• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Liu Wei, Zhao Runan, Sheng Qianqian, Geng Xingmin, Zhu Zunling. Geographical distribution and potential distribution area prediction of Paeonia jishanensis in China[J]. Journal of Beijing Forestry University, 2021, 43(12): 83-92. DOI: 10.12171/j.1000-1522.20200360
Citation: Liu Wei, Zhao Runan, Sheng Qianqian, Geng Xingmin, Zhu Zunling. Geographical distribution and potential distribution area prediction of Paeonia jishanensis in China[J]. Journal of Beijing Forestry University, 2021, 43(12): 83-92. DOI: 10.12171/j.1000-1522.20200360

Geographical distribution and potential distribution area prediction of Paeonia jishanensis in China

More Information
  • Received Date: November 20, 2020
  • Revised Date: February 18, 2021
  • Accepted Date: November 09, 2021
  • Available Online: November 15, 2021
  • Published Date: January 04, 2022
  •   Objective  This paper aims to understand the geographical distribution and potential distribution area of Paeonia jishanensis in China, so as to conduct research on resource protection, introduction and domestication of P. jishanensis and garden application.
      Method  Using ArcGIS software and MaxEnt model, based on 44 current effective distribution records of P. jishanensis and 17 environmental variables, this paper assesses the influence of different environmental factors on the geographical distribution of P. jishanensis, and predicts its current and future potential distribution area.
      Result   MaxEnt model simulated the current potential distribution area with high accuracy, and the AUC values of training set and test set were 0.994 and 0.998, respectively. Lowest monthly average of radiation (UVB4, contribution rate of 21.6%), annual precipitation (BIO12, contribution rate of 18.8%), lowest temperature of the coldest month (BIO6, contribution rate of 12.3%), altitude (ALT, contribution rate of 10.5%) were the main influencing factors affecting the current distribution of P. jishanensis. The total area of contemporary ecologically suitable areas was 15.97 × 104 km2, which was mainly located in eastern Gansu and central Shaanxi of northwestern China, southern Shanxi of northern China, and northwestern Henan of central China. In addition, there was also a small amount of distribution at the junction of southern Hebei and Shanxi provinces of northern China. Under the future climate change, the potential distribution area of P. jishanensis will shrink in the northwest and expand slightly to the east and north. The specific performance is that it will shrink significantly in the east of Gansu, Baoji City and Xianyang City of Shaanxi, and completely lose in the south of Hebei. It will expand slightly in the north of Yan’an in Shaanxi, Linfen in Shanxi, Jincheng in Henan and Luoyang in Henan. In addition, its suitable distribution center will move eastward in the future.There are also a small number of areas at the junction of southern Hebei and Shanxi. Under future climate change, the potential suitable areas for P. jishanensis will shrink in the northwest and slightly expand to the east and north. The specific manifestation is that the areas of Longdong, Baoji and Xianyang in Shaanxi have been significantly reduced, and the southern Hebei area will be completely lost. In the north of Yan’an in Shaanxi, Linfen and Jincheng in Shanxi, and the east of Luoyang in Henan slightly expanded. In addition, the future suitable distribution center of P. jishanensis is moving eastward obviously.
      Conclusion  The suitable area for P. jishanensis is mainly affected by four environmental conditions: the lowest monthly average radiation (819.4−1 128.6 J/(m2∙d)), the average annual precipitation (436.2−808.5 mm), the lowest temperature of the coldest month (−11.8− −3.2 ℃) and the altitude (270.8−1 833.3 m), the lowest monthly average radiation and annual precipitation are identified as the most critical environmental factors restricting the distribution of P. jishanensis. At present, its geographical distribution is relatively narrow in China. In the future, suitable habitats in the northwestern China and southern Hebei will be drastically reduced. Thus, it is urgent to strengthen the protection of natural populations and actively carry out introduction and cultivation.
  • [1]
    赵儒楠, 何倩倩, 褚晓洁, 等. 气候变化下千金榆在我国潜在分布区预测[J]. 应用生态学报, 2019, 30(11):3833−3843.

