• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Wu Jianzhao, Sun Fan, Cui Yu, He Jingwen, Liu Ying, Li Jian, Lin Yongming, Wang Daojie. Relationship between vegetation biomass and soil bulk density on unstable slopes in different climatic regions: a case study of Jiangjiagou Watershed in Dongchuan District of Kunming City, Yunnan Province of southwestern China[J]. Journal of Beijing Forestry University, 2020, 42(3): 24-35. DOI: 10.12171/j.1000-1522.20190066
Citation: Wu Jianzhao, Sun Fan, Cui Yu, He Jingwen, Liu Ying, Li Jian, Lin Yongming, Wang Daojie. Relationship between vegetation biomass and soil bulk density on unstable slopes in different climatic regions: a case study of Jiangjiagou Watershed in Dongchuan District of Kunming City, Yunnan Province of southwestern China[J]. Journal of Beijing Forestry University, 2020, 42(3): 24-35. DOI: 10.12171/j.1000-1522.20190066

Relationship between vegetation biomass and soil bulk density on unstable slopes in different climatic regions: a case study of Jiangjiagou Watershed in Dongchuan District of Kunming City, Yunnan Province of southwestern China

More Information
  • Received Date: January 24, 2019
  • Revised Date: September 05, 2019
  • Available Online: December 23, 2019
  • Published Date: March 30, 2020
  • ObjectiveThis paper aims to investigate the characteristics and relationships between soil bulk density and biomass of unstable slopes in debris flows for different climate types, which is a prerequisite for ecological restoration based on local conditions and is very important for the accurate assessment of the stable development and changes of the ecosystem in this region.
    MethodThe temperate humid mountain ridge region (Dadi shady slope, Xiaojianfeng sunny slope), subtropical and warm temperate subhumid region (Duozhao Gully sunny slope), subtropical dry-hot valley region (Daaozi Gully shade slope, Chajing Gully sunny slope) for the Jiangjiagou Basin were selected as a study area. Taking the stable area, the unstable area and the accumulation area of the unstable slope of each climatic region as the sample plot, and conducting vegetation community surveys, plant and stratified soil sample (0−5 cm, 5−10 cm, 10−20 cm) collection, then soil bulk density, and the biomass of the aboveground and underground parts of the plants were determined.
    Result(1) The biomass of arbor in subtropical and warm temperate subhumid region was significantly higher than that in temperate humid mountain ridge region (P < 0.05). However, the biomass of litter was significantly higher in temperate humid mountain ridge region than in subtropical and warm temperate subhumid region (P < 0.05). In unstable slopes of subtropical dry-hot valley region without trees, aboveground biomass, underground biomass and total biomass showed stable area > unstable area > accumulation area (P < 0.05). (2) The relationship between aboveground biomass and underground biomass of herbaceous plants with unstable slopes in different climatic regions was in accordance with the allometric growth model of root and crown, showing a steady growth ratio. (3) In general, climatic factors and section factors and their interactions had significant effects on biomass and stratified soil bulk density (P < 0.05), however, in this study, the soil bulk density of unstable slopes in different climate regions had little spatial variability, showing weak variability. (4) With the increase of soil bulk density of 0−5 cm, the underground and aboveground biomass and total biomass all decreased, however, there was no significant change in the root shoot ratio.
    ConclusionThis study elucidates the spatial distribution pattern of soil bulk density, underground biomass, aboveground biomass and root/canopy ratio along the environmental gradient in the watershed with frequent debris flow. The systematic analysis of the relationship between them will be conducive to the analysis of the regulation characteristics of environmental factors, and is of great significance for further ecological restoration research on the effects of environmental factors.
  • [1]
    李潮海, 王群, 郝四平. 土壤物理性质对土壤生物活性及作物生长的影响研究进展[J]. 河南农业大学学报, 2002, 36(1):32−37. doi: 10.3969/j.issn.1000-2340.2002.01.008

    Li C H, Wang Q, Hao S P. Advances of studies on the effect of soil physical properties on soil biological activity and crop growth[J]. Journal of Henan Agricultural University, 2002, 36(1): 32−37. doi: 10.3969/j.issn.1000-2340.2002.01.008
    [2]
    吴刚, 冯宗炜. 中国主要五针松群落学特征及其生物量的研究[J]. 生态学报, 1995, 15(3):260−267. doi: 10.3321/j.issn:1000-0933.1995.03.005

    Wu G, Feng Z W. The sociological characteristics and biomass of stone pine forests in China[J]. Acta Ecologica Sinica, 1995, 15(3): 260−267. doi: 10.3321/j.issn:1000-0933.1995.03.005
    [3]
    王同顺, 孙保平, 冯磊, 等. 不同水分处理对甘蒙柽柳幼苗根系生长特性的影响[J]. 生态学杂志, 2013, 32(3):591−596.

