• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Xu Jingya, Liu Tian, Zang Guozhang, Zheng Yiqi. Prediction of suitable areas of Eremochloa ophiuroides in China under different climate scenarios based on MaxEnt model[J]. Journal of Beijing Forestry University, 2024, 46(3): 91-102. DOI: 10.12171/j.1000-1522.20230022
Citation: Xu Jingya, Liu Tian, Zang Guozhang, Zheng Yiqi. Prediction of suitable areas of Eremochloa ophiuroides in China under different climate scenarios based on MaxEnt model[J]. Journal of Beijing Forestry University, 2024, 46(3): 91-102. DOI: 10.12171/j.1000-1522.20230022

Prediction of suitable areas of Eremochloa ophiuroides in China under different climate scenarios based on MaxEnt model

More Information
  • Received Date: January 31, 2023
  • Revised Date: May 23, 2023
  • Accepted Date: September 11, 2023
  • Available Online: March 25, 2024
  • Objective 

    In this study, the ecological model was used to analyze and evaluate the distribution of Eremochloa ophiuroides in China and the main factors restricting its modern distribution, so as to provide theoretical basis for turf establishment, management, introduction and cultivation.

    Method 

    Based on the geographical distribution records of 262 E. ophiuroides and 19 environmental factors, the maximum entropy (MaxEnt) model and geographic information system were used to predict the current and future suitable distribution area and area of the species, and the accuracy of the model was verified by the receiver operating characteristic curve.

    Result 

    The main factor affecting the distribution of suitable area of E. ophiuroides was precipitation of the driest quarter (bio17), and the secondary factors were the mean diurnal range (bio2), the standard deviation of seasonal temperature seasonality (bio4) and the annual precipitation (bio12). Under current climatic conditions, the total suitable area of E. ophiuroides was about 1.835 5 million km2, mainly concentrated in the subtropical region of southeast China. Under the future climate scenario, the total suitable area of E. ophiuroides will increase to varying degrees compared with the modern, but the low and high suitable areas will show a downward trend compared with the modern. According to the change of spatial pattern, the retention rate of the suitable area of E. ophiuroides was 90.14%−94.21%. In addition, the centroid of E. ophiuroides was located in Xiangtan City, Hunan Province of central China, suggesting that this area may be the diversity distribution center of E. ophiuroides.

    Conclusion 

    It is concluded that precipitation is the main factor affecting the distribution of E. ophiuroides, which should be paid attention to in the future introduction and cultivation, and turf establishment and management.

  • [1]
    Williams J W, Jackson S T, Kutzbach J E. Projected distributions of novel and disappearing climates by 2100 AD[J]. Proceedings of the National Academy of Sciences, 2007, 104(14): 5738−5742. doi: 10.1073/pnas.0606292104
    [2]
    Zhou Y C, Zhang Z X, Zhu B, et al. MaxEnt modeling based on CMIP6 models to project potential suitable zones for Cunninghamia lanceolata in China[J]. Forests, 2021, 12(6): 752. doi: 10.3390/f12060752
    [3]
    Kane K, Debinski D M, Anderson C, et al. Using regional climate projections to guide grassland community restoration in the face of climate change[J]. Frontiers in Plant Science, 2017, 8: 730. doi: 10.3389/fpls.2017.00730
    [4]
    Zhang K L, Yao L, Meng J, et al. Maxent modeling for predicting the potential geographical distribution of two peony species under climate change[J]. Science of the Total Environment, 2018, 634: 1326−1334. doi: 10.1016/j.scitotenv.2018.04.112
    [5]
    Baptista-Rosas R C, Hinojosa A, Riquelme M. Ecological niche modeling of Coccidioides spp. in western North American deserts[J]. Annals of the New York Academy of Sciences, 2007, 1111(1): 35−46. doi: 10.1196/annals.1406.003
    [6]
    Stockwell D R B, Peterson A T. Effects of sample size on accuracy of species distribution models[J]. Ecological Modelling, 2002, 148(1): 1−13. doi: 10.1016/S0304-3800(01)00388-X
    [7]
    Merow C, Smith M J, Silander J A. A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter[J]. Ecography, 2013, 36(10): 1058−1069. doi: 10.1111/j.1600-0587.2013.07872.x
    [8]
    Hirzel A H, Hausser J, Perrin N. Ecological-niche factor analysis: how to compute habitat-suitability maps without absence data[J]. Ecology, 2002, 83(7): 2027−2036. doi: 10.1890/0012-9658(2002)083[2027:ENFAHT]2.0.CO;2
    [9]
    Phillips S J, Anderson R P, Schapire R E, et al. Maximum entropy modeling of species geographic distributions[J]. Ecological Modelling, 2006, 190(34): 231−259.
    [10]
    张路. MAXENT最大熵模型在预测物种潜在分布范围方面的应用[J]. 生物学通报, 2015, 50(11): 9−12.