    Zhao R N, He Q Q, Chu X J, et al. Prediction of potential distribution of Carpinus cordata in China under climate change[J]. Chinese Journal of Applied Ecology, 2019, 30(11): 3833−3843.
    [2]
    Schofleld C J. Biogeography: an ecological and evolutionary approach (6th edn) by C. Barry Cox and Peter D. Moore[J/OL]. Parasitology Today, 2000, 16(9): 406−406 [2020−10−21]. https://doi.org/10.1016/S0169-4758(00)01703-8.
    [3]
    Kozak K H, Graham C H, Wiens J J. Integrating GIS-based environmental data into evolutionary biology[J]. Trends in Ecology & Evolution, 2008, 23(3): 141−148.
    [4]
    Woodward F I, Lomas M R. Vegetation dynamics-simulating responses to climatic change[J]. Biological Reviews, 2004, 79(3): 643−670. doi: 10.1017/S1464793103006316
    [5]
    Box E O, Fujiwara K. A comparative look at bioclimatic zonation, vegetation types, tree taxa and species richness in Northeast Asia[J]. Botanic Pacifica, 2012, 1(1): 5−20. doi: 10.17581/bp.2012.01102
    [6]
    Hewitt G. The genetic legacy of the quaternary ice ages[J]. Nature, 2000, 405: 907−913.
    [7]
    Osman M B, Tierney J E, Zhu J, et al. Globally resolved surface temperatures since the Last Glacial Maximum[J]. Nature, 2021, 599: 239−244.
    [8]
    Woldeyhannes A B, Accotto C, Desta E A, et al. Current and projected eco-geographic adaptation and phenotypic diversity of Ethiopian teff (Eragrostis teff) across its cultivation range[J/OL]. Agriculture, Ecosystems and Environment, 2020, 300: 107020 [2020−10−11]. https://doi.org/10.1016/j.agee.2020.107020.
    [9]
    夏侯佐英, 朱弘, 金桂宏, 等. 蛛网萼的地理分布模拟及迁移趋势预测[J]. 浙江农林大学学报, 2019, 36(2):247−254. doi: 10.11833/j.issn.2095-0756.2019.02.005

    Xiahou Z Y, Zhu H, Jin G H, et al. Modeling the geographic distribution of Platycrater arguta[J]. Journal of Zhejiang A&F University, 2019, 36(2): 247−254. doi: 10.11833/j.issn.2095-0756.2019.02.005
    [10]
    Zhang K L, Sun L P, Tao J. Impact of climate change on the distribution of Euscaphis japonica (Staphyleaceae) trees[J/OL]. Forests, 2020, 11(5): 525.
    [11]
    Ge X Z, He S Y, Zhu C Y, et al. Projecting the current and future potential global distribution of Hyphantria cunea (Lepidoptera: Arctiidae) using CLIMEX[J]. Pest Management Science, 2019, 75(1): 160−169. doi: 10.1002/ps.5083
    [12]
    Qin Z, Zhang J E, Ditommaso A, et al. Predicting invasions of Wedelia trilobata (L.) Hitchc. with Maxent and GARP models[J]. Journal of Plant Research, 2015, 128(5): 1−13.
    [13]
    Phillips S J, Anderson R P, Schapire R E. Maximum entropy modeling of species geographic distributions[J]. Ecological Modelling, 2006, 190(3−4): 231−259. doi: 10.1016/j.ecolmodel.2005.03.026
    [14]
    Barbosa F G, Schneck F. Characteristics of the top-cited papers in species distribution predictive models[J]. Ecological Modelling, 2015, 313: 77−83. doi: 10.1016/j.ecolmodel.2015.06.014
    [15]
    Ahmed S E, Mcinerny G, O’Hara K, et al. Scientists and software-surveying the species distribution modelling community[J]. Diversity & Distributions, 2015, 21(3): 258−267.
    [16]
    李璇, 李垚, 方炎明. 基于优化的Maxent模型预测白栎在中国的潜在分布区[J]. 林业科学, 2018, 54(8):153−164. doi: 10.11707/j.1001-7488.20180817

