Citation: | Hu Zhenhong, Zhao Zhuqi, He Xian, Yuan Mengfan, Cheng Lei. Research progress of impacts of tree species diversity on microbial decomposition of forest deadwood and carbon cycling[J]. Journal of Beijing Forestry University, 2024, 46(11): 1-9. DOI: 10.12171/j.1000-1522.20240233 |
The study of ecosystem processes associated with forest tree diversity and their stability under climate changes is the key to answering basic forest ecology questions and building theory framework. Deadwood is an important carbon and nutrient pool in forest ecosystems, and its decomposition process plays a key role in forest carbon and nutrient cycles and soil fertility. Climate change and frequent occurrence of extreme weather events have led to a continued increase in forest mortality, while the impact on carbon cycling will be exacerbated by a further increase in deadwood stocks in forests as forest management advances in the conservation of natural forests, harvesting of plantation forests and restructuring of forest stands. Currently, in order to improve the ecological quality of forests in China, forestry management agencies in many regions are carrying out the strict natural forest protection policy and transformation of forest stand structure, which will greatly increase the tree diversity. However, there is still a lack of research on how tree species diversity affects the decomposition and carbon cycling of forest deadwood, especially on the composition of soil microbial communities, and how soil microbes regulate the key processes of microbial colonization and decomposition in deadwood. Based on these gaps, this article reviews the effects of tree species diversity on soil microbial colonization processes, community composition, diversity and community succession in forest deadwood, discusses the metabolic processes of different microbial communities on deadwood decomposition and their responses to environmental changes, and explores the development of deadwood microbial decomposition models for predicting the characteristics of changes in the carbon pool of forest deadwood in China. Finally, the article suggests that in the future, we should strengthen the research on mechanism of microbial decomposition of deadwood and carbon sink effect of tree species diversity to improve the carbon sink capacity of forests, and at the same time, we should provide technical references for the improvement of quality of forest ecological services and the excavation of function of “carbon pool” according to current situation and future changes of the structure of China’s forest tree species.
[1] |
Vitousek P M, Turner D R, Parton W J, et al. Litter decomposition on the Mauna Loa Environmental Matrix, Hawai’i: patterns, mechanisms, and models[J]. Ecology, 1994, 75(2): 418−429. doi: 10.2307/1939545
|
[2] |
Harmon M E, Franklin J F, Swanson F J, et al. Ecology of coarse woody debris in temperate ecosystems[J]. Advances in Ecological Research, 1986, 15: 133−302.
|
[3] |
Bradford M A, Warren I R J, Baldrian P, et al. Climate fails to predict wood decomposition at regional scales[J]. Nature Climate Change, 2014, 4(7): 625−630. doi: 10.1038/nclimate2251
|
[4] |
Zanne A E, Flores-Moreno H, Powell J R, et al. Termite sensitivity to temperature affects global wood decay rates[J]. Science, 2022, 377: 1440−1444. doi: 10.1126/science.abo3856
|
[5] |
Pan Y, Birdsey R A, Fang J, et al. A large and persistent carbon sink in the world’s forests[J]. Science, 2011, 333: 988−993. doi: 10.1126/science.1201609
|
[6] |
Chambers J Q, Schimel J P, Nobre A D. Respiration from coarse wood litter in central Amazon forests[J]. Biogeochemistry, 2001, 52(2): 115−131. doi: 10.1023/A:1006473530673
|
[7] |
Odum H T, Pigeon R F. A tropical rain forest: a study of irradiation and ecology at El Verde, Puerto Rico [M]. Richmond: Division of Technical Information, US Atomic Energy Commission, 1970.
|
[8] |
Seibold S, Rammer W, Hothorn T, et al. The contribution of insects to global forest deadwood decomposition[J]. Nature, 2021, 597: 77−81. doi: 10.1038/s41586-021-03740-8
|
[9] |
Boddy L, Watkinson S C. Wood decomposition, higher fungi, and their role in nutrient redistribution[J]. Canadian Journal of Botany, 1995, 73(Suppl.1): 1377−1383.
