• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Zhang Lanqi, Yang Hua, Zhang Xiaohong. Relationship between tree growth and tree size, competition as well as species diversity in spruce-fir natural forests[J]. Journal of Beijing Forestry University, 2024, 46(5): 64-72. DOI: 10.12171/j.1000-1522.20220409
Citation: Zhang Lanqi, Yang Hua, Zhang Xiaohong. Relationship between tree growth and tree size, competition as well as species diversity in spruce-fir natural forests[J]. Journal of Beijing Forestry University, 2024, 46(5): 64-72. DOI: 10.12171/j.1000-1522.20220409

Relationship between tree growth and tree size, competition as well as species diversity in spruce-fir natural forests

More Information
  • Received Date: October 09, 2022
  • Revised Date: January 20, 2023
  • Available Online: April 18, 2024
  • Objective 

    Tree size, competition, tree species diversity and other factors in the forest stand affect the growth of forest trees, while the individual basal area increment (BAI) is often used to describe tree growth. A random forest model was established to study the individual tree BAI of main tree species in the mixed forest of Changbai Mountain of northeastern China, study and quantify the environmental mechanisms affecting tree growth, aiming to provide a theoretical basis for growth projections.

    Method 

    Data were investigated for 24 consecutive years (1987−2010) in a fixed sample plot with a total sample size of 6 903 trees. Random forest algorithm was used to build individual tree BAI model with 11 independent variables as individual tree, competition factor, diversity, and climate for 6 main tree species in mixed forest. And 10-fold cross-validation was used to optimize hyper parameter mtry and evaluate these models.

    Result 

    (1) The coefficients of determination for the model of BAI for the six major species of Abies nephrolepis, Picea koraiensis, Pinus koraiensis, Tilia amurensis, Betula costata, and Betula platyphylla were 0.663, 0.683, 0.695, 0.459, 0.384, and 0.568, respectively. (2) The basal area (BA) of individual tree was the most important independent variable, and had a strong positive effect on the growth of trees. Competitive factors and tree size diversity were the main factors affecting tree growth, and individual BAI decreased with increasing competitive factors and tree size diversity. (3) The effects of species diversity on tree growth were relatively limited, with increases in species diversity index and mingling degrees accelerating the growth of Abies nephrolepis, Picea koraiensis and Pinus koraiensis to some extent; whereas the effects of climatic factors on tree growth were relatively small.

    Conclusion 

    Tree growth is largely depends on its own growth potential, which is mainly inhibited by competition and tree size heterogeneity in the external environment, while increased species diversity also promotes the growth of dominant species within the forest to some extent. The random forest model can well quantify and express the complex relationship between the variables and BAI of individual tree. It can be used as a tool for forest management practice and providing a new method for forest growth and yield prediction.

  • [1]
    Schlamadinger B, Bird N, Johns T, et al. A synopsis of land use, land-use change and forestry (lulucf) under the kyoto protocol and marrakech accords[J]. Environmental Science & Policy, 2007, 10(4): 271−282.
    [2]
    胡松. 湖南栎类天然林断面积生长模型研究[D]. 长沙: 中南林业科技大学, 2019.

    Hu S. Research on basal area growth model for oak natural forest in Hunan Province [D]. Changsha: Central South University of Forestry & Technology, 2019.
    [3]
    Jevsenak J, Skudnik M. A random forest model for basal area increment predictions from national forest inventory data[J]. Forest Ecology and Management, 2021, 479: 118601.
    [4]
    Jiang X, Huang J, Cheng J, et al. Interspecific variation in growth responses to tree size, competition and climate of western canadian boreal mixed forests[J]. Science of the Total Environment, 2018, 631−632: 1070−1078. doi: 10.1016/j.scitotenv.2018.03.099
    [5]
    江小雷, 岳静, 张卫国, 等. 生物多样性, 生态系统功能与时空尺度[J]. 草业学报, 2010, 19(1): 219−225.