    Li X, Li Y, Fang Y M. Prediction of potential suitable distribution areas of Quercus fabri in China based on an optimized Maxent model[J]. Scientia Silvae Sinicae, 2018, 54(8): 153−164. doi: 10.11707/j.1001-7488.20180817
    [17]
    Hernandez P A, Graham C H, Master L L, et al. The effect of sample size and species characteristics on performance of different species distribution modeling methods[J]. Ecography, 2006, 29(5): 773−785. doi: 10.1111/j.0906-7590.2006.04700.x
    [18]
    Wisz M S, Hijimans R J, Li J, et al. Effects of sample size on the performance of species distribution models[J]. Diversity & Distributions, 2010, 14(5): 763−773.
    [19]
    王运生, 谢丙炎, 万方浩, 等. ROC曲线分析在评价入侵物种分布模型中的应用[J]. 生物多样性, 2007, 15(4):365−372. doi: 10.3321/j.issn:1005-0094.2007.04.005

    Wang Y S, Xie B Y, Wan F H, et al. Application of ROC curve analysis in evaluating the performance of alien species’ potential distribution models[J]. Biodiversity Science, 2007, 15(4): 365−372. doi: 10.3321/j.issn:1005-0094.2007.04.005
    [20]
    刘晓彤. 百山祖冷杉适宜分布区模拟: 寻找极小种群扩散的潜在分布区[D]. 杭州: 浙江师范大学, 2019.

    Liu X T. Predicting the suitable distribution area of Abies beshanzuensis: to explor the potential dispersion of the plant species with extremely small populations[D]. Hangzhou: Zhejiang Normal University, 2019.
    [21]
    杨楠, 马东源, 钟雪, 等. 基于MaxEnt模型的四川王朗国家级自然保护区蓝马鸡栖息地适宜性评价[J]. 生态学报, 2020, 40(19):7064−7072.

    Yang N, Ma D Y, Zhong X, et al. Habitat suitability assessment of blue eared-pheasant based on MaxEnt modeling in Wanglang National Nature Reserve, Sichuan Province[J]. Acta Ecologica Sinica, 2020, 40(19): 7064−7072.
    [22]
    张晓芹. 西北旱区典型生态经济树种地理分布与气候适宜性研究[D]. 北京: 中国科学院大学, 2018.

    Zhang X Q. Geographical distribution and climatic suitability of typical eco-economical tree species in the dryland of Northwest China[D]. Beijing: University of Chinese Academy of Science, 2018.
    [23]
    刘攀峰, 王璐, 杜庆鑫, 等. 杜仲在我国的潜在适生区估计及其生态特征分析[J]. 生态学报, 2020, 40(16):5674−5684.

    Liu P F, Wang L, Du Q X, et al. Estimation of potential suitable distribution area and the ecological characteristics of Eucommia ulmoides Oliv. in China[J]. Acta Ecologica Sinica, 2020, 40(16): 5674−5684.
    [24]
    李宏群, 刘晓莉, 汪建华, 等. 基于MaxEnt模型荔枝在中国的潜在种植区预测[J]. 长江流域资源与环境, 2020, 29(2):394−400.

    Li H Q, Liu X L, Wang J H, et al. Prediction on potential planting area of Litchi chinensis in China by using MaxEnt model[J]. Resources and Environment in the Yangtze Basin, 2020, 29(2): 394−400.
    [25]
    郭佳, 曹伟, 张悦, 等. 黄花刺茄在中国东北潜在分布区预测[J]. 草业科学, 2019, 36(10):2476−2484. doi: 10.11829/j.issn.1001-0629.2018-0671

    Guo J, Cao W, Zhang Y, et al. Prediction of the potential distribution area of Solanum rostratum in northeast China[J]. Pratacultural Science, 2019, 36(10): 2476−2484. doi: 10.11829/j.issn.1001-0629.2018-0671
    [26]
    塞依丁. 海米提, 努尔巴依. 阿布都沙力克, 许仲林, 等. 气候变化情景下外来入侵植物刺苍耳在新疆的潜在分布格局模拟[J]. 生态学报, 2019, 39(5):1551−1559.