    Zhang L. The application of MAXENT maximum entropy model in predicting the potential distribution range of species[J]. Bulletin of Biology, 2015, 50(11): 9−12.
    [11]
    苟文龙, 白史且, 张新全, 等. 假俭草遗传多样性及应用研究进展[J]. 中国草地, 2002(2): 49−54.

    Gou W L, Bai S Q, Zhang X Q, et al. Progress of centipedegrass on genetic diversity and application[J]. Chinese Journal of Grassland, 2002(2): 49−54.
    [12]
    Li J J, Guo H L, Zong J Q, et al. Genetic diversity in centipedegrass [ Eremochloa ophiuroides (Munro) Hack.][J]. Horticulture Research, 2020, 7(1): 4. doi: 10.1038/s41438-019-0228-1
    [13]
    Wang J J, Zi H, Wang J, et al. A high-quality chromosome-scale assembly of the centipedegrass [ Eremochloa ophiuroides (Munro) Hack.] genome provides insights into chromosomal structural evolution and prostrate growth habit[J]. Horticulture Research, 2021, 8: 201.
    [14]
    刘一明, 郇恒福, 丁西朋, 等. 55份不同生态型假俭草的耐盐性评价[J]. 草业科学, 2017, 34(11): 2261−2271. doi: 10.11829/j.issn.1001-0629.2017-0290

    Liu Y M, Huan H F, Ding X P, et al. Evaluation of salinity tolerance of 55 centipedegrass ecotypes[J]. Pratacultural Science, 2017, 34(11): 2261−2271. doi: 10.11829/j.issn.1001-0629.2017-0290
    [15]
    宗俊勤, 牛佳伟, 徐芳, 等. 假俭草花序发育的形态学观察及其与物候期和积温的对应关系[J]. 植物资源与环境学报, 2021, 30(5): 50−57. doi: 10.3969/j.issn.1674-7895.2021.05.06

    Zong J Q, Niu J W, Xu F, et al. Morphological observation on inflorescence development of Eremochloa ophiuroides and its corresponding relationships with phenophase and accumulated temperature[J]. Journal of Plant Resources and Environment, 2021, 30(5): 50−57. doi: 10.3969/j.issn.1674-7895.2021.05.06
    [16]
    赵琼玲, 白昌军, 梁晓玲. 中国假俭草种质资源遗传多样性的ISSR分析[J]. 热带作物学报, 2011, 32(1): 110−115. doi: 10.3969/j.issn.1000-2561.2011.01.023

    Zhao Q L, Bai C J, Liang X L. An analysis by ISSR of genetic diversity in Eremochloa ophiuroides in China[J]. Chinese Journal of Tropical Crops, 2011, 32(1): 110−115. doi: 10.3969/j.issn.1000-2561.2011.01.023
    [17]
    霍尚峰, 白史且, 张新全, 等. 我国野生假俭草坪用价值研究[J]. 中国草地, 2004, 26(2): 50−54.