    Jiang X L, Yue J, Zhang W G, et al. Biodiversity, ecosystem functioning and spatio-temporal scales[J]. Acta Prataculturae Sinica, 2010, 19(1): 219−225.
    [6]
    Lei X, Wang W, Peng C. Relationships between stand growth and structural diversity in fpruce-dominated forests in new Brunswick, Canada[J]. Canadian Journal of Forest Research, 2009, 39(10): 1835−1847. doi: 10.1139/X09-089
    [7]
    Subedi N, Sharma M. Climate-diameter growth relationships of black spruce and jack pine trees in Boreal Ontario, Canada[J]. Global Change Biology, 2013, 19(2): 505−516. doi: 10.1111/gcb.12033
    [8]
    Chen L, Huang J, Stadt K, et al. Drought explains variation in the radial growth of white spruce in western Canada[J]. Agricultural and Forest Meteorology, 2017, 233: 133−142. doi: 10.1016/j.agrformet.2016.11.012
    [9]
    Cortini F, Filipescu C, Groot A, et al. Regional models of diameter as a function of individual tree attributes, climate and site characteristics for six major tree species in Alberta, Canada[J]. Forests, 2011, 2(4): 814−831. doi: 10.3390/f2040814
    [10]
    Ashraf M, Zhao Z, Bourque C, et al. Integrating biophysical controls in forest growth and yield predictions with artificial intelligence technology[J]. Canadian Journal of Forest Research, 2013, 43(12): 1162−1171. doi: 10.1139/cjfr-2013-0090
    [11]
    方匡南, 吴见彬, 朱建平, 等. 随机森林方法研究综述[J]. 统计与信息论坛, 2011, 26(3): 32−38.

    Fang K N, Wu J B, Zhu J P, et al. A review of technologies on random forests[J]. Journal of Statistics and Information, 2011, 26(3): 32−38.
    [12]
    高若楠, 苏喜友, 谢阳生, 等. 基于随机森林的杉木适生性预测研究[J]. 北京林业大学学报, 2017, 39(12): 36−43.

    Gao R N, Su X Y, Xie Y S, et al. Prediction of adaptability of Cunninghamia lanceolata based on random forest[J]. Journal of Beijing Forestry University, 2017, 39(12): 36−43.
    [13]
    董灵波, 梁凯富, 张一帆, 等. 基于Landsat 8时间序列数据的翠岗林场森林类型划分[J]. 应用生态学报, 2022, 33(9): 2339−2346.

    Dong L B, Liang K F, Zhang Y F, et al. Classification of forest types in Cuigang Forest Farm based on time series data of Landsat 8[J]. Chinese Journal of Applied Ecology, 2022, 33(9): 2339−2346.
    [14]
    徐丽, 欧阳勋志, 潘萍, 等. 基于GF-1 WFV与MODIS时空融合的南方森林植被类型识别[J]. 应用生态学报, 2022, 33(7): 1948−1956.

    Xu L, Ouyang X Z, Pan P, et al. Identification of forest vegetation types in southern China based on spatio- temporal fusion of GF-1 WFV and MODlS data[J]. Chinese Journal of Applied Ecology, 2022, 33(7): 1948−1956.
    [15]
    孙铭辰, 姜立春. 基于机器学习算法的樟子松立木材积预测[J]. 南京林业大学学报(自然科学版), 2023, 47(1): 31−37.

    Sun M C, Jiang L C. Standing volume prediction of Pinus sylvestris var. mongolica based on machine learning algorithm[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2023, 47(1): 31−37.
    [16]
    Lh R. Perfecting a stand-density tndex for even-aged forests [J]. Journal of Agricultural Research, 1933, 46: 627−638.
    [17]
    Hegyi F. A simulation model for managing Jack-pine stands simulation[J]. Royalcoll. For, Res. Notes, 1974, 30: 74−90.
    [18]
    惠刚盈, 胡艳波. 混交林树种空间隔离程度表达方式的研究[J]. 林业科学研究, 2001, 14(1): 23−27. doi: 10.3321/j.issn:1001-1498.2001.01.004

    Hui G Y, Hu Y B. Measuring species spatial lsolation in mixed forests[J]. Forest Research, 2001, 14(1): 23−27. doi: 10.3321/j.issn:1001-1498.2001.01.004
    [19]
    惠刚盈. 一个新的林分空间结构参数: 大小比数[J]. 林业科学研究, 1999, 12(1): 4−9.

