Citation: | Liu Wei, Zhao Runan, Sheng Qianqian, Geng Xingmin, Zhu Zunling. Geographical distribution and potential distribution area prediction of Paeonia jishanensis in China[J]. Journal of Beijing Forestry University, 2021, 43(12): 83-92. DOI: 10.12171/j.1000-1522.20200360 |
[1] |
赵儒楠, 何倩倩, 褚晓洁, 等. 气候变化下千金榆在我国潜在分布区预测[J]. 应用生态学报, 2019, 30(11):3833−3843.
Zhao R N, He Q Q, Chu X J, et al. Prediction of potential distribution of Carpinus cordata in China under climate change[J]. Chinese Journal of Applied Ecology, 2019, 30(11): 3833−3843.
|
[2] |
Schofleld C J. Biogeography: an ecological and evolutionary approach (6th edn) by C. Barry Cox and Peter D. Moore[J/OL]. Parasitology Today, 2000, 16(9): 406−406 [2020−10−21]. https://doi.org/10.1016/S0169-4758(00)01703-8.
|
[3] |
Kozak K H, Graham C H, Wiens J J. Integrating GIS-based environmental data into evolutionary biology[J]. Trends in Ecology & Evolution, 2008, 23(3): 141−148.
|
[4] |
Woodward F I, Lomas M R. Vegetation dynamics-simulating responses to climatic change[J]. Biological Reviews, 2004, 79(3): 643−670. doi: 10.1017/S1464793103006316
|
[5] |
Box E O, Fujiwara K. A comparative look at bioclimatic zonation, vegetation types, tree taxa and species richness in Northeast Asia[J]. Botanic Pacifica, 2012, 1(1): 5−20. doi: 10.17581/bp.2012.01102
|
[6] |
Hewitt G. The genetic legacy of the quaternary ice ages[J]. Nature, 2000, 405: 907−913.
|
[7] |
Osman M B, Tierney J E, Zhu J, et al. Globally resolved surface temperatures since the Last Glacial Maximum[J]. Nature, 2021, 599: 239−244.
|
[8] |
Woldeyhannes A B, Accotto C, Desta E A, et al. Current and projected eco-geographic adaptation and phenotypic diversity of Ethiopian teff (Eragrostis teff) across its cultivation range[J/OL]. Agriculture, Ecosystems and Environment, 2020, 300: 107020 [2020−10−11]. https://doi.org/10.1016/j.agee.2020.107020.
|
[9] |
夏侯佐英, 朱弘, 金桂宏, 等. 蛛网萼的地理分布模拟及迁移趋势预测[J]. 浙江农林大学学报, 2019, 36(2):247−254. doi: 10.11833/j.issn.2095-0756.2019.02.005
Xiahou Z Y, Zhu H, Jin G H, et al. Modeling the geographic distribution of Platycrater arguta[J]. Journal of Zhejiang A&F University, 2019, 36(2): 247−254. doi: 10.11833/j.issn.2095-0756.2019.02.005
|
[10] |
Zhang K L, Sun L P, Tao J. Impact of climate change on the distribution of Euscaphis japonica (Staphyleaceae) trees[J/OL]. Forests, 2020, 11(5): 525.
|
[11] |
Ge X Z, He S Y, Zhu C Y, et al. Projecting the current and future potential global distribution of Hyphantria cunea (Lepidoptera: Arctiidae) using CLIMEX[J]. Pest Management Science, 2019, 75(1): 160−169. doi: 10.1002/ps.5083
|
[12] |
Qin Z, Zhang J E, Ditommaso A, et al. Predicting invasions of Wedelia trilobata (L.) Hitchc. with Maxent and GARP models[J]. Journal of Plant Research, 2015, 128(5): 1−13.
|
[13] |
Phillips S J, Anderson R P, Schapire R E. Maximum entropy modeling of species geographic distributions[J]. Ecological Modelling, 2006, 190(3−4): 231−259. doi: 10.1016/j.ecolmodel.2005.03.026
|
[14] |
Barbosa F G, Schneck F. Characteristics of the top-cited papers in species distribution predictive models[J]. Ecological Modelling, 2015, 313: 77−83. doi: 10.1016/j.ecolmodel.2015.06.014
|
[15] |
Ahmed S E, Mcinerny G, O’Hara K, et al. Scientists and software-surveying the species distribution modelling community[J]. Diversity & Distributions, 2015, 21(3): 258−267.
