• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Deng Xiangpeng, Xu Fangze, Zhao Shanchao, Xiang Wei. Tree height-DBH model for Picea schrenkiana in Tianshan Mountain, Xinjiang of northwestern China based on Bayesian method[J]. Journal of Beijing Forestry University, 2023, 45(1): 11-20. DOI: 10.12171/j.1000-1522.20220318
Citation: Deng Xiangpeng, Xu Fangze, Zhao Shanchao, Xiang Wei. Tree height-DBH model for Picea schrenkiana in Tianshan Mountain, Xinjiang of northwestern China based on Bayesian method[J]. Journal of Beijing Forestry University, 2023, 45(1): 11-20. DOI: 10.12171/j.1000-1522.20220318

Tree height-DBH model for Picea schrenkiana in Tianshan Mountain, Xinjiang of northwestern China based on Bayesian method

More Information
  • Received Date: August 06, 2022
  • Revised Date: November 09, 2022
  • Available Online: December 06, 2022
  • Published Date: January 24, 2023
  •   Objective  Bayesian statistics can use prior information and sample information to make statistical inference, which can effectively improve the reliability and stability of model parameters.
      Method  The data were obtained from three 100 m × 100 m sample plots of Picea schrenkiana, and the classical statistical method (maximum likelihood method) and Bayesian method were used to construct the tree height-DBH model of Picea schrenkiana. 80% of the sample plot data were randomly selected for modelling, and 20% of the sample plot data were validated to compare and analyze the performance and parameter distribution of the non-linear model and non-linear mixed effect model based on the classical method and the Bayesian model and Hierarchical Bayesian model based on the Bayesian method.
      Result  By comparing the non-linear model and Bayesian model, the confidence intervals for the three parameters a, b and c of the Bayesian model were 53.86%, 46.87% and 65.17% narrower than those of the non-linear model, respectively. In contrast, the confidence intervals for the fixed effect parameters of the Hierarchical Bayesian model were 37.21%, 62.62% and 49.31% narrower than those of the non-linear mixed effect model, respectively, but the confidence intervals for the SD of the random effect parameters were more spread out compared with those of the Hierarchical Bayesian model and the non-linear mixed effect model. The models based on the Bayesian approach all had lower parameter SD than those based on the classical approach. The fitting results of the four tree height-DBH models showed that the Hierarchical Bayesian model fitted better than the other three models, with a coefficient of determination (R2) of 0.961. The fitting accuracy showed that the prediction accuracy of the Hierarchical Bayesian model was slightly higher than that of the non-linear mixed effect model.
      Conclusion  Although there is no significant difference between the two mixed models in terms of fitting results, the Hierarchical Bayesian model is better in terms of stability of parameter estimation and its prediction is more reliable compared with the non-linear mixed effect model.
  • [1]
    李春明, 李利学. 基于非线性混合模型的栓皮栎树高与胸径关系研究[J]. 北京林业大学学报, 2009, 31(4): 7−12. doi: 10.3321/j.issn:1000-1522.2009.04.002

    Li C M, Li L X. Height-diameter relationship for Quercus variabilis Blume plantations based on nonlinear mixed model[J]. Journal of Beijing Forestry University, 2009, 31(4): 7−12. doi: 10.3321/j.issn:1000-1522.2009.04.002
    [2]
    赵俊卉, 亢新刚, 张慧东, 等. 长白山3个主要针叶树种的标准树高曲线[J]. 林业科学, 2010, 46(10): 191−194. doi: 10.11707/j.1001-7488.20101032

    Zhao J H, Kang X G, Zhang H D, et al. Generalized height-diameter models for three main coniferous trees species in Changbai Mountain[J]. Scientia Silvae Sinicae, 2010, 46(10): 191−194. doi: 10.11707/j.1001-7488.20101032
    [3]
    国家林业和草原局. 中国森林资源报告[M]. 北京: 中国林业出版社, 2019.

    National Forestry and Grassland Administration. China forest resources report[M]. Beijing: China Forestry Publishing House, 2019.
    [4]
    Dorado F C, Dieguez A U, Anta M B, et al. A generalized height-diameter model including random components for radiata pine plantations in northwestern Spain[J]. Forest Ecology and Management, 2006, 229: 202−213. doi: 10.1016/j.foreco.2006.04.028
    [5]
    董云飞, 孙玉军, 许昊, 等. 基于非线性混合模型的杉木标准树高曲线[J]. 东北林业大学学报, 2014, 42(11): 72−76, 81. doi: 10.3969/j.issn.1000-5382.2014.11.017