    Wang T S, Sun B P, Feng L, et al. Effects of different soil moisture contents on root growth characteristics of Tamarix austromongolica seedlings[J]. Chinese Journal of Ecology, 2013, 32(3): 591−596.
    [4]
    Troughton A. The rate of growth and partitioning of assimilates in young grass plants: a mathematical model[J]. Annals of Botany, 1977, 41(3): 553−565. doi: 10.1093/oxfordjournals.aob.a085325
    [5]
    李雪华, 李晓兰, 蒋德明, 等. 科尔沁沙地70种草本植物个体和构件生物量比较研究[J]. 干旱区研究, 2009, 26(2):54−59.

    Li X H, Li X L, Jiang D M, et al. A comparative study of the individual biomass and modular biomass of 70 herbaceous species found in the Horqin Sandy Land[J]. Arid Zone Research, 2009, 26(2): 54−59.
    [6]
    Hanawalt R B, Whittaker R H. Altitudinally coordinated patterns of soils and vegetation in-the San Jacinto Mountains, California[J]. Soil Science, 1976, 121(2): 114−124. doi: 10.1097/00010694-197602000-00007
    [7]
    王丽华, 薛晶月, 谢雨, 等. 不同气候类型下四川草地土壤有机碳空间分布及影响因素[J]. 植物生态学报, 2018, 42(3):297−306.

    Wang L H, Xue J Y, Xie Y, et al. Spatial distribution and influencing factors of soil organic carbon among different climate types in Sichuan, China[J]. Chinese Journal of Plant Ecology, 2018, 42(3): 297−306.
    [8]
    冯强, 段宝玲, 姜硕, 等. 小流域尺度土壤容重及其影响因素的空间变异[J]. 山西农业大学学报(自然科学版), 2016, 36(1):39−45.

    Feng Q, Duan B L, Jiang S, et al. Spatial heterogeneity of bulk density and its influencing factors at small watershed scale[J]. Journal of Shanxi Agricultural University (Natural Science Edition), 2016, 36(1): 39−45.
    [9]
    罗汝英. 森林土壤学[M]. 北京: 科学出版社, 1983.

    Luo R Y. Forest soil science[M]. Beijing: Science Press, 1983.
    [10]
    Reichert J M, Suzuki L E A S, Reinert D J, et al. Reference bulk density and critical degree-of-compactness for no-till crop production in subtropical highly weathered soils[J]. Soil and Tillage Research, 2009, 102(2): 242−254. doi: 10.1016/j.still.2008.07.002
    [11]
    Parker M M, Van Lear D H. Soil heterogeneity and root distribution of mature loblolly pine stands in piedmont soils[J]. Soil Science Society of America Journal, 1996, 60(6): 1920−1925. doi: 10.2136/sssaj1996.03615995006000060043x
    [12]
    刘晚苟, 李良贤, 谢海容, 等. 土壤容重对野生香根草幼苗根系形态及其生物量的影响[J]. 草业学报, 2015, 24(4):214−220. doi: 10.11686/cyxb20150425

    Liu W G, Li L X, Xie H R, et al. Effect of soil bulk density on root morphology and biomass of vetiver grass seedlings[J]. Acta Prataculturae Sinica, 2015, 24(4): 214−220. doi: 10.11686/cyxb20150425
    [13]
    张千千, 王彦辉, 缪丽萍, 等. 六盘山叠叠沟小流域草本地上生物量的空间变化及其与环境因子的关系[J]. 中国农学通报, 2009, 25(4):82−87.

    Zhang Q Q, Wang Y H, Miao L P, et al. Spatial variation of above-ground biomass of grasses and its relation with environmental factors in the small watershed of Diediegou of Liupan Mountains[J]. Chinese Agricultural Science Bulletin, 2009, 25(4): 82−87.
    [14]
    Benigno S M, Dixon K W, Stevens J C. Soil physical strength rather than excess ethylene reduces root elongation of Eucalyptus seedlings in mechanically impeded sandy soils[J]. Plant Growth Regulation, 2012, 68(2): 261−270. doi: 10.1007/s10725-012-9714-2
    [15]
    Twum E K A, Nii-Annang S. Impact of soil compaction on bulk density and root biomass of Quercus petraea L. at reclaimed post-lignite mining site in Lusatia, Germany[J/OL]. Applied and Environmental Soil Science, 2015 [2019−01−13]. http://dx.doi.org/10.1155/2015/504603.
    [16]
    Walker L R, Moral R D. Lessons from primary succession for restoration of severely damaged habitats[J]. Applied Vegetation Science, 2009, 12(1): 55−67. doi: 10.1111/j.1654-109X.2009.01002.x
    [17]
    Pandit K, Sarkar S, Sharma M. Optimization techniques in slope stability analysis methods[M]// Pradhan S P, Vishal V, Singh T N. Landslides: theory, practice and modelling. Berlin: Springer, 2019: 227−264.
    [18]
    罗清虎, 孙凡, 崔羽, 等. 蒋家沟泥石流频发流域失稳性坡面主要植物种间关联性分析[J]. 应用与环境生物学报, 2018, 24(4):689−696.