    Huo S F, Bai S Q, Zhang X Q, et al. Assessment on turf quality of centipedegrass[J]. Grassland of China, 2004, 26(2): 50−54.
    [18]
    刘建秀, 朱雪花, 郭爱桂, 等. 中国假俭草结实性的比较分析[J]. 植物资源与环境学报, 2003, 12(4): 21−26. doi: 10.3969/j.issn.1674-7895.2003.04.005

    Liu J X, Zhu X H, Guo A G, et al. The analysis on the fruit characters of Eremochloa ophiuroides in China[J]. Journal of Plant Resources and Environment, 2003, 12(4): 21−26. doi: 10.3969/j.issn.1674-7895.2003.04.005
    [19]
    宗俊勤, 郭爱桂, 刘建秀. 中国假俭草种质资源物候期的变异分析[J]. 中国草地学报, 2006, 28(6): 61−67. doi: 10.3321/j.issn:1673-5021.2006.06.013

    Zong J Q, Guo A G, Liu J X. Study on phenological period of germplasm resource of Eremochloa ophiuroides (Munro.) Hack[J]. Chinese Journal of Grassland, 2006, 28(6): 61−67. doi: 10.3321/j.issn:1673-5021.2006.06.013
    [20]
    白史且, 苟文龙, 张新全, 等. 不同居群假俭草叶片比较解剖学的研究[J]. 北京林业大学学报, 2003, 25(2): 36−40, 98. doi: 10.3321/j.issn:1000-1522.2003.02.008

    Bai S Q, Gou W L, Zhang X Q, et al. Comparative anatomy of leaves in different populations of centipedegrass[J]. Journal of Beijing Forestry University, 2003, 25(2): 36−40, 98. doi: 10.3321/j.issn:1000-1522.2003.02.008
    [21]
    朱颖墨, 窦小东, 王瑞芳, 等. 气候变化对云南省小粒咖啡适生区的影响[J]. 气象学报, 2021, 79(5): 878−887. doi: 10.11676/qxxb2021.049

    Zhu Y M, Dou X D, Wang R F, et al. Climate change impact on the region suitable for Coffea arabica growth in Yunnan Province[J]. Acta Meteorologica Sinica, 2021, 79(5): 878−887. doi: 10.11676/qxxb2021.049
    [22]
    唐燕, 赵儒楠, 任钢, 等. 基于MaxEnt模型的中华枸杞潜在分布预测及其重要影响因子分析[J]. 北京林业大学学报, 2021, 43(6): 23–32.

    Tang Y, Zhao R N, Ren G, et al. Prediction of potential distribution of Lycium chinense based on MaxEnt model and analysis of its important influencing factors[J]. Journal of Beijing Forestry University, 2021, 43(6): 23–32.
    [23]
    周天军, 邹立维, 陈晓龙. 第六次国际耦合模式比较计划(CMIP6)评述[J]. 气候变化研究进展, 2019, 15(5): 445−456.

    Zhou T J, Zou L W, Chen X L. Commentary on the coupled model intercomparison project phase 6 (CMIP6)[J]. Advances in Climate Change Research, 2019, 15(5): 445−456.
    [24]
    何馨, 马文旭, 赵天田, 等. 气候变化下濒危树种华榛的潜在适生区预测[J]. 林业科学研究, 2022, 35(1): 104−114. doi: 10.13275/j.cnki.lykxyj.2022.01.012