|
[16] |
李璇, 李垚, 方炎明. 基于优化的Maxent模型预测白栎在中国的潜在分布区[J]. 林业科学, 2018, 54(8):153−164. doi: 10.11707/j.1001-7488.20180817
Li X, Li Y, Fang Y M. Prediction of potential suitable distribution areas of Quercus fabri in China based on an optimized Maxent model[J]. Scientia Silvae Sinicae, 2018, 54(8): 153−164. doi: 10.11707/j.1001-7488.20180817
|
[17] |
Hernandez P A, Graham C H, Master L L, et al. The effect of sample size and species characteristics on performance of different species distribution modeling methods[J]. Ecography, 2006, 29(5): 773−785. doi: 10.1111/j.0906-7590.2006.04700.x
|
[18] |
Wisz M S, Hijimans R J, Li J, et al. Effects of sample size on the performance of species distribution models[J]. Diversity & Distributions, 2010, 14(5): 763−773.
|
[19] |
王运生, 谢丙炎, 万方浩, 等. ROC曲线分析在评价入侵物种分布模型中的应用[J]. 生物多样性, 2007, 15(4):365−372. doi: 10.3321/j.issn:1005-0094.2007.04.005
Wang Y S, Xie B Y, Wan F H, et al. Application of ROC curve analysis in evaluating the performance of alien species’ potential distribution models[J]. Biodiversity Science, 2007, 15(4): 365−372. doi: 10.3321/j.issn:1005-0094.2007.04.005
|
[20] |
刘晓彤. 百山祖冷杉适宜分布区模拟: 寻找极小种群扩散的潜在分布区[D]. 杭州: 浙江师范大学, 2019.
Liu X T. Predicting the suitable distribution area of Abies beshanzuensis: to explor the potential dispersion of the plant species with extremely small populations[D]. Hangzhou: Zhejiang Normal University, 2019.
|
[21] |
杨楠, 马东源, 钟雪, 等. 基于MaxEnt模型的四川王朗国家级自然保护区蓝马鸡栖息地适宜性评价[J]. 生态学报, 2020, 40(19):7064−7072.
Yang N, Ma D Y, Zhong X, et al. Habitat suitability assessment of blue eared-pheasant based on MaxEnt modeling in Wanglang National Nature Reserve, Sichuan Province[J]. Acta Ecologica Sinica, 2020, 40(19): 7064−7072.
|
[22] |
张晓芹. 西北旱区典型生态经济树种地理分布与气候适宜性研究[D]. 北京: 中国科学院大学, 2018.
Zhang X Q. Geographical distribution and climatic suitability of typical eco-economical tree species in the dryland of Northwest China[D]. Beijing: University of Chinese Academy of Science, 2018.
|
[23] |
刘攀峰, 王璐, 杜庆鑫, 等. 杜仲在我国的潜在适生区估计及其生态特征分析[J]. 生态学报, 2020, 40(16):5674−5684.
Liu P F, Wang L, Du Q X, et al. Estimation of potential suitable distribution area and the ecological characteristics of Eucommia ulmoides Oliv. in China[J]. Acta Ecologica Sinica, 2020, 40(16): 5674−5684.
|
[24] |
李宏群, 刘晓莉, 汪建华, 等. 基于MaxEnt模型荔枝在中国的潜在种植区预测[J]. 长江流域资源与环境, 2020, 29(2):394−400.
Li H Q, Liu X L, Wang J H, et al. Prediction on potential planting area of Litchi chinensis in China by using MaxEnt model[J]. Resources and Environment in the Yangtze Basin, 2020, 29(2): 394−400.
|
[25] |
郭佳, 曹伟, 张悦, 等. 黄花刺茄在中国东北潜在分布区预测[J]. 草业科学, 2019, 36(10):2476−2484. doi: 10.11829/j.issn.1001-0629.2018-0671
Guo J, Cao W, Zhang Y, et al. Prediction of the potential distribution area of Solanum rostratum in northeast China[J]. Pratacultural Science, 2019, 36(10): 2476−2484. doi: 10.11829/j.issn.1001-0629.2018-0671
|
[26] |
塞依丁. 海米提, 努尔巴依. 阿布都沙力克, 许仲林, 等. 气候变化情景下外来入侵植物刺苍耳在新疆的潜在分布格局模拟[J]. 生态学报, 2019, 39(5):1551−1559.