    Hui G Y. A new parameter for stand spatial structure: neighbourhood comparison[J]. Forest Research, 1999, 12(1): 4−9.
    [20]
    Breiman L. Random forests[J]. Machine Learning, 2001, 45(1): 5−32. doi: 10.1023/A:1010933404324
    [21]
    Arlot S, Celisse A. A survey of cross-validation procedures for model selection[J]. Statistics Surveys, 2010, 4: 40−79.
    [22]
    Willmott C J, Matsuura K. Advantages of the mean absolute error (mae) over the root mean square error (rmse) in assessing average model performance[J]. Climate Research, 2005, 30(1): 79−82.
    [23]
    董雪婷, 张静, 张志东, 等. 树种相互作用、林分密度和树木大小对华北落叶松生产力的影响[J]. 应用生态学报, 2021, 32(8): 2722−2728.

    Dong X T, Zhang J, Zhang Z D, et al. Effects of tree species interaction, stand density, and tree size on the productivity of Larix principis-rupprechtii[J]. Chinese Journal of Applied Ecology, 2021, 32(8): 2722−2728.
    [24]
    吕沅杭, 伊利启, 王儒林, 等. 基于空间结构参数的大兴安岭天然落叶松单木直径生长模型[J]. 林业科学研究, 2021, 34(2): 81−91.

    Lü Y H, Yi L Q, Wang R L, et al. Diameter growth model using spatial structure parameters of natural Larix gmelinii stand in Daxing’anling Mountains, northeast China[J]. Forest Research, 2021, 34(2): 81−91.
    [25]
    Lin S, Li Y, Li Y H, et al. Influence of tree size, local forest structure, topography, and soil resource availability on plantation growth in Qinghai Province, China[J]. Ecological Indicators, 2021, 120: 106957.
    [26]
    Adame P, Hynynen J, Canellas I, et al. Individual-tree diameter growth model for rebollo oak (Quercus pyrenaica Willd.) coppices[J]. Forest Ecology and Management, 2008, 255(3): 1011−1022.
    [27]
    任玫玫, 杨华. 长白山云冷杉林优势树种的竞争[J]. 应用生态学报, 2016, 27(10): 3089−3097.

    Ren M M, Yang H. Competition among dominant tree species in a natural spruce-fir forest in Changbai Mountain[J]. Chinese Journal of Applied Ecology, 2016, 27(10): 3089−3097.
    [28]
    Liu D, Zhou C, He X, et al. The effect of stand density, biodiversity, and spatial structure on stand basal area increment in natural spruce-fir-broadleaf mixed forests[J]. Forests, 2022, 13(2): 162.
    [29]
    陈梦飞. 青海东部黄土区青海云杉人工林空间结构对径向生长的影响[D]. 北京: 北京林业大学, 2019.

    Chen M F. Effects of spatial structure of Picea crassifolia plantationon radial growth in the loess area of eastern Qinghai[D]. Beijing: Beijing Forestry University, 2019.
    [30]
    吕延杰, 杨华, 张青, 等. 云冷杉天然林林分空间结构对胸径生长量的影响[J]. 北京林业大学学报, 2017, 39(9): 41−47.

    Lü Y J, Yang H, Zhang Q, et al. Effects of spatial structure on DBH increment of natural spruce-fir forest[J]. Journal of Beijing Forestry University, 2017, 39(9): 41−47.
    [31]
    余黎, 雷相东, 王雅志, 等. 基于广义可加模型的气候对单木胸径生长的影响研究[J]. 北京林业大学学报, 2014, 36(5): 22−32.

    Yu L, Lei X D, Wang Y Z, et al. Impact of climate on individual tree radial growth based on generalized additive model[J]. Journal of Beijing Forestry University, 2014, 36(5): 22−32.
    [32]
    欧强新, 雷相东, 沈琛琛, 等. 基于随机森林算法的落叶松–云冷杉混交林单木胸径生长预测[J]. 北京林业大学学报, 2019, 41(9): 9−19.

    Ou Q X, Lei X D, Shen C C, et al. Individual tree DBH growth prediction of larch-spruce-fir mixed forests based on random forest algorithm[J]. Journal of Beijing Forestry University, 2019, 41(9): 9−19.
    [33]
    覃鑫浩. 基于混合效应的兴安落叶松单木断面积生长模型研究[J]. 西北林学院学报, 2022, 37(4): 223−230.

    Qin X H. Growth model of individual-tree basal area for Larix gmelinii based on mixed effect approach[J]. Journal of Northwest Forestry University, 2022, 37(4): 223−230.
    [34]
    杜志, 陈振雄, 孟京辉, 等. 基于混合效应的马尾松单木断面积预估模型[J]. 中南林业科技大学学报, 2020, 40(9): 33−40.