    Dong Y F, Sun Y J, Xu H, et al. Generalized height-diameter model for Chinese fir based on nonlinear mixed effects model[J]. Journal of Northeast Forestry University, 2014, 42(11): 72−76, 81. doi: 10.3969/j.issn.1000-5382.2014.11.017
    [6]
    曾翀, 雷相东, 刘宪钊, 等. 落叶松云冷杉林单木树高曲线的研究[J]. 林业科学研究, 2009, 22(2): 182−189. doi: 10.3321/j.issn:1001-1498.2009.02.006

    Zeng C, Lei X D, Liu X Z, et al. Individual tree height-diameter curves of larch-spruce-fir forests[J]. Forest Research, 2009, 22(2): 182−189. doi: 10.3321/j.issn:1001-1498.2009.02.006
    [7]
    李想, 董利虎, 李凤日. 基于联立方程组的人工樟子松枝下高模型构建[J]. 北京林业大学学报, 2018, 40(6): 9−18.

    Li X, Dong L H, Li F R. Building height to crown base models for Mongolian pine plantation based on simultaneous equations in Heilongjiang Province of northeastern China[J]. Journal of Beijing Forestry University, 2018, 40(6): 9−18.
    [8]
    Curtis R O. Height-diameter and height-diameter-age equations for second-growth Douglas-fir[J]. Forest Science, 1966(4): 365−375.
    [9]
    Lei X, Peng C, Wang H, et al. Individual height-diameter models for young black spruce (Picea mariana) and jack pine (Pinus banksiana) plantations in New Brunswick, Canada[J]. Forestry Chronicle, 2009, 85(1): 43−56. doi: 10.5558/tfc85043-1
    [10]
    符利勇. 非线性混合效应模型及其在林业上应用[D]. 北京: 中国林业科学研究院, 2012.

    Fu L Y. Nonlinear mixed effects model and its application in forestry[D]. Beijing: Chinese Academy of Forestry, 2012.
    [11]
    Li R, Stewart B, Weiskittel A. A Bayesian approach for modelling non-linear longitudinal/hierarchical data with random effects in forestry[J]. Forestry, 2012, 85(1): 17−25. doi: 10.1093/forestry/cpr050
    [12]
    Ellison A M. Bayesian inference in ecology[J]. Ecology Letters, 2004, 7(6): 509−520. doi: 10.1111/j.1461-0248.2004.00603.x
    [13]
    Box G, Tiao G C. Bayesian inference in statistical analysis[M]. Massachusetts: Wiley Press, 1992: 52−65.
    [14]
    Seber G, Wild C J. Nonlinear regression[M]. Massachusetts: Wiley Press, 1989: 164−188.
    [15]
    王梦皙. 经典方法和贝叶斯方法在单木模型中的应用和比较[D]. 北京: 中国林业科学研究院, 2022.

    Wang M X. Application and comparison of classical method and Bayesian method in individual tree model[D]. Beijing: Chinese Academy of Forestry, 2022.
    [16]
    Berger J O, Berry D A. Statistical analysis and the illusion of objectivity[J]. Infectious Diseases Newsletter, 1988, 7(8): 159−165.
    [17]
    Jaynes E T. Probability theory: the logic of science[J]. The Mathematical Intelligencer, 2003, 27(2): 33−42.
    [18]
    Mccarthy M A. Bayesian methods for ecology[M]. Cambridge: Cambridge University Press, 2007.
    [19]
    Zhang X, Zhang J, Duan A. A hierarchical Bayesian model to predict self-thinning line for Chinese fir in southern China[J/OL]. PLoS One, 2015, 10(10): e013978[2022−01−01]. doi: 10.1371/journal.pone.0139788.
    [20]
    Zhang X, Duan A, Zhang J, et al. Tree biomass estimation of Chinese fir (Cunninghamia lanceolata) based on Bayesian method[J/OL]. PLoS One, 2013, 8(11): e79868[2022−03−20]. doi: 10.1371/journal.pone.0079868.
    [21]
    姚丹丹. 基于贝叶斯统计的蒙古栎单木生长模型研究[D]. 北京: 中国林业科学研究院, 2015.

    Yao D D. Individual tree growth model for Mongolia oak forest with Bayesian statistical inference[D]. Beijing: Chinese Academy of Forestry, 2015.
    [22]
    姚丹丹, 徐奇刚, 闫晓旺, 等. 基于贝叶斯方法的蒙古栎林单木枯死模型[J]. 北京林业大学学报, 2019, 41(9): 1−8.