Hamit S, Abdushalih N, Xu Z L, et al. Simulation of potential distribution patterns of the invasive plant species Xanthium spinosum L. ( Bathurst burr) in Xinjiang under climate change[J]. Acta Ecologica Sinica, 2019, 39(5): 1551−1559.
|
[27] |
李明阳, 巨云为, 吴文浩, 等. 气候变化情景下外来森林病虫害潜在生境动态分析: 以美国南方松大小蠹为例[J]. 北京林业大学学报, 2009, 31(4):64−69. doi: 10.3321/j.issn:1000-1522.2009.04.012
Li M Y, Ju Y W, Wu W H, et al. Dynamic analysis of potential habitat of alien forest invasive species under climate change scenarios: a case study of Dendroctonus frontalis[J]. Journal of Beijing Forestry University, 2009, 31(4): 64−69. doi: 10.3321/j.issn:1000-1522.2009.04.012
|
[28] |
白蕤, 李宁, 张京红, 等. 未来气候变化背景下橡胶树南美叶疫病入侵中国的风险预测[J]. 生态学杂志, 2020, 39(10):3500−3508.
Bai R, Li N, Zhang J H, et al. Risk prediction of South American leaf blight of rubber tree in China under the scenario of climate change[J]. Chinese Journal of Ecology, 2020, 39(10): 3500−3508.
|
[29] |
洪涛, 张家勋, 李嘉珏, 等. 中国野生牡丹研究(一)芍药属牡丹组新分类群[J]. 植物研究, 1992, 12(3):223−234.
Hong T, Zhang J X, Li J Y, et al. Study on the Chinese wild woody peonies (1) new taxa of Paeonia Sect. Moutan[J]. Bullent of Botanical Research, 1992, 12(3): 223−234.
|
[30] |
郑凤英, 张金屯, 上官铁梁, 等. 濒危植物矮牡丹的分布格局及其生存群落的数量分析[J]. 武汉植物学研究, 1998, 16(3):255−262.
Zheng F Y, Zhang J T, Shangguan T L, et al. The distribution patterns of Paeonia suffruticosa var. spontanea and the quantity analysis of the communities where it grows[J]. Journal of Wuhan Botanical Research, 1998, 16(3): 255−262.
|
[31] |
赵一鹏, 蔡祖国, 李本勇. 珍稀濒危植物矮牡丹研究进展[J]. 河南农业科学, 2009, 38(7):14−17. doi: 10.3969/j.issn.1004-3268.2009.07.004
Zhao Y P, Cai Z G, Li B Y. Progress of the endangered causes of Paeonia suffruticosa var. spontanea[J]. Journal of Henan Agricultural Sciences, 2009, 38(7): 14−17. doi: 10.3969/j.issn.1004-3268.2009.07.004
|
[32] |
贾文庆, 刘会超, 姚连芳. 矮牡丹子叶节离体再生体系[J]. 东北林业大学学报, 2010, 38(2):13−15. doi: 10.3969/j.issn.1000-5382.2010.02.006
Jia W Q, Liu H C, Yao L F. Establishment of in vitro regeneration system for cotyledonary nodoes of dwarf peony[J]. Journal of Northeast Forestry University, 2010, 38(2): 13−15. doi: 10.3969/j.issn.1000-5382.2010.02.006
|
[33] |
张滋芳, 毕润成, 张钦弟, 等. 珍稀濒危植物矮牡丹生存群落优势种种间联结性及群落稳定性[J]. 应用与环境生物学报, 2019, 25(2):291−299.