    Luo Q H, Sun F, Cui Y, et al. Interspecific association among main plant species in the unstable slope with high-frequency debris flow[J]. Chinese Journal of Applied and Environmental Biology, 2018, 24(4): 689−696.
    [19]
    张有富. 蒋家沟流域的森林植被与泥石流[J]. 山地学报, 1987, 5(4):213−217.

    Zhang Y F. Vegetation destruction and debris flow disasters in the Jiangjia Ravine[J]. Mountain Research, 1987, 5(4): 213−217.
    [20]
    张广帅, 俞伟, 邓浩俊, 等. 干热河谷泥石流流域不同分区土壤养分特征[J]. 西南林业大学学报, 2014, 34(1):8−13.

    Zhang G S, Yu W, Deng H J, et al. The soil nutrition characteristics in different partitions of debris flow basin in dry-hot valley[J]. Jounal of Southwest Forestry University, 2014, 34(1): 8−13.
    [21]
    陈爱民, 邓浩俊, 严思维, 等. 泥石流频发流域物源区坡面不同植被类型土壤质量综合评价[J]. 应用与环境生物学报, 2016, 22(2):249−256.

    Chen A M, Deng H J, Yan S W, et al. Comprehensive assessment of soil quality under different vegetation types in the provenance slope of the area of high-frequency debris flow[J]. Chinese Journal of Applied and Environmental Biology, 2016, 22(2): 249−256.
    [22]
    罗清虎, 孙凡, 吴建召, 等. 泥石流频发流域物源区坡面植被群落特征[J]. 应用与环境生物学报, 2018, 24(4):681−688.

    Luo Q H, Sun F, Wu J Z, et al. Characterizing the vegetation community in the provenance slope with high-frequency debris flow[J]. Chinese Journal of Applied and Environmental Biology, 2018, 24(4): 681−688.
    [23]
    吴建召, 陈爱民, 崔羽, 等. 干热河谷常见植物地表形态特征与泥沙拦截的关系[J]. 应用与环境生物学报, 2018, 24(6):1236−1246.

    Wu J Z, Chen A M, Cui Y, et al. The relationship between near-surface morphological traits of familiar plants and their ability for sediment retention in a dry-hot valley[J]. Chinese Journal of Applied and Environmental Biology, 2018, 24(6): 1236−1246.
    [24]
    郭晓军, 苏凤洹, 洪勇, 等. 蒋家沟流域雨季降水中氢氧同位素特征分析[J]. 水土保持研究, 2012, 19(2):82−85.

    Guo X J, Su F H, Hong Y, et al. Characteristics of hydrogen and oxygen isotopes in rainy season precipitation in Jiangjiagou Watershed[J]. Research of Soil and Water Conservation, 2012, 19(2): 82−85.
    [25]
    宋永昌. 植被生态学[M]. 上海: 华东师范大学出版社, 2001: 549−580.

    Song Y C. Vegetation ecology[M]. Shanghai: East China Normal University Press, 2001: 549−580.
    [26]
    McRoberts R E, Tomppo E O, Czaplewski R L. Sampling designs for national forest assessments[Z]. Rome: FAO, 2015: 23−40.
    [27]
    中国林业科学研究院林业研究所森林土壤研究室. 中华人民共和国林业行业标准(LY/T1219—1999)[S]. 北京: 标准出版社, 2000.

    Forest Soil Research Laboratory, Forestry Research Institute, Chinese Academy of Forestry. People’s Republic of China forestry industry standard (LY/T1219 —1999)[S]. Beijing: Standards Press, 2000.
    [28]
    王磊, 丁晶晶, 季永华, 等. 江苏省森林碳储量动态变化及其经济价值评价[J]. 南京林业大学学报(自然科学版), 2010, 34(2):1−5. doi: 10.3969/j.issn.1000-2006.2010.02.001

    Wang L, Ding J J, Ji Y H, et al. The dynamic carbon storage and economic value assessment of forest in Jiangsu Province[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2010, 34(2): 1−5. doi: 10.3969/j.issn.1000-2006.2010.02.001
    [29]
    罗恒春, 魏安超, 黄田, 等. 云南松生物量和碳储量动态变化分析[J]. 林业资源管理, 2016(6):37−43.