    Hamit S, Abdushalih N, Xu Z L, et al. Simulation of potential distribution patterns of the invasive plant species Xanthium spinosum L. ( Bathurst burr) in Xinjiang under climate change[J]. Acta Ecologica Sinica, 2019, 39(5): 1551−1559.
    [27]
    李明阳, 巨云为, 吴文浩, 等. 气候变化情景下外来森林病虫害潜在生境动态分析: 以美国南方松大小蠹为例[J]. 北京林业大学学报, 2009, 31(4):64−69. doi: 10.3321/j.issn:1000-1522.2009.04.012

    Li M Y, Ju Y W, Wu W H, et al. Dynamic analysis of potential habitat of alien forest invasive species under climate change scenarios: a case study of Dendroctonus frontalis[J]. Journal of Beijing Forestry University, 2009, 31(4): 64−69. doi: 10.3321/j.issn:1000-1522.2009.04.012
    [28]
    白蕤, 李宁, 张京红, 等. 未来气候变化背景下橡胶树南美叶疫病入侵中国的风险预测[J]. 生态学杂志, 2020, 39(10):3500−3508.

    Bai R, Li N, Zhang J H, et al. Risk prediction of South American leaf blight of rubber tree in China under the scenario of climate change[J]. Chinese Journal of Ecology, 2020, 39(10): 3500−3508.
    [29]
    洪涛, 张家勋, 李嘉珏, 等. 中国野生牡丹研究(一)芍药属牡丹组新分类群[J]. 植物研究, 1992, 12(3):223−234.

    Hong T, Zhang J X, Li J Y, et al. Study on the Chinese wild woody peonies (1) new taxa of Paeonia Sect. Moutan[J]. Bullent of Botanical Research, 1992, 12(3): 223−234.
    [30]
    郑凤英, 张金屯, 上官铁梁, 等. 濒危植物矮牡丹的分布格局及其生存群落的数量分析[J]. 武汉植物学研究, 1998, 16(3):255−262.

    Zheng F Y, Zhang J T, Shangguan T L, et al. The distribution patterns of Paeonia suffruticosa var. spontanea and the quantity analysis of the communities where it grows[J]. Journal of Wuhan Botanical Research, 1998, 16(3): 255−262.
    [31]
    赵一鹏, 蔡祖国, 李本勇. 珍稀濒危植物矮牡丹研究进展[J]. 河南农业科学, 2009, 38(7):14−17. doi: 10.3969/j.issn.1004-3268.2009.07.004

    Zhao Y P, Cai Z G, Li B Y. Progress of the endangered causes of Paeonia suffruticosa var. spontanea[J]. Journal of Henan Agricultural Sciences, 2009, 38(7): 14−17. doi: 10.3969/j.issn.1004-3268.2009.07.004
    [32]
    贾文庆, 刘会超, 姚连芳. 矮牡丹子叶节离体再生体系[J]. 东北林业大学学报, 2010, 38(2):13−15. doi: 10.3969/j.issn.1000-5382.2010.02.006

    Jia W Q, Liu H C, Yao L F. Establishment of in vitro regeneration system for cotyledonary nodoes of dwarf peony[J]. Journal of Northeast Forestry University, 2010, 38(2): 13−15. doi: 10.3969/j.issn.1000-5382.2010.02.006
    [33]
    张滋芳, 毕润成, 张钦弟, 等. 珍稀濒危植物矮牡丹生存群落优势种种间联结性及群落稳定性[J]. 应用与环境生物学报, 2019, 25(2):291−299.

    Zhang Z F, Bi R C, Zhang Q D, et al. Community stability and inter-specific associations between the rare plant Paeonia suffruticosa Andr. var. spontanea Rehd and dominant species[J]. Chinese Journal of Applied and Environmental Biology, 2019, 25(2): 291−299.
    [34]
    周晓君, 张凯, 彭正锋, 等. 矮牡丹与芍药属其他5个种叶绿体基因组特征的比较[J]. 林业科学, 2020, 56(4):82−88. doi: 10.11707/j.1001-7488.20200409

    Zhou X J, Zhang K, Peng Z F, et al. Comparative analysis of chloroplast genome characteristics between Paeonia jishanensis and other five species of Paeonia[J]. Scientia Silvae Sinicae, 2020, 56(4): 82−88. doi: 10.11707/j.1001-7488.20200409
    [35]
    王琳, 张金屯. 濒危植物矮牡丹的生态位研究[J]. 生态学杂志, 2001, 20(4):65−69. doi: 10.3321/j.issn:1000-4890.2001.04.017