    He X, Ma W X, Zhao T T, et al. Potential suitable area prediction of endangered tree species Corylus chinensis under climate change[J]. Forest Research, 2022, 35(1): 104−114. doi: 10.13275/j.cnki.lykxyj.2022.01.012
    [25]
    Li Y, Shao W, Jiang J. Predicting the potential global distribution of Sapindus mukorossi under climate change based on MaxEnt modelling[J]. Environmental Science and Pollution Research, 2022, 29(15): 21751−21768. doi: 10.1007/s11356-021-17294-9
    [26]
    Phillips S J, Anderson R P, Schapire R E. Maximum entropy modeling of species geographic distributions[J]. Ecological Modelling, 2006, 190(3−4): 231−259. doi: 10.1016/j.ecolmodel.2005.03.026
    [27]
    Zhang L, Zhu L, Li Y, et al. Maxent modelling predicts a shift in suitable habitats of a subtropical evergreen tree ( Cyclobalanopsis glauca (Thunberg) Oersted) under climate change scenarios in China[J]. Forests, 2022, 13(1): 126. doi: 10.3390/f13010126
    [28]
    Kumar A, Kumar A, Adhikari D, et al. Ecological niche modeling for assessing potential distribution of Pterocarpus marsupium Roxb. in Ranchi, eastern India[J]. Ecological Research, 2020, 35(6): 1095−1105.
    [29]
    Li J J, Fan G, He Y. Predicting the current and future distribution of three Coptis herbs in China under climate change conditions, using the MaxEnt model and chemical analysis[J]. Science of the Total Environment, 2020, 698(1): 134141.
    [30]
    张殷波, 刘彦岚, 秦浩, 等. 气候变化条件下山西翅果油树适宜分布区的空间迁移预测[J]. 应用生态学报, 2019, 30(2): 496−502.

    Zhang Y B, Liu Y L, Qin H, et al. Predication on spatial migration of suitable distribution of Elaeagnus mollis under climate change conditions in Shanxi Province, China[J]. Chinese Journal of Applied Ecology, 2019, 30(2): 496−502.
    [31]
    Yue T X, Fan Z M, Chen C F, et al. Surface modelling of global terrestrial ecosystems under three climate change scenarios[J]. Ecological Modelling, 2011, 22: 2342−2361.
    [32]
    安徽植物志协作组. 安徽植物志[M]. 5卷. 合肥: 安徽科学技术出版社, 1992: 335−336.

    Anhui Flora Cooperative Group. Anhui flora [M]. Vol. 5. Hefei: Anhui Science and Technology Press, 1992: 335−336.
    [33]
    刘建秀, 贺善安. 暖季草坪草种质资源的研究与改良[J]. 国外畜牧学(草原与牧草), 1996(3): 12−21.

    Liu J X, He S A. Research and improvement of warm season turfgrass germplasm resources[J]. Grassland and Turf, 1996(3): 12−21.
    [34]
    Johnson B J, Carrow R N. Frequency of fertilizer applications and centipedegrass performance[J]. Agronomy Journal, 1988, 80(6): 925−929. doi: 10.2134/agronj1988.00021962008000060017x
    [35]
    刘金平, 毛凯, 游明鸿. 假俭草草坪管理技术研究[J]. 四川草原, 2001(4): 37−40.

    Liu J P, Mao K, You M H. The study on the management technique of centipedegrass turf[J]. Journal of Sichan Grassland, 2001(4): 37−40.
    [36]
    詹瑞琪, 陈碧娥, 杨亚新. 假俭草在厦门地区的种植现状及推广前景[C]//中国草学会草坪专业委员会第六届全国会员代表大会及第九次学术研讨会论文汇编. 北京:中国草学会, 2004: 153−154.

    Zhan R Q, Chen B E, Yang Y X. Planting status and promotion prospect of centipedegrass in Xiamen area[C]// Compilation of papers of the 6th national member congress and 9th Academic Seminar of Turf Professional Committee of Chinese Grassland Society. Beijing: Chinese Grassland Society, 2004: 153−154.
    [37]
    肖建华, 丁鑫, 蔡超男, 等. 闽楠( Phoebe bournei, Lauraceae)地理分布及随气候变化的分布格局模拟[J]. 生态学报, 2021, 41(14): 5703−5712.