|
[10] |
van der Wal A, Ottosson E, de Boer W. Neglected role of fungal community composition in explaining variation in wood decay rates[J]. Ecology, 2014, 96(1): 124−133.
|
[11] |
Makipaa R, Rajala T, Schigel D, et al. Interactions between soil- and dead wood-inhabiting fungal communities during the decay of Norway spruce logs[J]. Isme Journal, 2017, 11(9): 1964−1974. doi: 10.1038/ismej.2017.57
|
[12] |
Purahong W, Wubet T, Krüger D, et al. Molecular evidence strongly supports deadwood-inhabiting fungi exhibiting unexpected tree species preferences in temperate forests[J]. The ISME Journal, 2018, 12(1): 289−295. doi: 10.1038/ismej.2017.177
|
[13] |
Wardle D A, Bardgett R D, Klironomos J N, et al. Ecological linkages between aboveground and belowground biota[J]. Science, 2004, 304: 1629−1633. doi: 10.1126/science.1094875
|
[14] |
Yang T, Adams J M, Shi Y, et al. Soil fungal diversity in natural grasslands of the Tibetan Plateau: associations with plant diversity and productivity[J]. New Phytologist, 2017, 215(2): 756−765. doi: 10.1111/nph.14606
|
[15] |
Beugnon R, Du J, Cesarz S, et al. Tree diversity and soil chemical properties drive the linkages between soil microbial community and ecosystem functioning[J]. ISME Communications, 2021, 1(1): 41. doi: 10.1038/s43705-021-00040-0
|
[16] |
Bardgett R D, van der Putten W H. Belowground biodiversity and ecosystem functioning[J]. Nature, 2014, 515: 505−511. doi: 10.1038/nature13855
|
[17] |
Gao C, Shi N N, Liu Y X, et al. Host plant genus-level diversity is the best predictor of ectomycorrhizal fungal diversity in a Chinese subtropical forest[J]. Molecular Ecology, 2013, 22(12): 3403−3414. doi: 10.1111/mec.12297
|
[18] |
Tedersoo L, Bahram M, Cajthaml T, et al. Tree diversity and species identity effects on soil fungi, protists and animals are context dependent[J]. The ISME Journal, 2016, 10(2): 346−362. doi: 10.1038/ismej.2015.116
|
[19] |
Shi L L, Mortimer P E, Ferry S J, et al. Variation in forest soil fungal diversity along a latitudinal gradient[J]. Fungal Diversity, 2014, 64(1): 305−315. doi: 10.1007/s13225-013-0270-5
|
[20] |
Ma B, Dai Z, Wang H, et al. Distinct biogeographic patterns for archaea, bacteria, and fungi along the vegetation gradient at the continental scale in Eastern China [J/OL]. mSystems, 2017, 2(1): 10.1128/msystems.00174-16 [2024−02−19]. https://journals.asm.org/doi/10.1128/msystems.00174-16.
|
[21] |
Ramirez K S, Leff J W, Barberán A, et al. Biogeographic patterns in below-ground diversity in New York City’s Central Park are similar to those observed globally [J/OL]. Proceedings of the Royal Society B: Biological Sciences, 2014, 281: 20141988 [2024−02−16]. https://doi.org/10.1098/rspb.2014.1988.
|
[22] |
Prober S M, Leff J W, Bates S T, et al. Plant diversity predicts beta but not alpha diversity of soil microbes across grasslands worldwide[J]. Ecology Letters, 2015, 18(1): 85−95. doi: 10.1111/ele.12381
|
[23] |
宋战超, 王晖, 刘世荣, 等. 南亚热带混交人工林树种丰富度与土壤微生物多样性和群落组成的关系[J]. 生态学报, 2020, 40(22): 8265−8273.