    Wang L, Zhang J T. The niche characteristics of endangered plant Paeonia suffruticosa var. spontanea[J]. Chinese Journal of Ecology, 2001, 20(4): 65−69. doi: 10.3321/j.issn:1000-4890.2001.04.017
    [36]
    张峰. 濒危植物矮牡丹致濒原因分析[J]. 生态学报, 2003, 23(7):1436−1441. doi: 10.3321/j.issn:1000-0933.2003.07.024

    Zhang F. The endangered causes of Paeonia suffruticosa var. spontanea, an endemic to China[J]. Acta Ecologica Sinica, 2003, 23(7): 1436−1441. doi: 10.3321/j.issn:1000-0933.2003.07.024
    [37]
    潘开玉, 温洁, 罗毅波, 等. 矮牡丹小孢子发生和雄配子体发育及其与该种濒危的关系[J]. 植物分类学报, 1999, 37(3):244−252.

    Pan K Y, Wen J, Luo Y B, et al. Formation of microspores and development of male gametes in Paeonia jishanensis, with an analysis of factors of endangerment of this entity[J]. Acta Phytotaxonomica Sinica, 1999, 37(3): 244−252.
    [38]
    罗毅波, 裴颜龙, 潘开玉, 等. 矮牡丹传粉生物学的初步研究[J]. 植物分类学报, 1998, 36(2):134−144.

    Luo Y B, Pei Y L, Pan K Y, et al. A study on pollination biology of Paeonia suffruticosa subsp. spontanea ( Paeoniaceae)[J]. Acta Phytotaxonomica Sinica, 1998, 36(2): 134−144.
    [39]
    刘康, 韦柳兰, 王开曦. 矮牡丹种群结构的研究[J]. 西北植物学报, 1994, 14(3):232−236. doi: 10.3321/j.issn:1000-4025.1994.03.015

    Liu K, Wei L L, Wang K X. Studies on population structure of Paeonia suffruticosa var. spontanea Rehd[J]. Acta Botanica Boreali-Occidentalia Sinica, 1994, 14(3): 232−236. doi: 10.3321/j.issn:1000-4025.1994.03.015
    [40]
    徐兴兴. 矮牡丹的遗传多样性及栽培牡丹起源研究[D]. 北京: 北京林业大学, 2018.

    Xu X X. Genetic diversity of Paeonia jishanensis and the origin of cultivated tree peonies[D]. Beijing: Beijing Forestry University, 2018.
    [41]
    张滋芳. 矮牡丹生存群落的生态学特征研究[D]. 临汾: 山西师范大学, 2019.

    Zhang Z F. Ecological characteristics of Paeonia suffruticosa var. spontanea survival community[D]. Linfen: Shanxi Normal University, 2019.
    [42]
    袁涛, 王莲英. 我国芍药属牡丹组革质花盘亚组的形态学研究[J]. 园艺学报, 2003, 30(2):187−191. doi: 10.3321/j.issn:0513-353X.2003.02.013

    Yuan T, Wang L Y. Morphological studies on Paeonia Sect. Moutan subsect Vagiatae in China[J]. Acta Horticulturae Sinica, 2003, 30(2): 187−191. doi: 10.3321/j.issn:0513-353X.2003.02.013
    [43]
    翟立娟, 史倩倩, 罗小宁, 等. 秦巴山区牡丹野生种遗传多样性研究[C]//中国园艺学会. 北京: 中国林业出版社, 2017: 66−74.

    Zhai L J, Shi Q Q, Luo X N, et al. Analysis of genetic diversity of the tree peony wild species in the Qinba mountainous area[C]// Chinese Society for Horticultural Science. Beijing: China Forestry Publishing House, 2017: 66−74.
    [44]
    洪德元, 周世良, 何兴金, 等. 野生牡丹的生存状况和保护[J]. 生物多样性, 2017, 25(7):781−793.