    Xiao J H, Ding X, Cai C N, et al. Simulation of the potential distribution of Phoebe bournei with climate changes using the maximum-entropy (MaxEnt) model[J]. Acta Ecologica Sinica, 2021, 41(14): 5703−5712.
    [38]
    Khodorova N V, Bitel-Conti M. The role of temperature in the growth and flowering of geophytes[J]. Plants, 2013, 2(4): 699−711. doi: 10.3390/plants2040699
    [39]
    孙存华, 毛健民, 白宝璋, 等. 昼夜变温促进小麦幼苗生长的酶学研究[J]. 吉林农业大学学报, 2000, 22(1): 30−33. doi: 10.3969/j.issn.1000-5684.2000.01.007

    Sun C H, Mao J M, Bai B Z, et al. Studies of enzymology on diurnal change of temperature accelerating the rate of wheat seedling growth[J]. Journal of Jilin Agricultural University, 2000, 22(1): 30−33. doi: 10.3969/j.issn.1000-5684.2000.01.007
    [40]
    郭岐峰, 李殷洋, 卢丽群. 广西昼夜气温的分析及其在农业上的意义[J]. 广西气象, 1992(4): 17−24.

    Guo Q F, Li Y Y, Lu L Q. Analysis of day and night temperature in Guangxi and its significance in agriculture[J]. Journal of Guangxi Meteorology, 1992(4): 17−24.
    [41]
    陈志一. 草坪栽培管理[M]. 北京: 中国农业出版社, 1993: 62−64.

    Chen Z Y. Turf management[M]. Beijing: China Agricultural Press, 1993: 62−64.
    [42]
    郭怡博, 莫可, 王桂荣, 等. 未来气候条件下天麻适生区预测及时空变化分析[J]. 中国中医药信息杂志, 2022, 29(7): 1−7.

    Guo Y B, Mo K, Wang G R, et al. Analysis of prediction and spatial-temporal changes of suitable distribution of Gastrodiae rhizoma under future climate conditions[J]. Chinese Journal of Information on Traditional Chinese, 2022, 29(7): 1−7.
    [43]
    刘婷, 曹家豪, 齐瑞, 等. 基于GIS和MaxEnt模型分析气候变化背景下紫果云杉的潜在分布区[J]. 西北植物学报, 2022, 42(3): 481−491. doi: 10.7606/j.issn.1000-4025.2022.03.0481

    Liu T, Cao J H, Qi R, et al. Research of potential geographical distribution of Picea purpurea based on GIS and MaxEnt under different climate conditions[J]. Acta Botanica Boreali-Occidentalia Sinica, 2022, 42(3): 481−491. doi: 10.7606/j.issn.1000-4025.2022.03.0481
    [44]
    刘济铭, 贾黎明, 王连春, 等. 基于MaxEnt的中国无患子属适生区区划及生态特征[J]. 林业科学, 2021, 57(5): 1−12. doi: 10.11707/j.1001-7488.20210501

    Liu J M, Jia L M, Wang L C, et al. Potential distribution and ecological characteristics of genus Sapindus in China based on MaxEnt model[J]. Scientia Silvae Sinicae, 2021, 57(5): 1−12. doi: 10.11707/j.1001-7488.20210501
    [45]
    杜海波, 吴正方, 张娜, 等. 近60a丹东极端温度和降水事件变化特征[J]. 地理科学, 2013, 33(4): 473−480. doi: 10.13249/j.cnki.sgs.2013.04.013

    Du H B, Wu Z F, Zhang N, et al. Characteristics of extreme temperature and precipitation events over Dandong during the last six decades[J]. Scientia Geographica Sinica, 2013, 33(4): 473−480. doi: 10.13249/j.cnki.sgs.2013.04.013
    [46]
    刘建秀, 郭爱桂, 郭海林, 等. 中国主要暖季型草坪草种质资源研究进展[C]//中国草学会草坪专业委员会第六届全国会员代表大会及第九次学术研讨会论文汇编. 北京:中国草学会, 2004: 59−64.