Song Z C, Wang H, Liu S R, et al. Relationship between tree species richness and soil microbial diversity and community composition in mixed plantations in south subtropical China[J]. Journal of Ecology, 2020, 40(22): 8265−8273.
|
[24] |
Bardgett R D, Wardle D A. Aboveground-belowground linkages: biotic interactions, ecosystem processes, and global change [M]. Oxford: Oxford University Press, 2010.
|
[25] |
Chen L, Xiang W, Wu H, et al. Tree species identity surpasses richness in affecting soil microbial richness and community composition in subtropical forests[J]. Soil Biology and Biochemistry, 2019, 130: 113−121. doi: 10.1016/j.soilbio.2018.12.008
|
[26] |
Fei S, Kivlin S N, Domke G M, et al. Coupling of plant and mycorrhizal fungal diversity: its occurrence, relevance, and possible implications under global change[J]. New Phytologist, 2022, 234(6): 1960−1966. doi: 10.1111/nph.17954
|
[27] |
Bahram M, Hildebrand F, Forslund S K, et al. Structure and function of the global topsoil microbiome[J]. Nature, 2018, 560: 233−237. doi: 10.1038/s41586-018-0386-6
|
[28] |
Matulich K L, Martiny J B H. Microbial composition alters the response of litter decomposition to environmental change[J]. Ecology, 2015, 96(1): 154−163. doi: 10.1890/14-0357.1
|
[29] |
Gottschall F, Davids S, Newiger-Dous T E, et al. Tree species identity determines wood decomposition via microclimatic effects[J]. Ecology and Evolution, 2019, 9(21): 12113−12127. doi: 10.1002/ece3.5665
|
[30] |
Zhou G, Xu S, Ciais P, et al. Climate and litter C/N ratio constrain soil organic carbon accumulation[J]. National Science Review, 2019, 6(4): 746−757. doi: 10.1093/nsr/nwz045
|
[31] |
Potvin C, Gotelli N J. Biodiversity enhances individual performance but does not affect survivorship in tropical trees[J]. Ecology Letters, 2008, 11(3): 217−23. doi: 10.1111/j.1461-0248.2007.01148.x
|
[32] |
Williams L J, Paquette A, Cavender-Bares J, et al. Spatial complementarity in tree crowns explains overyielding in species mixtures[J]. Nature Ecology & Evolution, 2017, 1(4): 1−7.
|
[33] |
杨腾. 土壤真菌在区域尺度下的多样性及其群落构建 [D]. 南京: 中国科学院大学, 2017.
Yang T. Diversity and community construction of soil fungi at regional scale [D]. Nanjing: University of Chinese Academy of Sciences, 2017.
|
[34] |
Fichtner A, Härdtle W, Bruelheide H, et al. Neighbourhood interactions drive overyielding in mixed-species tree communities[J]. Nature Communications, 2018, 9(1): 1144. doi: 10.1038/s41467-018-03529-w
|
[35] |
Chen B J W, Xu C, Liu M S, et al. Neighbourhood-dependent root distributions and the consequences on root separation in arid ecosystems[J]. Journal of Ecology, 2020, 108(4): 1635−1648. doi: 10.1111/1365-2745.13360
|
[36] |
Fichtner A, Schnabel F, Bruelheide H, et al. Neighbourhood diversity mitigates drought impacts on tree growth[J]. Journal of Ecology, 2020, 108(3): 865−875. doi: 10.1111/1365-2745.13353
|
[37] |
Berg B, Mcclaugherty C. Decomposition of fine root and woody litter [M]//Plant litter: decomposition, humus formation, carbon sequestration. Berlin: Springer, 2014.
|
[38] |
Cornwell W K, Cornelissen J H C, Allison S D, et al. Plant traits and wood fates across the globe: rotted, burned, or consumed?[J]. Global Change Biology, 2009, 15(10): 2431−2449. doi: 10.1111/j.1365-2486.2009.01916.x
|
[39] |
魏玉莲. 森林生态系统中木腐真菌群落形成机理及生态功能[J]. 生态学杂志, 2021, 40(2): 534−543.