    Du Z, Chen Z X, Meng J H, et al. Prediction model of individual-tree basal area for Pinus massoniana based on mixed effect[J]. Journal of Central South University of Forestry & Technology, 2020, 40(9): 33−40.
    [35]
    Kindermann G E. The development of a simple basal area increment, model[J]. Nature Precedings, 2011, 6: 1−25.
    [36]
    Forrester D. Linking forest growth with stand structure: tree size inequality, tree growth or resource partitioning and the asymmetry of competition[J]. Forest Ecology and Management, 2019, 447: 139−157. doi: 10.1016/j.foreco.2019.05.053
    [37]
    Ni R, Baiketuerhan Y, Zhang C, et al. Analysing structural diversity in two temperate forests in northeastern China[J]. Forest Ecology and Management, 2014, 316: 139−147. doi: 10.1016/j.foreco.2013.10.012
    [38]
    Mcroberts R E, Hahn J T, Hefty G J, et al. Variation in forest inventory field measurements[J]. Canadian Journal of Forest Research, 1994, 24(9): 1766−1770. doi: 10.1139/x94-228
    [39]
    Andreassen K, Tomter S. Basal area growth models for individual trees of Norway spruce, scots pine, birch and other broadleaves in Norway[J]. Forest Ecology and Management, 2003, 180(1): 11−24.
  • Related Articles

    [1]Chen Jiayi, Dai Ying, Zhang Naili. Effects of forest tree species diversity on soil carbon and nitrogen contents in China[J]. Journal of Beijing Forestry University, 2025, 47(2): 23-31. DOI: 10.12171/j.1000-1522.20220400
    [2]Che Hailun, Li Hualin, Zhang Fan, Wu Fengyue, Xie Chenxin, Liu Ye. Using random forest model to analyze driving factors of extreme rainstorm peak discharge: taking the “23·7” rainstorm in Beijing as an example[J]. Journal of Beijing Forestry University, 2025, 47(1): 51-62. DOI: 10.12171/j.1000-1522.20240266
    [3]Hu Zhenhong, Zhao Zhuqi, He Xian, Yuan Mengfan, Cheng Lei. Research progress of impacts of tree species diversity on microbial decomposition of forest deadwood and carbon cycling[J]. Journal of Beijing Forestry University, 2024, 46(11): 1-9. DOI: 10.12171/j.1000-1522.20240233
    [4]Du Yu, Yang Hua, He Danni, Chen Qingguo, Zhang Xiaohong. Effects of neighboring tree diversity and competition on tree growth in natural spruce-fir forests[J]. Journal of Beijing Forestry University, 2024, 46(8): 111-121. DOI: 10.12171/j.1000-1522.20230236
    [5]Huang Weicheng, Gao Lushuang, Zhao Bingqian. Influence of competition on the relationship between tree growth and climate of main tree species in the broadleaved Korean pine forest under different thinning intensities in northeastern China[J]. Journal of Beijing Forestry University, 2023, 45(1): 30-39. DOI: 10.12171/j.1000-1522.20210515
    [6]Bu Wensheng, Ma Yaohua, Liu Hongbing, Zhang Cancan, Li Yuxin, Zeng Shiqi, Yang Shiyun. Effects of mycorrhizal types and shade tolerance of tree species on carbon storage of standing dead branches[J]. Journal of Beijing Forestry University, 2022, 44(10): 85-92. DOI: 10.12171/j.1000-1522.20220350
    [7]Jiang Yarong, Jiang Shirong, Yuan Tao, Li Yan, Dong Mingzhe, Wu Luyao, Tang Ying. Competition simulation of flower meadow community based on neighborhood interference model[J]. Journal of Beijing Forestry University, 2022, 44(3): 85-97. DOI: 10.12171/j.1000-1522.20200352
    [8]Lou Minghua, Zhang Huiru, Lei Xiangdong, Bai Chao, Yang Tonghui. Relationship model between stand mean height and mean DBH for natural Quercus spp. broadleaved mixed stands[J]. Journal of Beijing Forestry University, 2020, 42(9): 37-50. DOI: 10.12171/j.1000-1522.20190463
    [9]GAO Ruo-nan, SU Xi-you, XIE Yang-sheng, LEI Xiang-dong, LU Yuan-chang. Prediction of adaptability of Cunninghamia lanceolata based on random forest[J]. Journal of Beijing Forestry University, 2017, 39(12): 36-43. DOI: 10.13332/j.1000-1522.20170260
    [10]JIANG Ping, YE Ji, WANG Shao-xian, , FENG Xiu-chun, HUANG Xiang-tong, NIU Li-jun, WU Gang. Vertical distribution of floristic composition, community structure and biodiversity of forest communities along altitudinal gradients on south slope of the Changbai Mountain, northeastern China.[J]. Journal of Beijing Forestry University, 2008, 30(增刊1): 258-262.
  • Cited by