    Liu J X, Guo A G, Guo H L, et al. Research progress on germplasm resources of main warm-season turfgrasses in China[C]// Compilation of papers of the 6th National Congress and the 9th Symposium of the Turf Committee of the Chinese Society of Turf. Beijing: Chinese Grassland Society, 2004: 59−64.
    [47]
    关心怡, 石慰, 曹坤芳. 未来气候变化对广布种麻栎地理分布的影响和主导气候因子分析[J]. 热带亚热带植物学报, 2018, 26(6): 661−668. doi: 10.11926/jtsb.3898

    Guan X Y, Shi W, Cao K F. Effect of climate change in future on geographical distribution of widespread Quercus acutissima and analysis of dominant climatic factors[J]. Journal of Tropical and Subtropical Botany, 2018, 26(6): 661−668. doi: 10.11926/jtsb.3898
    [48]
    叶学敏, 陈伏生, 孙荣喜, 等. 基于MaxEnt模型的南酸枣潜在适生区预测[J]. 江西农业大学学报, 2019, 41(3): 440−446. doi: 10.13836/j.jjau.2019052

    Ye X M, Chen F S, Sun R X, et al. Prediction of potential suitable distribution areas for Choerospondias axillaris besed on MaxEnt model[J]. Acta Agriculturae Universitatis Jiangxiensis, 2019, 41(3): 440−446. doi: 10.13836/j.jjau.2019052
    [49]
    赵宗慈, 罗勇, 江滢, 等. 全球和中国降水、旱涝变化的检测评估[J]. 科技导报, 2008(6): 28−33. doi: 10.3321/j.issn:1000-7857.2008.06.006

    Zhao Z C, Luo Y, Jiang Y, et al. Assessment and prediction of precipitation and droughts/floods changes over the world and in China[J]. Science & Technology Review, 2008(6): 28−33. doi: 10.3321/j.issn:1000-7857.2008.06.006
    [50]
    熊中人, 张晓晨, 邹旭, 等. 中国天山花楸适生区预测及其对气候变化的响应[J]. 生态科学, 2019, 38(5): 44−51. doi: 10.14108/j.cnki.1008-8873.2019.05.007

    Xiong Z R, Zhang X C, Zou X, et al. Prediction of the suitable distribution and responses to climate change of Sorbus tianschanica in China[J]. Ecological Science, 2019, 38(5): 44−51. doi: 10.14108/j.cnki.1008-8873.2019.05.007
    [51]
    张明珠, 叶兴状, 李佳慧, 等. 气候变化情景下长序榆在中国的潜在适生区预测[J]. 生态学杂志, 2021, 40(12): 3822−3835. doi: 10.13292/j.1000-4890.202112.018

    Zhang M Z, Ye X Z, Li J H, et al. Prediction of potential suitable area of Ulmus elongata in China under climate change scenarios[J]. Chinese Journal of Ecology, 2021, 40(12): 3822−3835. doi: 10.13292/j.1000-4890.202112.018
    [52]
    李建林, 唐旭清. 气候变化对陆地生态系统影响评估模型的研究进展[J]. 草原与草坪, 2014(6): 86−93. doi: 10.3969/j.issn.1009-5500.2014.06.016

    Li J L, Tang X Q. The research progress on assessment model of ecosystem under global climate change[J]. Grassland and Turf, 2014(6): 86−93. doi: 10.3969/j.issn.1009-5500.2014.06.016
    [53]
    黄晓莹, 温之平, 杜尧东, 等. 华南地区未来地面温度和降水变化的情景分析[J]. 热带气象学报, 2008, 24(3): 254−258. doi: 10.3969/j.issn.1004-4965.2008.03.007

    Huang X Y, Wen Z P, Du Y D, et al. Scenario analysis om the changes of future surface air temperature and precipitation in south China[J]. Journal of Tropical Meteorology, 2008, 24(3): 254−258. doi: 10.3969/j.issn.1004-4965.2008.03.007
  • Related Articles

