• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Mu Yu, Jia Xin, Zheng Jiajia, Huang Songyu, Yuan Yuan, Bai Yuxuan, Qin Shugao. Response of litter decomposition to warming of Artemisia ordosica in Mu Us Desert of northwestern China[J]. Journal of Beijing Forestry University, 2020, 42(6): 134-141. DOI: 10.12171/j.1000-1522.20190092
Citation: Mu Yu, Jia Xin, Zheng Jiajia, Huang Songyu, Yuan Yuan, Bai Yuxuan, Qin Shugao. Response of litter decomposition to warming of Artemisia ordosica in Mu Us Desert of northwestern China[J]. Journal of Beijing Forestry University, 2020, 42(6): 134-141. DOI: 10.12171/j.1000-1522.20190092

Response of litter decomposition to warming of Artemisia ordosica in Mu Us Desert of northwestern China

More Information
  • Received Date: February 26, 2019
  • Revised Date: May 16, 2019
  • Available Online: May 12, 2020
  • Published Date: June 30, 2020
  • ObjectiveThe response of litter decomposition rate of Artemisia ordosica to warming is helpful to understand and predict the carbon cycle and nutrient cycling of the Mu Us Desert of northwestern China under the background of climate change.
    MethodThe Open Top Chamber (OTC) was used to simulate the warming, and plant decomposition was put into the mesh bags to explore the effects of warming on the decomposition of Artemisia ordosica litter.
    ResultThe residual rate of litter quality of each part under the warming treatment was higher than that of control, simulated warming reduced the rate of litter decomposition. (1) From May to October in 2017, under the warming treatment, the residual rates of the twig and letters were 91.07% and 71.73%, respectively, but under control, the two indicators were 86.08% and 60.74%; (2) different types of litter decomposition rates were different under varied treatment conditions at different time periods, and there were significant interactive effects between each influening factor; (3) the Olson negative index model showed that under the warming treatment, the decomposition coefficient k of the twigs and leaves of Artemisia ordosica litter was lower than that of control. (4) Warming didn’t affect the bacterial diversity and structure of litter.
    ConclusionWarming may slow down the decomposition of plant litter in arid and semi-arid areas, and the inhibition of warming on litter decomposition is related to decomposition time and litter types.
  • [1]
    刘瑞鹏, 毛子军, 李兴欢, 等. 模拟增温和不同凋落物基质质量对凋落物分解速率的影响[J]. 生态学报, 2013, 33(18):5661−5667. doi: 10.5846/stxb201304140704

    Liu R P, Mao Z J. Effects of simulated temperature increase and vary little quality on litter decomposition[J]. Acta Ecologica Sinica, 2013, 33(18): 5661−5667. doi: 10.5846/stxb201304140704
    [2]
    Intergovernmental Panel on Climate Change (IPCC). Climate change in 2007: the physical science basis[R]. Cambridge: Cambridge University Press, 2007.
    [3]
    Li L J, Zeng D H, Yu Z Y, et al. Impact of litter quality and soil nutrient availability on leaf decomposition rate in a semi-arid grassland of northeast China[J]. Journal of Arid Environments, 2011, 75(9): 787−792. doi: 10.1016/j.jaridenv.2011.04.009
    [4]
    Austin A T, Vivanco L. Plant litter decomposition in a semi-arid ecosystem controlled by photodegradation[J]. Nature, 2006, 442: 555−558. doi: 10.1038/nature05038
    [5]
    Zhao Q Q, Bai J H, Liu P P, et al. Decomposition and carbon and nitrogen dynamics of Phragmites australis litter as affected by flooding periods in coastal wetlands[J]. CLEAN: Soil Air Water, 2015, 43: 441−445. doi: 10.1002/clen.201300823
    [6]
    宋飘, 张乃莉, 马克平, 等. 全球气候变暖对凋落物分解的影响[J]. 生态学报, 2014, 34(6):1327−1339.