Wei Y L. Formation mechanism and ecological function of wood-decaying fungi community in forest ecosystem[J]. Journal of Ecology, 2021, 40(2): 534−543.
|
[40] |
Bradford M A, Berg B, Maynard D S, et al. Understanding the dominant controls on litter decomposition[J]. Journal of Ecology, 2016, 104(1): 229−238. doi: 10.1111/1365-2745.12507
|
[41] |
Vivanco L, Austin A T. Tree species identity alters forest litter decomposition through long-term plant and soil interactions in Patagonia, Argentina[J]. Journal of Ecology, 2008, 96(4): 727−736. doi: 10.1111/j.1365-2745.2008.01393.x
|
[42] |
Wu D, Pietsch K A, Staab M, et al. Wood species identity alters dominant factors driving fine wood decomposition along a tree diversity gradient in subtropical plantation forests[J]. Biotropica, 2021, 53(2): 643−657. doi: 10.1111/btp.12906
|
[43] |
Hobbie S E, Reich P B, Oleksyn J, et al. Tree species effects on decomposition and forest floor dynamics in a common garden[J]. Ecology, 2006, 87(9): 2288−2297. doi: 10.1890/0012-9658(2006)87[2288:TSEODA]2.0.CO;2
|
[44] |
Ayres E, Steltzer H, Simmons B L, et al. Home-field advantage accelerates leaf litter decomposition in forests[J]. Soil Biology & Biochemistry, 2009, 41(3): 606−610.
|
[45] |
Fanin N, Fromin N, Bertrand I. Functional breadth and home-field advantage generate functional differences among soil microbial decomposers[J]. Ecology, 2015, 97(4): 1023−1037.
|
[46] |
Boddy L, Frankland J, van West P. Ecology of saprotrophic basidiomycetes [M]. Cambridge: Academic Press, 2007.
|
[47] |
Guo L D. Presidential address: recent advance of mycorrhizal research in China[J]. Mycology, 2018, 9(1): 1−6. doi: 10.1080/21501203.2018.1437838
|
[48] |
Huang A C, Jiang T, Liu Y X, et al. A specialized metabolic network selectively modulates arabidopsis root microbiota[J]. Science, 2019, 364: 6389. doi: 10.1126/science.aau6389
|
[49] |
Hiscox J, Savoury M, Muller C T, et al. Priority effects during fungal community establishment in beech wood [J]. ISME Journal, 2015: 1−15.
|
[50] |
Leopold D R, Wilkie J P, Dickie I A, et al. Priority effects are interactively regulated by top-down and bottom-up forces: evidence from wood decomposer communities[J]. Ecology Letters, 2017, 20(8): 1054−1063. doi: 10.1111/ele.12803
|
[51] |
Song Z, Kennedy P G, Liew F J, et al. Fungal endophytes as priority colonizers initiating wood decomposition[J]. Functional Ecology, 2017, 31(2): 407−418. doi: 10.1111/1365-2435.12735
|
[52] |
Chase J M, Leibold M A. Ecological niches: linking classical and contemporary approaches [M]. Chicago: University of Chicago Press, 2003.
|
[53] |
Vellend M. Conceptual synthesis in community ecology[J]. The Quarterly Review of Biology, 2010, 85(2): 183−206. doi: 10.1086/652373
|
[54] |
Hu Z, Xu C, Mcdowell N G, et al. Linking microbial community composition to C loss rates during wood decomposition[J]. Soil Biology and Biochemistry, 2017, 104: 108−116. doi: 10.1016/j.soilbio.2016.10.017
|
[55] |
Johnston A S A, Sibly R M. The influence of soil communities on the temperature sensitivity of soil respiration[J]. Nature Ecology & Evolution, 2018, 2(10): 1597−1602.
|
[56] |
Wagg C, Schlaeppi K, Banerjee S, et al. Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning[J]. Nature Communications, 2019, 10(1): 4841. doi: 10.1038/s41467-019-12798-y
|
[57] |
Valentin L, Rajala T, Peltoniemi M, et al. Loss of diversity in wood-inhabiting fungal communities affects decomposition activity in Norway spruce wood[J]. Frontiers in Microbiology, 2014, 5: 1−11.