    Hong D Y, Zhou S L, He X J, et al. Current status of wild tree peony species with special reference to conservation[J]. Biodiversity Science, 2017, 25(7): 781−793.
    [45]
    Hijmans R J, Cameron S E, Parra J L, et al. Very high resolution interpolated climate surfaces for global land areas[J]. International Journal of Climatology, 2005, 25(15): 1965−1978. doi: 10.1002/joc.1276
    [46]
    Sillero N. What does ecological modelling model? A proposed classification of ecological niche models based on their underlying methods[J]. Ecological Modelling, 2011, 222(8): 1343−1346. doi: 10.1016/j.ecolmodel.2011.01.018
    [47]
    Pearson R G, Raxworthy C J, Nakamura M, et al. Original article: predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar[J]. Journal of Biogeography, 2010, 34(1): 102−117.
    [48]
    Yang X Q, Kushwaha S P S, Saran S, et al. Maxent modeling for predicting the potential distribution of medicinal plant, Justicia adhatoda L. in Lesser Himalayan foothills[J]. Ecological Engineering, 2013, 51: 83−87. doi: 10.1016/j.ecoleng.2012.12.004
    [49]
    Swets J A. Measuring the accuracy of diagnostic systems[J]. Science, 1988, 240: 1285−1293. doi: 10.1126/science.3287615
    [50]
    胡菀, 张志勇, 陈陆丹, 等. 末次盛冰期以来观光木的潜在地理分布变迁[J]. 植物生态学报, 2020, 44(1):44−55. doi: 10.17521/cjpe.2018.0258

    Hu Y, Zhang Z Y, Chen L D, et al. Changes in potential geographical distribution of Tsoongiodendron odorum since the Last Glacial Maximum[J]. Chinese Journal of Plant Ecology, 2020, 44(1): 44−55. doi: 10.17521/cjpe.2018.0258
    [51]
    Rizzini L, Favory J J, Cloix C, et al. Perception of UV-B by the Arabidopsis UVR8 protein[J]. Science, 2011, 332: 103−106. doi: 10.1126/science.1200660
    [52]
    Biever J, Brinkman D, Gardner G, et al. UV-B inhibition of hypocotyl growth in etiolated Arabidopsis thaliana seedlings is a consequence of cell cycle arrest initiated by photodimer accumulation[J]. Journal of Experimental Botany, 2014, 65(11): 2949−2961. doi: 10.1093/jxb/eru035
    [53]
    Yang Y, Zhang L, Chen P, et al. UV-B photoreceptor UVR8 interacts with MYB73/MYB77 to regulate auxin responses and lateral root development[J/OL]. The EMBO Journal, 2020, 39(2): e101928 [2020−11−02]. https://doi.org/10.15252/embj.2019101928.
    [54]
    黄春国, 郭华杰, 韩晓丽. 不同光照强度及施肥种类对矮牡丹生长及种子产量的影响[J]. 山西农业科学, 2019, 47(12):2149−2154. doi: 10.3969/j.issn.1002-2481.2019.12.23

    Huang C G, Guo H J, Han X L. Effect of different light intensity and fertilizations types on growth and seed yield of Paeonia suffruticosa var. sponanea[J]. Journal of Shanxi Agricultural Sciences, 2019, 47(12): 2149−2154. doi: 10.3969/j.issn.1002-2481.2019.12.23
    [55]
    Qaderi M M, Reid D M. Growth and physiological responses of canola (Brassica napus) to UV-B and CO2 under controlled environment conditions[J]. Physiologia Plantarum, 2005, 125(2): 247−259. doi: 10.1111/j.1399-3054.2005.00566.x
    [56]
    Zhang K, Yao L, Meng J, et al. Maxent modeling for predicting the potential geographical distribution of two peony species under climate change[J]. Science of the Total Environment, 2018, 634: 1326−1334. doi: 10.1016/j.scitotenv.2018.04.112
    [57]
    Bakker J. Seeds, ecology, biogeography and evolution of dormancy, and germination. c. c. baskin & j. m. baskin[J]. Plant Ecology, 2001, 152(2): 204−205. doi: 10.1023/A:1011465920842
    [58]
    徐兴兴, 成仿云, 彭丽平, 等. 革质花盘亚组野生牡丹资源的调查及保护利用建议[J]. 植物遗传资源学报, 2017, 18(1):46−55.