Zhang Z F, Bi R C, Zhang Q D, et al. Community stability and inter-specific associations between the rare plant Paeonia suffruticosa Andr. var. spontanea Rehd and dominant species[J]. Chinese Journal of Applied and Environmental Biology, 2019, 25(2): 291−299.
|
[34] |
周晓君, 张凯, 彭正锋, 等. 矮牡丹与芍药属其他5个种叶绿体基因组特征的比较[J]. 林业科学, 2020, 56(4):82−88. doi: 10.11707/j.1001-7488.20200409
Zhou X J, Zhang K, Peng Z F, et al. Comparative analysis of chloroplast genome characteristics between Paeonia jishanensis and other five species of Paeonia[J]. Scientia Silvae Sinicae, 2020, 56(4): 82−88. doi: 10.11707/j.1001-7488.20200409
|
[35] |
王琳, 张金屯. 濒危植物矮牡丹的生态位研究[J]. 生态学杂志, 2001, 20(4):65−69. doi: 10.3321/j.issn:1000-4890.2001.04.017
Wang L, Zhang J T. The niche characteristics of endangered plant Paeonia suffruticosa var. spontanea[J]. Chinese Journal of Ecology, 2001, 20(4): 65−69. doi: 10.3321/j.issn:1000-4890.2001.04.017
|
[36] |
张峰. 濒危植物矮牡丹致濒原因分析[J]. 生态学报, 2003, 23(7):1436−1441. doi: 10.3321/j.issn:1000-0933.2003.07.024
Zhang F. The endangered causes of Paeonia suffruticosa var. spontanea, an endemic to China[J]. Acta Ecologica Sinica, 2003, 23(7): 1436−1441. doi: 10.3321/j.issn:1000-0933.2003.07.024
|
[37] |
潘开玉, 温洁, 罗毅波, 等. 矮牡丹小孢子发生和雄配子体发育及其与该种濒危的关系[J]. 植物分类学报, 1999, 37(3):244−252.
Pan K Y, Wen J, Luo Y B, et al. Formation of microspores and development of male gametes in Paeonia jishanensis, with an analysis of factors of endangerment of this entity[J]. Acta Phytotaxonomica Sinica, 1999, 37(3): 244−252.
|
[38] |
罗毅波, 裴颜龙, 潘开玉, 等. 矮牡丹传粉生物学的初步研究[J]. 植物分类学报, 1998, 36(2):134−144.
Luo Y B, Pei Y L, Pan K Y, et al. A study on pollination biology of Paeonia suffruticosa subsp. spontanea ( Paeoniaceae)[J]. Acta Phytotaxonomica Sinica, 1998, 36(2): 134−144.
|
[39] |
刘康, 韦柳兰, 王开曦. 矮牡丹种群结构的研究[J]. 西北植物学报, 1994, 14(3):232−236. doi: 10.3321/j.issn:1000-4025.1994.03.015
Liu K, Wei L L, Wang K X. Studies on population structure of Paeonia suffruticosa var. spontanea Rehd[J]. Acta Botanica Boreali-Occidentalia Sinica, 1994, 14(3): 232−236. doi: 10.3321/j.issn:1000-4025.1994.03.015
|
[40] |
徐兴兴. 矮牡丹的遗传多样性及栽培牡丹起源研究[D]. 北京: 北京林业大学, 2018.
Xu X X. Genetic diversity of Paeonia jishanensis and the origin of cultivated tree peonies[D]. Beijing: Beijing Forestry University, 2018.
|
[41] |
张滋芳. 矮牡丹生存群落的生态学特征研究[D]. 临汾: 山西师范大学, 2019.
Zhang Z F. Ecological characteristics of Paeonia suffruticosa var. spontanea survival community[D]. Linfen: Shanxi Normal University, 2019.
|
[42] |
袁涛, 王莲英. 我国芍药属牡丹组革质花盘亚组的形态学研究[J]. 园艺学报, 2003, 30(2):187−191. doi: 10.3321/j.issn:0513-353X.2003.02.013
Yuan T, Wang L Y. Morphological studies on Paeonia Sect. Moutan subsect Vagiatae in China[J]. Acta Horticulturae Sinica, 2003, 30(2): 187−191. doi: 10.3321/j.issn:0513-353X.2003.02.013
|
[43] |
翟立娟, 史倩倩, 罗小宁, 等. 秦巴山区牡丹野生种遗传多样性研究[C]//中国园艺学会. 北京: 中国林业出版社, 2017: 66−74.
Zhai L J, Shi Q Q, Luo X N, et al. Analysis of genetic diversity of the tree peony wild species in the Qinba mountainous area[C]// Chinese Society for Horticultural Science. Beijing: China Forestry Publishing House, 2017: 66−74.
|
[44] |
洪德元, 周世良, 何兴金, 等. 野生牡丹的生存状况和保护[J]. 生物多样性, 2017, 25(7):781−793.