    Yao D D, Xu Q G, Yan X W, et al. Individual-tree mortality model of Mongolian oak forests based on Bayesian method[J]. Journal of Beijing Forestry University, 2019, 41(9): 1−8.
    [23]
    张雄清, 张建国, 段爱国. 杉木人工林林分断面积生长模型的贝叶斯法估计[J]. 林业科学研究, 2015, 28(4): 538−542. doi: 10.3969/j.issn.1001-1498.2015.04.013

    Zhang X Q, Zhang J G, Duan A G. Application of Bayesian method in stand basal area prediction of Chinese fir plantation[J]. Forest Research, 2015, 28(4): 538−542. doi: 10.3969/j.issn.1001-1498.2015.04.013
    [24]
    Bullock B P, Boone E L. Deriving tree diameter distributions using Bayesian model averaging[J]. Forest Ecology and Management, 2007, 242(2): 127−132.
    [25]
    Green, E, Roesch F A, et al. Bayesian estimation for the three-parameter Weibull distribution with tree diameter data[J]. Biometrics, 1994, 50(1): 254−269. doi: 10.2307/2533217
    [26]
    丁贵杰. 马尾松人工林标准树高曲线模型的研究[J]. 浙江林学院学报, 1997, 14(3): 225−230.

    Ding G J. Study on standard height curve model of Masson pine planted forests[J]. Journal of Zhejiang A&F University, 1997, 14(3): 225−230.
    [27]
    郭仲军, 黄继红, 路兴慧, 等. 基于第七次森林资源清查的新疆天然林生态系统服务功能[J]. 生态科学, 2015, 34(4): 118−124.

    Guo Z J, Huang J H, Lu X H, et al. Nature tree ecosystem services evaluation in Xinjiang based on the Seventh National Forest Assessment data[J]. Ecological Science, 2015, 34(4): 118−124.
    [28]
    樊伟, 许崇华, 崔珺, 等. 基于混合效应的大别山地区杉木树高−胸径模型比较[J]. 应用生态学报, 2017, 28(9): 2831−2839.

    Fan W, Xu C H, Cui J, et al. Comparisons of height-diameter models of Chinese fir based on mixed effect in Dabie Mountain area, China[J]. Chinese Journal of Applied Ecology, 2017, 28(9): 2831−2839.
    [29]
    向玮, 吕勇, 邱林. 湖南黄丰桥林场杉木树高曲线模拟研制[J]. 中南林业调查规划, 2007, 26(1): 16−18.

    Xiang W, Lü Y, Qiu L. Models for tree height curves of Cunninghamia lanceolata in Huang Fengqiao Forest Farm of Hunan[J]. Central South Forest Inventory and Planning, 2007, 26(1): 16−18.
    [30]
    Joyce H. Bayesian thoughts[J]. Significance, 2004(2): 73−75.
    [31]
    茆诗松, 王静龙, 濮晓龙. 高等数理统计[M]. 北京: 高等教育出版社, 2006.

    Mao S S, Wang J L, Pu X L. Advanced mathematical statistics[M]. Beijing: Higher Education Press, 2006.
    [32]
    Gelman A, Carlin J B, Stern H S, et al. Bayesian data analysis[M]. London: Chapman & Hall /CRC Press, 2004.
    [33]
    张雄清, 张建国, 段爱国. 基于贝叶斯法估计杉木人工林树高生长模型[J]. 林业科学, 2014, 50(3): 69−75.

    Zhang X Q, Zhang J G, Duan A G. Tree-height growth model for Chinese fir plantation based on Bayesian method[J]. Scientia Silvae Sinicae, 2014, 50(3): 69−75.
    [34]
    姚丹丹, 徐奇刚, 闫晓旺, 等. 基于贝叶斯方法的蒙古栎林单木树高−胸径模型[J]. 南京林业大学学报(自然科学版), 2020, 44(1): 131−137.

    Yao D D, Xu Q G, Yan X W, et al. Individual diameter-height model for Mongolian oak forests based on Bayesian method[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2020, 44(1): 131−137.
    [35]
    Spiegelhalter D, Thomas A, Best N, et al. WinBUGS user manual version 1.4[M]. Cambridge: MRC Biostatistics Unit, Institute of Public Health, 2007.
    [36]
    Siddhartha C, Edward G. Understanding the metropolis-hastings algorithm[J]. The American Statistician, 1995, 49(4): 327−329.
    [37]
    薛毅. 统计建模与R软件[M]. 北京: 清华大学出版社, 2007.

    Xue Y. Statistic modeling with R[M]. Beijing: Tsinghua University Press, 2007.
    [38]
    Zhang X, Duan A, Zhang J, et al. Estimating tree height-diameter models with the Bayesian method[J]. The Scientific World Journal, 2014(2014): 683691.
    [39]
    Zell J, Bösch B, Kändler G. Estimating above-ground biomass of trees: comparing Bayesian calibration with regression technique[J]. European Journal of Forest Research, 2014, 133(4): 649−660. doi: 10.1007/s10342-014-0793-7
    [40]
    姚丹丹, 雷相东, 张则路. 基于贝叶斯法的长白落叶松林分优势高生长模型研究[J]. 北京林业大学学报, 2015, 37(3): 94−100.