    Luo H C, Wei A C, Huang T, et al. Dynamic analysis of biomass and carbon storage of Pinus yunnanensis[J]. Forest Resources Management, 2016(6): 37−43.
    [30]
    方精云, 刘国华, 徐嵩龄. 我国森林植被的生物量和净生产量[J]. 生态学报, 1996, 16(5):497−508.

    Fang J Y, Liu G H, Xu S L. Biomass and net production of forest vegetation in China[J]. Acta Ecologica Sinica, 1996, 16(5): 497−508.
    [31]
    於琍, 李克让, 陶波, 等. 植物地理分布对气候变化的适应性研究[J]. 地理科学进展, 2010, 29(11):1326−1332. doi: 10.11820/dlkxjz.2010.11.012

    Yu L, Li K R, Tao B, et al. Simulating and assessing the adaptability of geographic distribution of vegetation to climate change in China[J]. Progress in Geography, 2010, 29(11): 1326−1332. doi: 10.11820/dlkxjz.2010.11.012
    [32]
    张广帅, 邓浩俊, 俞伟, 等. 泥石流频发区山地土壤环境因子与植被群落垂直梯度及其关系分析: 以云南小江流域为例[J]. 应用与环境生物学报, 2014, 20(4):646−654.

    Zhang G S, Deng H J, Yu W, et al. Vertical gradient analysis of soil environmental factors and vegetation community in mountain areas of frequent debris flow: a case study in the Xiaojiang Watershed, Yunnan[J]. Chinese Journal of Applied and Environmental Biology, 2014, 20(4): 646−654.
    [33]
    罗丹. 青藏高原东缘高寒草甸生物量动态及能量积累研究[D]. 成都: 四川师范大学, 2007.

    Luo D. Study on seasonal dynamics of biomass and energy storage of alpine meadow in eastern Qinghai-Tibetan Plateau[D]. Chengdu: Sichuan Normal University, 2007.
    [34]
    周萍, 刘国彬, 侯喜禄. 黄土丘陵区不同坡向及坡位草本群落生物量及多样性研究[J]. 中国水土保持科学, 2009, 7(1):67−73. doi: 10.3969/j.issn.1672-3007.2009.01.012

    Zhou P, Liu G B, Hou X L. Biomass and species diversity of herbosa at different position and aspects of slope in the hilly-gully region of Loess Plateau[J]. Science of Soil and Water Conservation, 2009, 7(1): 67−73. doi: 10.3969/j.issn.1672-3007.2009.01.012
    [35]
    张智袁, 李刚, 张宾宾, 等. 山西典型天然草地碳分布特征及碳储量估算[J]. 草地学报, 2017, 25(1):69−75. doi: 10.11733/j.issn.1007-0435.2017.01.011

    Zhang Z Y, Li G, Zhang B B, et al. Estimation on carbon distribution and storage of typical natural grassland in Shanxi Province[J]. Acta Agrestia Sinica, 2017, 25(1): 69−75. doi: 10.11733/j.issn.1007-0435.2017.01.011
    [36]
    王合云, 董智, 郭建英, 等. 不同放牧强度下短花针茅荒漠草原植被-土壤系统有机碳组分储量特征[J]. 生态学报, 2016, 36(15):4617−4625.

    Wang H Y, Dong Z, Guo J Y, et al. Organic carbon storage properties in Stipa breviflora desert steppe vegetation soil systems under different grazing intensities[J]. Acta Ecologica Sinica, 2016, 36(15): 4617−4625.
    [37]
    徐长林. 坡向对青藏高原东北缘高寒草甸植被构成和养分特征的影响[J]. 草业学报, 2016, 25(4):26−35. doi: 10.11686/cyxb2015481

    Xu C L. Variations in vegetation composition and nutrient characteristics related to aspect in an alpine meadow in the northeast margine of the Qinghai-Tibet Plateau[J]. Acta Prataculturae Sinica, 2016, 25(4): 26−35. doi: 10.11686/cyxb2015481
    [38]
    潘开文, 何静, 吴宁. 森林凋落物对林地微生境的影响[J]. 应用生态学报, 2004, 15(1):153−158. doi: 10.3321/j.issn:1001-9332.2004.01.035

    Pan K W, He J, Wu N. Effect of forest litter on microenvironment conditions of forestland[J]. Chinese Journal of Applied Ecology, 2004, 15(1): 153−158. doi: 10.3321/j.issn:1001-9332.2004.01.035
    [39]
    Lloret F, Casanovas C, Peñuelas J. Seedling survival of Mediterranean shrubland species in relation to root: shoot ratio, seed size and water and nitrogen use[J]. Functional Ecology, 1999, 13(2): 210−216. doi: 10.1046/j.1365-2435.1999.00309.x
    [40]
    宋香静, 李胜男, 韦玮, 等. 黄河三角洲柽柳根系分布特征及其影响因素[J]. 湿地科学, 2017, 15(5):716−723.