|
[58] |
Glassman S I, Weihe C, Li J, et al. Decomposition responses to climate depend on microbial community composition[J]. Proceedings of the National Academy of Sciences, 2018, 115(47): 11994−11999. doi: 10.1073/pnas.1811269115
|
[59] |
Cleveland C C, Reed S C, Keller A B, et al. Litter quality versus soil microbial community controls over decomposition: a quantitative analysis[J]. Oecologia, 2014, 174: 283−294. doi: 10.1007/s00442-013-2758-9
|
[60] |
Li H, Yang S, Semenov M V, et al. Temperature sensitivity of SOM decomposition is linked with a K-selected microbial community[J]. Global Change Biology, 2021, 27(12): 2763−2779. doi: 10.1111/gcb.15593
|
[61] |
Butenschoen O, Scheu S, Eisenhauer N. Interactive effects of warming, soil humidity and plant diversity on litter decomposition and microbial activity[J]. Soil Biology and Biochemistry, 2011, 43(9): 1902−1907. doi: 10.1016/j.soilbio.2011.05.011
|
[62] |
Sinsabaugh R L, Moorhead D L, Xu X, et al. Plant, microbial and ecosystem carbon use efficiencies interact to stabilize microbial growth as a fraction of gross primary production[J]. New Phytologist, 2017, 214(4): 1518−1526. doi: 10.1111/nph.14485
|
[63] |
Yuan Z Y, Jiao F, Shi X R, et al. Experimental and observational studies find contrasting responses of soil nutrients to climate change[J]. eLife, 2017, 6: e23255. doi: 10.7554/eLife.23255
|
[64] |
Martiny J B H, Martiny A C, Weihe C, et al. Microbial legacies alter decomposition in response to simulated global change[J]. The ISME Journal, 2017, 11(2): 490−499. doi: 10.1038/ismej.2016.122
|
[65] |
Allison S D, Lu Y, Weihe C, et al. Microbial abundance and composition influence litter decomposition response to environmental change[J]. Ecology, 2013, 94(3): 714−725. doi: 10.1890/12-1243.1
|
[66] |
Hu Z, Chen H Y H, Yue C, et al. Traits mediate drought effects on wood carbon fluxes[J]. Global Change Biology, 2020, 26(6): 3429−3442. doi: 10.1111/gcb.15088
|
[67] |
Lee M R, Oberle B, Olivas W, et al. Wood construction more strongly shapes deadwood microbial communities than spatial location over 5 years of decay[J]. Environmental Microbiology, 2020, 22(11): 4702−4717. doi: 10.1111/1462-2920.15212
|
[68] |
Xu X, Schimel J P, Thornton P E, et al. Substrate and environmental controls on microbial assimilation of soil organic carbon: a framework for Earth system models[J]. Ecology Letters, 2014, 17(5): 547−555. doi: 10.1111/ele.12254
|
[69] |
Gillooly J F, Brown J H, West G B, et al. Effects of Size and Temperature on Metabolic Rate[J]. Science, 2001, 293: 2248−2251. doi: 10.1126/science.1061967
|
[70] |
Brown J H, Gillooly J F, Allen A P, et al. Toward a metabolic theory of ecology[J]. Ecology, 2004, 85(7): 1771−1789. doi: 10.1890/03-9000
|
[71] |
Allen A P, Gillooly J F, Brown J H. Linking the global carbon cycle to individual metabolism[J]. Functional Ecology, 2005, 19(2): 202−213. doi: 10.1111/j.1365-2435.2005.00952.x
|
[72] |
Hu Z, Michaletz S T, Johnson D J, et al. Traits drive global wood decomposition rates more than climate[J]. Global Change Biology, 2018, 24(11): 5259−5269. doi: 10.1111/gcb.14357
|
[73] |
陈科屹, 张会儒, 张博, 等. 云冷杉天然次生林死木分布格局及空间关联性[J]. 应用生态学报, 2021, 32(8): 2745−2754.