    Periodical cited type(17)

    1. 张佳旺,董希斌,郭奔,刘慧,张莹,任允泽,滕弛,宋梓恺,张雨晨. 天然落叶松林不同演替阶段空间结构参数的多元分布. 东北林业大学学报. 2024(03): 1-9 .
    2. 王迤翾,朱宁华,周光益,袁星明,江岱,董妍妍,颜润芝. 湘西石漠化区湿地松-马褂木人工混交林林分结构及土壤理化性质研究. 广西植物. 2024(03): 477-487 .
    3. 韩艳英,盛基峰,李垚,大布穷,叶彦辉. 西藏原始林芝云杉林空间结构参数分布特征. 西北林学院学报. 2023(01): 146-152 .
    4. 淦江,杜虎,宋同清,彭晚霞,曾馥平,黄国勤. 中亚热带喀斯特常绿落叶阔叶林空间结构特征. 西北植物学报. 2023(05): 846-855 .
    5. 张岚棋,李丽,杨华,谢伊. 基于AHP-CRITIC组合赋权法的长白山天然林空间结构优化调整. 北京林业大学学报. 2023(08): 74-83 . 本站查看
    6. 黄露波 ,甄贞 ,赵颖慧 . 基于多源LiDAR的阔叶红松林林分空间结构特征分析. 中南林业科技大学学报. 2023(08): 36-50 .
    7. 娄明华,杨同辉,王卫兵,毛建方,徐婧,章建红. 四明山黄山松针阔混交林林分空间结构参数多元分布特征. 林业与环境科学. 2023(04): 12-20 .
    8. 罗建琼,缪宁,薛盼盼,张远东,王晖. 人工-天然混交林研究综述. 陆地生态系统与保护学报. 2023(06): 78-87 .
    9. 袁星明,朱宁华,周光益,党鹏,尚海. 湘西喀斯特地区42年生湿地松-樟树人工混交林空间结构研究. 中南林业科技大学学报. 2022(04): 49-58 .
    10. 王志康,祝乐,许晨阳,李艳,耿增超,王强,刘莉丽,秦一郎,杜旭光. 秦岭天然林凋落物去除对土壤团聚体稳定性及细根分布的影响. 生态学报. 2022(13): 5493-5503 .
    11. 刘磊,萨如拉,高明龙,王子瑞,铁牛. 大兴安岭北部白桦次生林空间结构多元分析. 西部林业科学. 2022(05): 118-126 .
    12. 和敬渊,王新杰,王开,郭韦韦,刘丽,王福增. 杨桦次生林林分空间结构参数多元分布研究. 北京林业大学学报. 2021(02): 22-33 . 本站查看
    13. 薛卫星,郭秋菊,艾训儒,姚兰,朱江,黄阳祥,李玮宜,罗西,刘毅. 鹅掌楸天然林物种组成与林分空间结构特征研究. 林业科学研究. 2021(02): 166-173 .
    14. 崔玉华,韩有志,张梦弢,杨秀清,赵占合. 不同干扰强度下针阔混交林树种空间格局及种间关联性. 应用生态学报. 2021(06): 2053-2060 .
    15. 孙明港,王新杰. 长白山地区白桦红松混交林结构特征分析. 西北林学院学报. 2021(05): 18-27 .
    16. 徐美玲,农明川,欧光龙. 思茅松天然林林分空间结构分析. 西南林业大学学报(自然科学). 2020(03): 122-130 .
    17. 李燕,刘成功. 天目山天然混交林群落优势树种种群结构与空间格局. 基因组学与应用生物学. 2020(12): 5744-5757 .

    Other cited types(12)

Catalog

    Article views (338) PDF downloads (44) Cited by(29)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return