    Song P, Zhang N L, Ma K P, et al. Impacts of global warming on litter decomposition[J]. Acta Ecologica Sinica, 2014, 34(6): 1327−1339.
    [7]
    王其兵, 李凌浩, 白永飞, 等. 模拟气候变化对3种草原植物群落混合凋落物分解的影响[J]. 植物生态学报, 2000, 24(6):674−679. doi: 10.3321/j.issn:1005-264X.2000.06.006

    Wang Q B, Li L H, Bai Y F, et al. Effects of simulated climate change on the decomposition of mixed litter in three steppe communitles[J]. Acta Phytoecologica Sinica, 2000, 24(6): 674−679. doi: 10.3321/j.issn:1005-264X.2000.06.006
    [8]
    葛晓改, 曾立雄, 黄志霖, 等. 土壤温度和水分含量对三峡库区马尾松凋落物叶分解的影响[J]. 林业科学, 2013, 49(9):153−157.

    Ge X G, Zeng L X, Huang Z L, et al. Effects of soil temperature and soil water content to needle litter leaf decomposition of Pinus massoniana plantations in Three Gorges Reservoir Area[J]. Scientia Silvae Science, 2013, 49(9): 153−157.
    [9]
    Fierer N, Craine J M, Schimel M L P. Litter quality and the temperature sensitivity of decomposition[J]. Ecology, 2005, 86(2): 320−326. doi: 10.1890/04-1254
    [10]
    Kang H, Freeman C. Soil enzyme analysis for leaf litter decomposition in global wetlands[J]. Communications in Soil Science and Plant Analysis, 2009, 40(21/22): 3323−3334.
    [11]
    Cheng X, Luo Y, Su B, et al. Experimental warming and clipping altered litter carbon and nitrogen dynamics in a tallgrass prairie[J]. Agriculture Ecosystems & Environment, 2010, 138(3): 206−213.
    [12]
    Sjögersten S, Wookey P A. Decomposition of mountain birch leaf litter at the forest-tundra ecotone in the Fennoscandian Muntains in relation to climate and soil conditions[J]. Plant and Soil, 2004, 262(1/2): 215−227. doi: 10.1023/B:PLSO.0000037044.63113.fe
    [13]
    淡沐春, 杨劼, 侯虹, 等. 模拟增温增水对克氏针茅草原主要物种及群落凋落物分解的影响[J]. 中国农业气象, 2015, 36(6):746−754. doi: 10.3969/j.issn.1000-6362.2015.06.012

    Dan M C, Yang J, Hou H, et al. Effects of simulated warming and precipitation enhancement on litter decomposition of Stipa krylovii steppe[J]. Chinese Journal of Agrometeorology, 2015, 36(6): 746−754. doi: 10.3969/j.issn.1000-6362.2015.06.012
    [14]
    王新源, 赵学勇, 李玉霖, 等. 环境因素对干旱半干旱区凋落物分解的影响研究进展[J]. 应用生态学报, 2013, 24(11):3300−3310.

    Wang X Y, Zhao X Y, Li Y L, et al. Effects of environmental factors on litter decomposition in arid and semi-arid regions: a review[J]. China Journal of Applied Ecology, 2013, 24(11): 3300−3310.
    [15]
    关阅章, 刘安田, 仲启钺, 等. 滨海围垦湿地芦苇凋落物分解对模拟增温的响应[J]. 华东师范大学学报(自然科学版), 2013(5):27−34.

    Guan Y Z, Liu A T, Zhong Q Y, et al. Responses of decomposition of Phragmites australis litters to simulated temperature enhancement in the reclamed coastal wetland[J]. Journal of East China Normal University (Natural Science), 2013(5): 27−34.
    [16]
    李学斌, 马林, 陈林, 等. 草地枯落物分解研究进展及展望[J]. 生态环境学报, 2010, 19(9):2260−2264. doi: 10.3969/j.issn.1674-5906.2010.09.041

    Li X B, Ma L, Chen L, et al. Research progress and the prospect of grassland litters decomposition[J]. Ecology and Environmental Sciences, 2010, 19(9): 2260−2264. doi: 10.3969/j.issn.1674-5906.2010.09.041
    [17]
    王军, 王冠钦, 李飞, 等. 短期增温对紫花针茅草原土壤微生物群落的影响[J]. 植物生态学报, 2018, 42(1):116−125. doi: 10.17521/cjpe.2017.0297

    Wang J, Wang G Q, Li F, et al. Effects of short-term experimental warming on soil microbes in a typical alpine steppe[J]. Chinese Journal of Plant Ecology, 2018, 42(1): 116−125. doi: 10.17521/cjpe.2017.0297
    [18]
    郑海峰, 陈亚梅, 杨林, 等. 高山林线土壤微生物群落结构对模拟增温的响应[J]. 应用生态学报, 2017, 28(9):2840−2848.