    Yao D D, Lei X D, Zhang Z L. Bayesian parameter estimation of dominant height growth model for Changbai larch (Larix olgensis Henry) plantations[J]. Journal of Beijing Forestry University, 2015, 37(3): 94−100.
    [41]
    王冬至, 张冬燕, 李永宁, 等. 基于贝叶斯法的针阔混交林树高与胸径混合效应模型[J]. 林业科学, 2019, 55(11): 85−94. doi: 10.11707/j.1001-7488.20191110

    Wang D Z, Zhang D Y, Li Y N, et al. Height-diameter relation for conifer mixed forest based on Bayesian nonlinear mixed-effects model[J]. Scientia Silvae Sinicae, 2019, 55(11): 85−94. doi: 10.11707/j.1001-7488.20191110
  • Related Articles

    [1]Chen Beibei, Jiang Jun, Lu Yuanchang, Liu Xianzhao, Jia Hongyan, Ming Angang, Zhang Xianqiang. Effects of thinning intensity on the growth of interplanting broadleaved trees under Pinus massoniana plantation[J]. Journal of Beijing Forestry University, 2021, 43(1): 58-65. DOI: 10.12171/j.1000-1522.20200086
    [2]Zhang Xiaoyan, Li Yufei, Liu Guihua, Xu Zaoshi, Deng Bo. Effects of nitrogen application on growth and triterpenoids accumulation of 1-year-old Cyclocarya paliurus[J]. Journal of Beijing Forestry University, 2020, 42(4): 60-68. DOI: 10.12171/j.1000-1522.20190294
    [3]Chang Xiaochao, Liu Yong, Li Jinyu, Li Shian, Sun Minghui, Wan Fangfang, Zhang Jin, Song Xiehai. Effects of different nitrogen forms and ratios on growth of male Populus tomentosa seedlings[J]. Journal of Beijing Forestry University, 2018, 40(9): 63-71. DOI: 10.13332/j.1000-1522.20180178
    [4]Wang Junxiu, Zhou Yangyan, Han Xiao, An Yi, Guo Huihong, Xia Xinli, Yin Weilun, Liu Chao. Overexpression of Populus SBPase gene promoting photosynthesis and vegetative growth in Arabidopsis thaliana[J]. Journal of Beijing Forestry University, 2018, 40(3): 26-33. DOI: 10.13332/j.1000-1522.20170436
    [5]Yan Ya-ping, Liu Yong, He Guo-xin, Xue Dun-meng, Li Cheng. Coupling effects of water and fertilizer on seedling growth and nutrient status of Catalpa bungei[J]. Journal of Beijing Forestry University, 2018, 40(2): 58-67. DOI: 10.13332/j.1000-1522.20170251
    [6]ZHAO Yang, QIAO Jie, WANG Bao-ping, FENG Yan-zhi, ZHOU Hai-jiang, CUI Ling-jun, WANG Wei-wei, YANG Dai-gui. Comprehensive selection of growth and stem form of superior paulownia clones in the hilly region of southern China[J]. Journal of Beijing Forestry University, 2017, 39(9): 32-40. DOI: 10.13332/j.1000-1522.20160372
    [7]REN Shi-qi, CHEN Jian-bo, DENG Zi-yu, GUO Dong-qiang, LIU Yuan, HUANG Ming-jun, MENG Jiang-long, XIAO Wen-fa, XIANG Dong-yun. Effects of pruning on growth dynamic and veneer quality of Eucalyptus urophylla×E. grandis[J]. Journal of Beijing Forestry University, 2015, 37(3): 126-132. DOI: 10.13332/j.1000-1522.20140228
    [8]YANG Teng, DUAN Jie, MA L&uuml, -yi, JIA Li-ming, PENG Zuo-deng, CHEN Chuang, CHEN Jing. Effects of N application rates on growth, nutrient accumulation and translocation of Xanthoceras sorbifolia[J]. Journal of Beijing Forestry University, 2014, 36(3): 57-62. DOI: 10.13332/j.cnki.jbfu.2014.03.008
    [9]YANG Li-xue, WANG Hai-nan, FAN Jing. Effects of donor tree ages and plant growth regulators on the softwood cutting propagation of Hippophae rhamnoides[J]. Journal of Beijing Forestry University, 2011, 33(6): 107-111.
    [10]HAN Lie-bao, WANG Chang-jun, SU De-rong, JIANG Yan-ling, XU Jun, ZHOU Jun. Accumulation and comparison of greenbelt nutrients under different water irrigating ways[J]. Journal of Beijing Forestry University, 2005, 27(6): 62-66.

Catalog

    Article views (833) PDF downloads (136) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return