,姚先超,刘鑫,林春燕,何丽欣,林日辉. 壳聚糖微花对原花青素吸附机理的研究. 食品工业科技. 2023(18): 43-49 .
    4. 郝丽,杨志伟. 超声波-酶法提取紫甘蓝花青素条件优化及其抗氧化和消化酶抑制活性研究. 食品安全质量检测学报. 2023(22): 295-304 .
    5. 颜雪琴,蔡金燕. 超临界CO_2萃取黑土豆原花青素及抗氧化性研究. 当代化工. 2023(12): 2803-2807 .
    6. 詹昕,赵芳芳,高志强,杨珍平,杨文平. 喷施有机硒肥对黑糯玉米籽粒硒及花青素含量的影响. 山西农业科学. 2022(02): 199-205 .
    7. 熊颖,禹霖,柏文富,李建挥,严佳文,聂东伶,吴思政. 不同品种蓝莓果实品质特征和抗氧化能力及多酚组成的比较. 中南林业科技大学学报. 2022(02): 119-128 .
    8. 汪建红. 双水相辅助内部沸腾法提取桂花叶黄酮. 食品研究与开发. 2022(04): 22-28 .
    9. 高琪,陈志远,刘艳妮. 皂素废水改良蓝莓土壤的重金属安全性评价. 中国果树. 2021(05): 33-37+109 .
    10. 吕筱,郑天元,韦新月,窦子珊,高晨佳,蔡冉,孟琬星,王汝华. 花生红衣中原花青素的提取工艺与活性研究. 农产品加工. 2021(09): 27-31 .
    11. 周海旭,谢美玉,高晗,李波,苏同超,李忠海. 樟树叶木脂素和多酚超声辅助同步提取工艺优化. 食品与机械. 2020(10): 143-148 .

    Other cited types(8)

Catalog

    Article views (1275) PDF downloads (84) Cited by(19)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return