Hong D Y, Zhou S L, He X J, et al. Current status of wild tree peony species with special reference to conservation[J]. Biodiversity Science, 2017, 25(7): 781−793.
|
[45] |
Hijmans R J, Cameron S E, Parra J L, et al. Very high resolution interpolated climate surfaces for global land areas[J]. International Journal of Climatology, 2005, 25(15): 1965−1978. doi: 10.1002/joc.1276
|
[46] |
Sillero N. What does ecological modelling model? A proposed classification of ecological niche models based on their underlying methods[J]. Ecological Modelling, 2011, 222(8): 1343−1346. doi: 10.1016/j.ecolmodel.2011.01.018
|
[47] |
Pearson R G, Raxworthy C J, Nakamura M, et al. Original article: predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar[J]. Journal of Biogeography, 2010, 34(1): 102−117.
|
[48] |
Yang X Q, Kushwaha S P S, Saran S, et al. Maxent modeling for predicting the potential distribution of medicinal plant, Justicia adhatoda L. in Lesser Himalayan foothills[J]. Ecological Engineering, 2013, 51: 83−87. doi: 10.1016/j.ecoleng.2012.12.004
|
[49] |
Swets J A. Measuring the accuracy of diagnostic systems[J]. Science, 1988, 240: 1285−1293. doi: 10.1126/science.3287615
|
[50] |
胡菀, 张志勇, 陈陆丹, 等. 末次盛冰期以来观光木的潜在地理分布变迁[J]. 植物生态学报, 2020, 44(1):44−55. doi: 10.17521/cjpe.2018.0258
Hu Y, Zhang Z Y, Chen L D, et al. Changes in potential geographical distribution of Tsoongiodendron odorum since the Last Glacial Maximum[J]. Chinese Journal of Plant Ecology, 2020, 44(1): 44−55. doi: 10.17521/cjpe.2018.0258
|
[51] |
Rizzini L, Favory J J, Cloix C, et al. Perception of UV-B by the Arabidopsis UVR8 protein[J]. Science, 2011, 332: 103−106. doi: 10.1126/science.1200660
|
[52] |
Biever J, Brinkman D, Gardner G, et al. UV-B inhibition of hypocotyl growth in etiolated Arabidopsis thaliana seedlings is a consequence of cell cycle arrest initiated by photodimer accumulation[J]. Journal of Experimental Botany, 2014, 65(11): 2949−2961. doi: 10.1093/jxb/eru035
|
[53] |
Yang Y, Zhang L, Chen P, et al. UV-B photoreceptor UVR8 interacts with MYB73/MYB77 to regulate auxin responses and lateral root development[J/OL]. The EMBO Journal, 2020, 39(2): e101928 [2020−11−02]. https://doi.org/10.15252/embj.2019101928.
|
[54] |
黄春国, 郭华杰, 韩晓丽. 不同光照强度及施肥种类对矮牡丹生长及种子产量的影响[J]. 山西农业科学, 2019, 47(12):2149−2154. doi: 10.3969/j.issn.1002-2481.2019.12.23
Huang C G, Guo H J, Han X L. Effect of different light intensity and fertilizations types on growth and seed yield of Paeonia suffruticosa var. sponanea[J]. Journal of Shanxi Agricultural Sciences, 2019, 47(12): 2149−2154. doi: 10.3969/j.issn.1002-2481.2019.12.23
|
[55] |
Qaderi M M, Reid D M. Growth and physiological responses of canola (Brassica napus) to UV-B and CO2 under controlled environment conditions[J]. Physiologia Plantarum, 2005, 125(2): 247−259. doi: 10.1111/j.1399-3054.2005.00566.x
|
[56] |
Zhang K, Yao L, Meng J, et al. Maxent modeling for predicting the potential geographical distribution of two peony species under climate change[J]. Science of the Total Environment, 2018, 634: 1326−1334. doi: 10.1016/j.scitotenv.2018.04.112
|
[57] |
Bakker J. Seeds, ecology, biogeography and evolution of dormancy, and germination. c. c. baskin & j. m. baskin[J]. Plant Ecology, 2001, 152(2): 204−205. doi: 10.1023/A:1011465920842
|
[58] |
徐兴兴, 成仿云, 彭丽平, 等. 革质花盘亚组野生牡丹资源的调查及保护利用建议[J]. 植物遗传资源学报, 2017, 18(1):46−55.