    Xu X X, Cheng F Y, Peng L P, et al. Suggestions on conservation and utilization of wild tree peony resources of Subsect. Vagintae based on recent investigation[J]. Journal of Plant Genetic Resources, 2017, 18(1): 46−55.
    [59]
    张雪芹, 彭莉莉, 林朝晖. 未来不同排放情景下气候变化预估研究进展[J]. 地球科学进展, 2008, 23(2):174−185. doi: 10.3321/j.issn:1001-8166.2008.02.008

    Zhang X Q, Peng L L, Lin Z H. Progress on the projections of future climate change with various emission scenarios[J]. Advances in Earth Science, 2008, 23(2): 174−185. doi: 10.3321/j.issn:1001-8166.2008.02.008
    [60]
    Allen J L, Lendemer J C. Climate change impacts on endemic, high-elevation lichens in a biodiversity hotspot[J]. Biodiversity and Conservation, 2016, 25(3): 555−568. doi: 10.1007/s10531-016-1071-4
    [61]
    檀逸虹, 张喜娟, 原树生, 等. 全球气候变化背景下秦艽生态适宜性预测[J]. 生态学杂志, 2020, 39(11):3766−3773.

    Tan Y H, Zhang X J, Yuan S S, et al. Prediction of the ecological suitability of Gentiana macrophylla Pall. under global climate change[J]. Chinese Journal of Ecology, 2020, 39(11): 3766−3773.
    [62]
    Sillmann J, Kharin V V, Zwiers F W, et al. Climate extremes indices in the CMIP5 multimodel ensemble: part 2. future climate projections[J]. Journal of Geophysical Research Atmospheres, 2013, 118(6): 2473−2493. doi: 10.1002/jgrd.50188
    [63]
    张强, 黄菁, 张良, 等. 黄土高原区域气候暖干化对地表能量交换特征的影响[J]. 物理学报, 2013, 62(13):561−572.

    Zhang Q, Huang J, Zhang L, et al. Warming and drying climate over Loess Plateau area in China and its effect on land surface energy exchange[J]. Acta Physica Sinica, 2013, 62(13): 561−572.
    [64]
    齐贵增, 白红英, 孟清, 等. 1959—2018年秦岭南北春季气候时空变化特征[J]. 干旱区研究, 2019, 36(5):1079−1091.

    Qi G Z, Bai H Y, Meng Q, et al. Climate change in the Qinling Mountains in spring during 1959−2018[J]. Arid Zone Research, 2019, 36(5): 1079−1091.
    [65]
    王晓冬. 甘肃庆阳地区气候变化影响分析[J]. 辽宁工程技术大学学报(自然科学版), 2012, 31(4):512−515. doi: 10.3969/j.issn.1008-0562.2012.04.018

    Wang X D. Climate chang in Gansu-Qingyang area and its impact analysis[J]. Journal of Liaoning Technical University (Natural Science), 2012, 31(4): 512−515. doi: 10.3969/j.issn.1008-0562.2012.04.018
    [66]
    Meilleur B A, Hodgkin T. In situ conservation of crop wild relatives: status and trends[J]. Biodiversity & Conservation, 2004, 13(4): 663−684. doi: 10.1023/B:BIOC.0000011719.03230.17
    [67]
    王雨华, 裴盛基, 许建初. 中国药用植物资源可持续管理的实践与建议[J]. 资源科学, 2002, 24(4):81−88. doi: 10.3321/j.issn:1007-7588.2002.04.014

    Wang Y H, Pei S J, Xu J C. Sustainable management of medicinal plant resources in China: literature review and implications[J]. Resources Science, 2002, 24(4): 81−88. doi: 10.3321/j.issn:1007-7588.2002.04.014
  • Related Articles