    Zheng H F, Chen Y M, Yang L, et al. Responses of soil microbial community structure to simulated warming in alpine timberline in western Sichuan, China[J]. China Journal of Applied Ecology, 2017, 28(9): 2840−2848.
    [19]
    Castro H F, Classen A T, Austin E E, et al. Soil microbial community responses to multiple experimental climate change drivers[J]. Applied and Enviromental Microbiology, 2010, 76: 999−1007. doi: 10.1128/AEM.02874-09
    [20]
    Jia X, Zha T S, Wu B, et al. Biophysical controls on net ecosystem CO2 exchange over a semiarid shrubland in northwest China[J]. Biogeosciences, 2014, 11: 4679−4693. doi: 10.5194/bg-11-4679-2014
    [21]
    Olson J S. Energy storage and the balance of producers and decomposers in ecological systems[J]. Ecology, 1963, 44(2): 322−331. doi: 10.2307/1932179
    [22]
    Brandt L A, King J Y, Milchunas D G. Effects of ultraviolet radiation on litter decomposition depend on precipitation and litter chemistry in a shortgrass steppe ecosystem[J]. Global Change Biology, 2007, 13(10): 2193−2205. doi: 10.1111/j.1365-2486.2007.01428.x
    [23]
    Boyero L, Pearson R G, Gessner M O, et al. A global experiment suggests climate warming will not accelerate litter decomposition in streams but might reduce carbon sequestration[J]. Ecology Letter, 2011, 14(3): 289−294. doi: 10.1111/j.1461-0248.2010.01578.x
    [24]
    Ferreira V, Chauvet E. Future increase in temperature more than decrease in litter quality can affect microbial litter decomposition in streams[J]. Oecologia, 2011, 167(1): 279−291. doi: 10.1007/s00442-011-1976-2
    [25]
    Song C L, Yang D, Song G, et al. Effect of nitrogen addition on decomposition of Calamagrostis angustifolia litters from freshwater marshes of Northeast China[J]. Ecological Engineering, 2011, 37(10): 1578−1582. doi: 10.1016/j.ecoleng.2011.03.036
    [26]
    Aerts R. The freezer defrosting: global warming and litter decomposition rates in cold biomes[J]. Journal of Ecology, 2006, 94(4): 713−724. doi: 10.1111/j.1365-2745.2006.01142.x
    [27]
    Epstein H E, Burke I C, Lauenroth W K. Regional patterns of decomposition and primary production rates in the U.S.Great Plains[J]. Ecology, 2002, 83(2): 320−327.
    [28]
    Butenschoen O, Scheu S, Eisenhauer N. Interactive effects of warming, soil humidity and plant diversity on litter decomposition and microbial activity[J]. Soil Biology and Biochemistry, 2011, 43(9): 1902−1907. doi: 10.1016/j.soilbio.2011.05.011
    [29]
    Weedon J T, Kowalchuk G A, Aerts R, et al. Summer warming accelerates sub-arctic peatland nitrogen cycling without changing enzyme pools or microbial community structure[J]. Global Change Biology, 2012, 18: 138−150. doi: 10.1111/j.1365-2486.2011.02548.x
    [30]
    Xu Z F, Yin H J, Zhao C Z, et al. A review of responses of litter decomposition in terrestrial ecosystems to global warming[J]. Chinese Journal of Plant Ecology, 2009, 33(6): 1208−1219.
    [31]
    Berg B, Johansson M B, Meentemeyer V. Litter decomposition in a transect of Norway spruce forests: substrate quality and climate control[J]. Canadian Journal of Forest Research, 2000, 30(7): 1136−1147. doi: 10.1139/x00-044
    [32]
    Sariyildiz T, Anderson J M. Interactions between litter quality, decomposition and soil fertility: a laboratory study[J]. Soil Biology and Biochemistry, 2003, 35(3): 391−399. doi: 10.1016/S0038-0717(02)00290-0
    [33]
    Yang W Q, Deng R J, Zhang J. Forest litter decomposition and its responses to global climate change[J]. Chinese Journal of Applied Ecology, 2007, 18(12): 2889−2895.
    [34]
    Day T A, Ruhland C T, Xiong F S. Warming increases aboveground plant biomass and C stocks in vascular plant dominated Antarctic tundra[J]. Global Change Biology, 2008, 14(8): 1827−1843. doi: 10.1111/j.1365-2486.2008.01623.x
  • Related Articles