Xu X X, Cheng F Y, Peng L P, et al. Suggestions on conservation and utilization of wild tree peony resources of Subsect. Vagintae based on recent investigation[J]. Journal of Plant Genetic Resources, 2017, 18(1): 46−55.
|
[59] |
张雪芹, 彭莉莉, 林朝晖. 未来不同排放情景下气候变化预估研究进展[J]. 地球科学进展, 2008, 23(2):174−185. doi: 10.3321/j.issn:1001-8166.2008.02.008
Zhang X Q, Peng L L, Lin Z H. Progress on the projections of future climate change with various emission scenarios[J]. Advances in Earth Science, 2008, 23(2): 174−185. doi: 10.3321/j.issn:1001-8166.2008.02.008
|
[60] |
Allen J L, Lendemer J C. Climate change impacts on endemic, high-elevation lichens in a biodiversity hotspot[J]. Biodiversity and Conservation, 2016, 25(3): 555−568. doi: 10.1007/s10531-016-1071-4
|
[61] |
檀逸虹, 张喜娟, 原树生, 等. 全球气候变化背景下秦艽生态适宜性预测[J]. 生态学杂志, 2020, 39(11):3766−3773.
Tan Y H, Zhang X J, Yuan S S, et al. Prediction of the ecological suitability of Gentiana macrophylla Pall. under global climate change[J]. Chinese Journal of Ecology, 2020, 39(11): 3766−3773.
|
[62] |
Sillmann J, Kharin V V, Zwiers F W, et al. Climate extremes indices in the CMIP5 multimodel ensemble: part 2. future climate projections[J]. Journal of Geophysical Research Atmospheres, 2013, 118(6): 2473−2493. doi: 10.1002/jgrd.50188
|
[63] |
张强, 黄菁, 张良, 等. 黄土高原区域气候暖干化对地表能量交换特征的影响[J]. 物理学报, 2013, 62(13):561−572.
Zhang Q, Huang J, Zhang L, et al. Warming and drying climate over Loess Plateau area in China and its effect on land surface energy exchange[J]. Acta Physica Sinica, 2013, 62(13): 561−572.
|
[64] |
齐贵增, 白红英, 孟清, 等. 1959—2018年秦岭南北春季气候时空变化特征[J]. 干旱区研究, 2019, 36(5):1079−1091.
Qi G Z, Bai H Y, Meng Q, et al. Climate change in the Qinling Mountains in spring during 1959−2018[J]. Arid Zone Research, 2019, 36(5): 1079−1091.
|
[65] |
王晓冬. 甘肃庆阳地区气候变化影响分析[J]. 辽宁工程技术大学学报(自然科学版), 2012, 31(4):512−515. doi: 10.3969/j.issn.1008-0562.2012.04.018
Wang X D. Climate chang in Gansu-Qingyang area and its impact analysis[J]. Journal of Liaoning Technical University (Natural Science), 2012, 31(4): 512−515. doi: 10.3969/j.issn.1008-0562.2012.04.018
|
[66] |
Meilleur B A, Hodgkin T. In situ conservation of crop wild relatives: status and trends[J]. Biodiversity & Conservation, 2004, 13(4): 663−684. doi: 10.1023/B:BIOC.0000011719.03230.17
|
[67] |
王雨华, 裴盛基, 许建初. 中国药用植物资源可持续管理的实践与建议[J]. 资源科学, 2002, 24(4):81−88. doi: 10.3321/j.issn:1007-7588.2002.04.014
Wang Y H, Pei S J, Xu J C. Sustainable management of medicinal plant resources in China: literature review and implications[J]. Resources Science, 2002, 24(4): 81−88. doi: 10.3321/j.issn:1007-7588.2002.04.014
|
[1] | Feng Xuejing, Ma Ling, Yang Shuang, Bo Wenhao, Chen Xuexun, Pang Xiaoming. Construction of genetic transformation system of ‘Jingzao 39’ callus[J]. Journal of Beijing Forestry University, 2024, 46(10): 74-80. DOI: 10.12171/j.1000-1522.20240055 |