    [1]Feng Xuejing, Ma Ling, Yang Shuang, Bo Wenhao, Chen Xuexun, Pang Xiaoming. Construction of genetic transformation system of ‘Jingzao 39’ callus[J]. Journal of Beijing Forestry University, 2024, 46(10): 74-80. DOI: 10.12171/j.1000-1522.20240055
    [2]PANG Hong-dong, XIANG Lin, ZHAO Kai-ge, LI Xiang, YANG Nan, CHEN Long-qing. Genetic transformation and functional characterization of Chimonanthus praecox SAMT gene in tobacco[J]. Journal of Beijing Forestry University, 2014, 36(5): 117-122. DOI: 10.13332/j.cnki.jbfu.2014.05.019
    [3]LI Yan, ZHAO De-gang. Ipt gene promoting shoot regeneration in genetic transformation of Eucommia ulmoides Oliv[J]. Journal of Beijing Forestry University, 2011, 33(6): 90-93.
    [4]ZENG Xiao-fang, ZHAO De-gang. Factors affecting transformation of Zanthoxylum piperitum DC. var. inerme Makino via Agrobacterium tumefaciens.[J]. Journal of Beijing Forestry University, 2011, 33(6): 80-85.
    [5]ZHAO Ling-li, SHI Shao-chuan, SUN Jia-qi, ZHANG Qi-xiang, GAO Yi-ke. Transformation of ground-cover Chrysanthemum with HsfA2 gene isolated from Arabidopsis thaliana[J]. Journal of Beijing Forestry University, 2011, 33(5): 97-102.
    [6]LONG Cui, PANG Xiao-ming, CAO Guan-lin, LIU Ying, ZHANG Zhi-yi. A study on the efficient protocol for transforming MdSPDS1 gene into Populus tomentosa Carr.[J]. Journal of Beijing Forestry University, 2010, 32(5): 21-26.
    [7]YU Lai, AN Xin-min, CAO Guan-lin, CHEN Zhong, ZHANG Zhi-yi. Genetic transformation of Populus tomentosa Carr. with sterility construct of PtAP3[J]. Journal of Beijing Forestry University, 2010, 32(5): 15-20.
    [8]QIN Ai-guang, LUO Xiao-fang. Transformation of transcription factor DREB1C gene into the fast-growing black locust mediated with Agrobacterium tumefaciens[J]. Journal of Beijing Forestry University, 2007, 29(6): 29-34. DOI: 10.13332/j.1000-1522.2007.06.011
    [9]LI Hui, CHEN Xiao-yang, LI Yun, LI Wei, DING Xia. Optimization of antibiotic concentration in genetic transformation of Populus alba[J]. Journal of Beijing Forestry University, 2005, 27(5): 118-121.
    [10]GAO Li-ping, BAO Man-zhu. Optimization of Agrobacterium-mediated transformation of Rosa hybrida[J]. Journal of Beijing Forestry University, 2005, 27(4): 60-64.
  • Cited by

    Periodical cited type(8)

    1. 罗茂,关志华,颜幼春,柴莹莹,刘佳琪,张佳敏,王忠红. 模拟根际生境下青甘韭生长与品质的差异分析. 高原农业. 2025(01): 65-72+132 .
    2. 黄小辉,吴焦焦,王玉书,冯大兰,孙向阳. 不同供氮水平的核桃幼苗生长及叶绿素荧光特性. 南京林业大学学报(自然科学版). 2022(02): 119-126 .
    3. 郑伟,师筝,龙美,廖允成. 黄绿叶突变体冀麦5265yg的光合生理特性分析. 中国农业科学. 2021(21): 4539-4551 .
    4. 王佳敏,宋海燕,陈金艺,张静,李素慧,陶建平,刘锦春. 多年生黑麦草对干旱胁迫下喀斯特异质生境的生长响应策略. 生态学报. 2020(13): 4566-4572 .
    5. 王生云,陶永明,司剑华. 不同配方轻基质对鳞皮云杉生长及光合参数的影响. 浙江林业科技. 2019(02): 50-55 .
    6. 乐佳兴,田秋玲,吴焦焦,高岚,张文,刘芸. 无患子幼苗的生长和光合特性对重庆低山丘陵区不同生境的响应. 北京林业大学学报. 2019(06): 75-85 . 本站查看
    7. 戴前莉,黄小辉,黄馨,唐龙波,朱恒星. 不同生境条件下凤丹生长及光合特性比较. 西南大学学报(自然科学版). 2018(09): 53-58 .
    8. 陶永明,司剑华. 不同轻基质配方对川西云杉幼苗生长的影响. 浙江林业科技. 2017(04): 66-70 .

    Other cited types(5)

Catalog

    Article views (1118) PDF downloads (94) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return