    [1]Xu Jingya, Liu Tian, Zang Guozhang, Zheng Yiqi. Prediction of suitable areas of Eremochloa ophiuroides in China under different climate scenarios based on MaxEnt model[J]. Journal of Beijing Forestry University, 2024, 46(3): 91-102. DOI: 10.12171/j.1000-1522.20230022
    [2]He Xin, Ma Wenxu, Zhao Tiantian, Yang Xiaohong, Ma Qinghua, Liang Lisong, Wang Guixi, Yang Zhen. Ecological differentiation and changes in historical distribution of Corylus heterophylla species complex since the last interglacial[J]. Journal of Beijing Forestry University, 2023, 45(4): 11-23. DOI: 10.12171/j.1000-1522.20210350
    [3]Zhou Yuting, Ge Xuezhen, Zou Ya, Guo Siwei, Wang Tao, Tao Jing, Zong Shixiang. Prediction of the potential geographical distribution of Hylurgus ligniperda at the global scale and in China using the Maxent model[J]. Journal of Beijing Forestry University, 2022, 44(11): 90-99. DOI: 10.12171/j.1000-1522.20210345
    [4]Liu Wei, Zhao Runan, Sheng Qianqian, Geng Xingmin, Zhu Zunling. Geographical distribution and potential distribution area prediction of Paeonia jishanensis in China[J]. Journal of Beijing Forestry University, 2021, 43(12): 83-92. DOI: 10.12171/j.1000-1522.20200360
    [5]Wang Yanjun, Gao Tai, Shi Juan. Prediction and analysis of the global suitability of Lymantria dispar based on MaxEnt[J]. Journal of Beijing Forestry University, 2021, 43(9): 59-69. DOI: 10.12171/j.1000-1522.20200416
    [6]Huang Ruizhi, Yu Tao, Zhao Hui, Zhang Shengkai, Jing Yang, Li Junqing. Prediction of suitable distribution area of the endangered plant Acer catalpifolium under the background of climate change in China[J]. Journal of Beijing Forestry University, 2021, 43(5): 33-43. DOI: 10.12171/j.1000-1522.20200254
    [7]Huang Mengyi, Zhao Jiaqiang, Shi Juan. Predicting occurrence tendency of Leptocybe invasa in China based on MaxEnt[J]. Journal of Beijing Forestry University, 2020, 42(11): 64-71. DOI: 10.12171/j.1000-1522.20190053
    [8]Yang Furong, Qi Yaodong, Liu Haitao, Xie Caixiang, Song Jingyuan. Global potential suitable area and ecological characteristics of Moringa oleifera[J]. Journal of Beijing Forestry University, 2020, 42(10): 45-54. DOI: 10.12171/j.1000-1522.20190375
    [9]ZHANG Chao, CHEN Lei, TIAN Cheng-ming, LI Tao, WANG Rong, YANG Qi-qing. Predicting the distribution of dwarf mistletoe (Arceuthobium sichuanense) with GARP and MaxEnt models[J]. Journal of Beijing Forestry University, 2016, 38(5): 23-32. DOI: 10.13332/j.1000-1522.20150516
    [10]SONG Yan, JI Jing-jun, ZHU Lin-hong, ZHANG Shi-ying. Characteristics of Asian-African summer monsoon pre-and post-global warming in mid-1980s[J]. Journal of Beijing Forestry University, 2007, 29(2): 24-33.
  • Cited by

    Periodical cited type(2)

    1. 韩蓉,马燕,敖羽,张婷,孟新涛,许铭强,潘俨. 基于多元分析法综合评价新疆不同品种大果沙棘汁品质特性及加工适宜性. 食品工业科技. 2025(03): 322-332 .
    2. 李元朝,黎勤吉,郭玉琼,郝志龙,金珊. 枸杞茶感官审评方法的建立及其主要呈香物质的探索. 食品工业科技. 2025(04): 30-41 .

    Other cited types(0)

Catalog

    Article views (484) PDF downloads (46) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return