[2] | PANG Hong-dong, XIANG Lin, ZHAO Kai-ge, LI Xiang, YANG Nan, CHEN Long-qing. Genetic transformation and functional characterization of Chimonanthus praecox SAMT gene in tobacco[J]. Journal of Beijing Forestry University, 2014, 36(5): 117-122. DOI: 10.13332/j.cnki.jbfu.2014.05.019 |
[3] | LI Yan, ZHAO De-gang. Ipt gene promoting shoot regeneration in genetic transformation of Eucommia ulmoides Oliv[J]. Journal of Beijing Forestry University, 2011, 33(6): 90-93. |
[4] | ZENG Xiao-fang, ZHAO De-gang. Factors affecting transformation of Zanthoxylum piperitum DC. var. inerme Makino via Agrobacterium tumefaciens.[J]. Journal of Beijing Forestry University, 2011, 33(6): 80-85. |
[5] | ZHAO Ling-li, SHI Shao-chuan, SUN Jia-qi, ZHANG Qi-xiang, GAO Yi-ke. Transformation of ground-cover Chrysanthemum with HsfA2 gene isolated from Arabidopsis thaliana[J]. Journal of Beijing Forestry University, 2011, 33(5): 97-102. |
[6] | LONG Cui, PANG Xiao-ming, CAO Guan-lin, LIU Ying, ZHANG Zhi-yi. A study on the efficient protocol for transforming MdSPDS1 gene into Populus tomentosa Carr.[J]. Journal of Beijing Forestry University, 2010, 32(5): 21-26. |
[7] | YU Lai, AN Xin-min, CAO Guan-lin, CHEN Zhong, ZHANG Zhi-yi. Genetic transformation of Populus tomentosa Carr. with sterility construct of PtAP3[J]. Journal of Beijing Forestry University, 2010, 32(5): 15-20. |
[8] | QIN Ai-guang, LUO Xiao-fang. Transformation of transcription factor DREB1C gene into the fast-growing black locust mediated with Agrobacterium tumefaciens[J]. Journal of Beijing Forestry University, 2007, 29(6): 29-34. DOI: 10.13332/j.1000-1522.2007.06.011 |
[9] | LI Hui, CHEN Xiao-yang, LI Yun, LI Wei, DING Xia. Optimization of antibiotic concentration in genetic transformation of Populus alba[J]. Journal of Beijing Forestry University, 2005, 27(5): 118-121. |
[10] | GAO Li-ping, BAO Man-zhu. Optimization of Agrobacterium-mediated transformation of Rosa hybrida[J]. Journal of Beijing Forestry University, 2005, 27(4): 60-64. |
1. |
罗茂,关志华,颜幼春,柴莹莹,刘佳琪,张佳敏,王忠红. 模拟根际生境下青甘韭生长与品质的差异分析. 高原农业. 2025(01): 65-72+132 .
![]() | |
2. |
黄小辉,吴焦焦,王玉书,冯大兰,孙向阳. 不同供氮水平的核桃幼苗生长及叶绿素荧光特性. 南京林业大学学报(自然科学版). 2022(02): 119-126 .
![]() | |
3. |
郑伟,师筝,龙美,廖允成. 黄绿叶突变体冀麦5265yg的光合生理特性分析. 中国农业科学. 2021(21): 4539-4551 .
![]() | |
4. |
王佳敏,宋海燕,陈金艺,张静,李素慧,陶建平,刘锦春. 多年生黑麦草对干旱胁迫下喀斯特异质生境的生长响应策略. 生态学报. 2020(13): 4566-4572 .
![]() | |
5. |
王生云,陶永明,司剑华. 不同配方轻基质对鳞皮云杉生长及光合参数的影响. 浙江林业科技. 2019(02): 50-55 .
![]() | |
6. |
乐佳兴,田秋玲,吴焦焦,高岚,张文,刘芸. 无患子幼苗的生长和光合特性对重庆低山丘陵区不同生境的响应. 北京林业大学学报. 2019(06): 75-85 .
![]() | |
7. |
戴前莉,黄小辉,黄馨,唐龙波,朱恒星. 不同生境条件下凤丹生长及光合特性比较. 西南大学学报(自然科学版). 2018(09): 53-58 .
![]() | |
8. |
陶永明,司剑华. 不同轻基质配方对川西云杉幼苗生长的影响. 浙江林业科技. 2017(04): 66-70 .
![]() |