    Song X J, Li S N, Wei W, et al. Distribution characteristics of root system of Tamarix chinensis in Yellow River Delta and its influence factors[J]. Wetland Science, 2017, 15(5): 716−723.
    [41]
    刘莹, 盖钧镒, 吕彗能. 作物根系形态与非生物胁迫耐性关系的研究进展[J]. 植物遗传资源学报, 2003, 4(3):265−269. doi: 10.3969/j.issn.1672-1810.2003.03.018

    Liu Y, Gai J Y, Lü H N. Advances of the relationship between crop root morphology and tolerance to antibiotic stress[J]. Journal of Plant Genetic Resources, 2003, 4(3): 265−269. doi: 10.3969/j.issn.1672-1810.2003.03.018
    [42]
    Goodman A M, Ennos A R. The effects of soil bulk density on the morphology and anchorage mechanics of the root systems of sunflower and maize[J]. Annals of Botany, 1999, 83(3): 293−302. doi: 10.1006/anbo.1998.0822
    [43]
    Oussible M, Crookston R K, Larson W E. Subsurface compaction reduces the root and shoot growth and grain yield of wheat[J]. Agronomy Journal, 1992, 84(1): 34−38. doi: 10.2134/agronj1992.00021962008400010008x
    [44]
    Iijima M, Kono Y, Yamauchi A, et al. Effects of soil compaction on the development of rice and maize root systems[J]. Environmental and Experimental Botany, 1991, 31(3): 333−342. doi: 10.1016/0098-8472(91)90058-V
    [45]
    周欣, 左小安, 赵学勇, 等. 科尔沁沙地沙丘固定过程中植物生物量及土壤特性[J]. 中国沙漠, 2015, 35(1):81−89. doi: 10.7522/j.issn.1000-694X.2014.00166

    Zhou X, Zuo X A, Zhao X Y, et al. Plant biomass and soil properties during the process of dune restoration in the Horqin Sandy Land[J]. Journal of Desert Research, 2015, 35(1): 81−89. doi: 10.7522/j.issn.1000-694X.2014.00166
    [46]
    郑晓翾, 赵家明, 张玉刚, 等. 呼伦贝尔草原生物量变化及其与环境因子的关系[J]. 生态学杂志, 2007, 26(4):533−538. doi: 10.3321/j.issn:1000-4890.2007.04.015

    Zheng X X, Zhao J M, Zhang Y G, et al. Variation of grassland biomass and its relationships with environmental factors in Hulunbeier, Inner Mongolia[J]. Chinese Journal of Ecology, 2007, 26(4): 533−538. doi: 10.3321/j.issn:1000-4890.2007.04.015
    [47]
    Arvidsson J. Nutrient uptake and growth of barley as affected by soil compaction[J]. Plant and soil, 1999, 208(1): 9−19. doi: 10.1023/A:1004484518652
    [48]
    Atwell B J. The effect of soil compaction on wheat during early tillering[J]. New Phytologist, 1990, 115(1): 43−49. doi: 10.1111/j.1469-8137.1990.tb00920.x
  • Cited by

    Periodical cited type(4)

    1. 闫宇,邓焯,李斌,赵天忠. 基于Landsat 8数据的人工林地上生物量估测模型研究. 西北林学院学报. 2024(05): 53-60+77 .
    2. 张双印,赵保成,赵登忠,周伟,任斐鹏,付重庆,郑航,郑学东,徐平. 长江源草地生物量空间分布及分配初步研究. 长江科学院院报. 2024(11): 196-202 .
    3. 崔立晗,郑盛,徐敏. 内蒙古森林和草地地上生物量遥感反演. 地理科学. 2024(12): 2215-2224 .
    4. 姬永杰,徐昆鹏,张王菲,史建敏,张甫香. 不同波长极化SAR数据水云模型森林生物量反演对比分析. 北京林业大学学报. 2023(02): 24-33 . 本站查看

    Other cited types(5)

Catalog

    Article views (2368) PDF downloads (73) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return