Chen K Y, Zhang H R, Zhang B, et al. Spatial distribution and associations of dead woods in natural spruce-fir secondary forests[J]. Chinese Journal of Applied Ecology, 2021, 32(8): 2745−2754.
|
[74] |
刘世荣, 马姜明, 缪宁. 中国天然林保护、生态恢复与可持续经营的理论与技术[J]. 生态学报, 2015, 35(1): 212−218.
Liu S R, Ma J M, Miao N. Achievements in natural forest protection, ecological restoration, and sustainable management in China[J]. Acta Ecologica Sinica, 2015, 35(1): 212−218.
|
[75] |
盛炜彤. 关于我国人工林长期生产力的保持[J]. 林业科学研究, 2018, 31(1): 14.
Sheng W T. On the long-term productivity of plantation in our country[J]. Scientific Research in Forestry, 2018, 31(1): 14.
|
[76] |
Huang Z, Wan X, He Z, et al. Soil microbial biomass, community composition and soil nitrogen cycling in relation to tree species in subtropical China[J]. Soil Biology and Biochemistry, 2013, 62: 68−75. doi: 10.1016/j.soilbio.2013.03.008
|
[77] |
Huang Z, Chang S, Clinton P W, et al. Preface to the special issue for the 8th International Symposium on Forest Soils: linking soil processes to forest productivity and water protection under global change[J]. Journal of Soils and Sediments, 2017, 17: 2215−2217. doi: 10.1007/s11368-017-1768-3
|
[78] |
Yu Z, Liu S, Wang J, et al. Natural forests exhibit higher carbon sequestration and lower water consumption than planted forests in China[J]. Global Change Biology, 2019, 25(1): 68−77. doi: 10.1111/gcb.14484
|
[79] |
Šēnhofa S, Jaunslaviete I, Šņepsts G, et al. Deadwood characteristics in mature and old-growth birch stands and their implications for carbon storage[J]. Forests, 2020, 11(5): 536. doi: 10.3390/f11050536
|
[80] |
冯宗炜, 陈楚莹, 张家武, 等. 不同自然地带杉木林的生物生产力[J]. 植物生态学与地植物学丛刊, 1984(2): 93−100.
Feng Z W, Chen C Y, Zhang J W, et al. Biological productivity of Chinese fir forests in different natural zones[J]. Journal of Plant Ecology and Geobotany, 1984(2): 93−100.
|
[81] |
Zhang N, Bruelheide H, Li Y, et al. Community and neighbourhood tree species richness effects on fungal species in leaf litter[J]. Fungal Ecology, 2020, 47: 100961. doi: 10.1016/j.funeco.2020.100961
|
[82] |
Huang Y, Chen Y, Castro-Izaguirre N, et al. Impacts of species richness on productivity in a large-scale subtropical forest experiment[J]. Science, 2018, 362: 80−83. doi: 10.1126/science.aat6405
|
[83] |
Zhu J, Hu H, Tao S, et al. Carbon stocks and changes of dead organic matter in China’s forests[J]. Nature Communications, 2017, 8(1): 151. doi: 10.1038/s41467-017-00207-1
|
[84] |
Russell M B, Fraver S, Aakala T, et al. Quantifying carbon stores and decomposition in dead wood: a review[J]. Forest Ecology and Management, 2015, 350: 107−128. doi: 10.1016/j.foreco.2015.04.033
|
[85] |
方精云, 黄耀, 朱江玲, 等. 森林生态系统碳收支及其影响机制[J]. 中国基础科学·研究进展, 2015, 17(3): 20−25.
Fang J Y, Huang Y, Zhu J L, et al. Carbon budget of forest ecosystem and its influencing mechanism[J]. Chinese Fundamental Science, 2015, 17(3): 20−25.
|