    [1]Li Yang, Kang Xingang. Mixed model of forest space utilization in spruce-fir coniferous and broadleaved mixed forest of Changbai Mountains, northeastern China[J]. Journal of Beijing Forestry University, 2020, 42(5): 71-79. DOI: 10.12171/j.1000-1522.20190112
    [2]Li Cheng, Ma Jingyong, Zhang Cai, Wang Ben, Zha Tianshan, Jia Xin. Seasonal dynamics of light-use efficiency in Artemisia ordosica shrubby desert[J]. Journal of Beijing Forestry University, 2019, 41(9): 99-107. DOI: 10.13332/j.1000-1522.20180217
    [3]Wen Yongbin, Han Hairong, Cheng Xiaoqin, Li Zuzheng. Forest water use efficiency in Qianyanzhou based on Biome-BGC model, Jiangxi Province of eastern China[J]. Journal of Beijing Forestry University, 2019, 41(4): 69-77. DOI: 10.13332/j.1000-1522.20190001
    [4]YANG Shuang, YUAN Xiao-na, WANG Zhong-xuan, ZHU Pu, JIA Gui-xia. Effects of HgCl2 stress on the upper leaf necroses and water use efficiency of oriental hybrid lilies[J]. Journal of Beijing Forestry University, 2016, 38(5): 114-119. DOI: 10.13332/j.1000-1522.20150306
    [5]WEN Yi-bo, CHANG Ying, FAN Wen-yi. Algorithm for leaf area index inversion in the Great Xing'an Mountains using MISR data and spatial scaling for the validation[J]. Journal of Beijing Forestry University, 2016, 38(5): 1-10. DOI: 10.13332/j.1000-1522.20150204
    [6]JIANG Dong-yue, QIAN Yong-qiang, LIU Jun-xiang, WANG Zheng-chao, FEI Ying-jie, SUN Zhen-yuan. Evaluation of radiation use efficiency of superior clones of Salix based on photosynthetic light-response characteristics.[J]. Journal of Beijing Forestry University, 2015, 37(5): 49-61. DOI: 10.13332/j.1000-1522.20140187
    [7]GUO Peng, XING Hai-tao, XIA Xin-li, YIN Wei-lun. Discrimination of water use efficiency(WUE) among three Populus deltoids clones.[J]. Journal of Beijing Forestry University, 2011, 33(2): 19-24.
    [8]DUAN Ai-guo, ZHANG Jian-guo, ZHANG Jun-pei, HE Cai-yun. Dynamics of water-use efficiency of tree species for vegetation restoration in dry-hot river valleys[J]. Journal of Beijing Forestry University, 2010, 32(6): 13-19.
    [9]ZHANG Jian-jun, DONG Huang-biao, NA Lei, WANG Peng. Comparison of rainfallrunoff process in watersheds under different scales on the loess area in western Shanxi Province, northern China.[J]. Journal of Beijing Forestry University, 2008, 30(2): 106-112.
    [10]ZHAO Feng-jun, SHEN Ying-bai, GAO Rong-fu, SU Xiao-hua, ZHANG Bing-yu. Relationship between foliar carbon isotope composition (δ13C) and long-term water use efficiency (WUEL[J]. Journal of Beijing Forestry University, 2006, 28(6): 40-45.
  • Cited by

    Periodical cited type(2)

    1. 包塔娜,范文义. 基于集合卡尔曼滤波的帽儿山森林多源LAI产品重建及融合校正方法. 浙江农林大学学报. 2024(04): 841-849 .
    2. 郝兵,李萍,刘东. 基于模糊小波的光照干扰图像对比度增强方法. 激光杂志. 2023(11): 104-108 .

    Other cited types(4)

Catalog

    Article views (2097) PDF downloads (43) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return