Citation: | Mu Yu, Jia Xin, Zheng Jiajia, Huang Songyu, Yuan Yuan, Bai Yuxuan, Qin Shugao. Response of litter decomposition to warming of Artemisia ordosica in Mu Us Desert of northwestern China[J]. Journal of Beijing Forestry University, 2020, 42(6): 134-141. DOI: 10.12171/j.1000-1522.20190092 |
[1] |
刘瑞鹏, 毛子军, 李兴欢, 等. 模拟增温和不同凋落物基质质量对凋落物分解速率的影响[J]. 生态学报, 2013, 33(18):5661−5667. doi: 10.5846/stxb201304140704
Liu R P, Mao Z J. Effects of simulated temperature increase and vary little quality on litter decomposition[J]. Acta Ecologica Sinica, 2013, 33(18): 5661−5667. doi: 10.5846/stxb201304140704
|
[2] |
Intergovernmental Panel on Climate Change (IPCC). Climate change in 2007: the physical science basis[R]. Cambridge: Cambridge University Press, 2007.
|
[3] |
Li L J, Zeng D H, Yu Z Y, et al. Impact of litter quality and soil nutrient availability on leaf decomposition rate in a semi-arid grassland of northeast China[J]. Journal of Arid Environments, 2011, 75(9): 787−792. doi: 10.1016/j.jaridenv.2011.04.009
|
[4] |
Austin A T, Vivanco L. Plant litter decomposition in a semi-arid ecosystem controlled by photodegradation[J]. Nature, 2006, 442: 555−558. doi: 10.1038/nature05038
|
[5] |
Zhao Q Q, Bai J H, Liu P P, et al. Decomposition and carbon and nitrogen dynamics of Phragmites australis litter as affected by flooding periods in coastal wetlands[J]. CLEAN: Soil Air Water, 2015, 43: 441−445. doi: 10.1002/clen.201300823
|
[6] |
宋飘, 张乃莉, 马克平, 等. 全球气候变暖对凋落物分解的影响[J]. 生态学报, 2014, 34(6):1327−1339.
Song P, Zhang N L, Ma K P, et al. Impacts of global warming on litter decomposition[J]. Acta Ecologica Sinica, 2014, 34(6): 1327−1339.
|
[7] |
王其兵, 李凌浩, 白永飞, 等. 模拟气候变化对3种草原植物群落混合凋落物分解的影响[J]. 植物生态学报, 2000, 24(6):674−679. doi: 10.3321/j.issn:1005-264X.2000.06.006
Wang Q B, Li L H, Bai Y F, et al. Effects of simulated climate change on the decomposition of mixed litter in three steppe communitles[J]. Acta Phytoecologica Sinica, 2000, 24(6): 674−679. doi: 10.3321/j.issn:1005-264X.2000.06.006
|
[8] |
葛晓改, 曾立雄, 黄志霖, 等. 土壤温度和水分含量对三峡库区马尾松凋落物叶分解的影响[J]. 林业科学, 2013, 49(9):153−157.
Ge X G, Zeng L X, Huang Z L, et al. Effects of soil temperature and soil water content to needle litter leaf decomposition of Pinus massoniana plantations in Three Gorges Reservoir Area[J]. Scientia Silvae Science, 2013, 49(9): 153−157.
|
[9] |
Fierer N, Craine J M, Schimel M L P. Litter quality and the temperature sensitivity of decomposition[J]. Ecology, 2005, 86(2): 320−326. doi: 10.1890/04-1254
|
[10] |
Kang H, Freeman C. Soil enzyme analysis for leaf litter decomposition in global wetlands[J]. Communications in Soil Science and Plant Analysis, 2009, 40(21/22): 3323−3334.
|
[11] |
Cheng X, Luo Y, Su B, et al. Experimental warming and clipping altered litter carbon and nitrogen dynamics in a tallgrass prairie[J]. Agriculture Ecosystems & Environment, 2010, 138(3): 206−213.
|
[12] |
Sjögersten S, Wookey P A. Decomposition of mountain birch leaf litter at the forest-tundra ecotone in the Fennoscandian Muntains in relation to climate and soil conditions[J]. Plant and Soil, 2004, 262(1/2): 215−227. doi: 10.1023/B:PLSO.0000037044.63113.fe
|
[13] |
淡沐春, 杨劼, 侯虹, 等. 模拟增温增水对克氏针茅草原主要物种及群落凋落物分解的影响[J]. 中国农业气象, 2015, 36(6):746−754. doi: 10.3969/j.issn.1000-6362.2015.06.012
Dan M C, Yang J, Hou H, et al. Effects of simulated warming and precipitation enhancement on litter decomposition of Stipa krylovii steppe[J]. Chinese Journal of Agrometeorology, 2015, 36(6): 746−754. doi: 10.3969/j.issn.1000-6362.2015.06.012
|
[14] |
王新源, 赵学勇, 李玉霖, 等. 环境因素对干旱半干旱区凋落物分解的影响研究进展[J]. 应用生态学报, 2013, 24(11):3300−3310.
Wang X Y, Zhao X Y, Li Y L, et al. Effects of environmental factors on litter decomposition in arid and semi-arid regions: a review[J]. China Journal of Applied Ecology, 2013, 24(11): 3300−3310.
|
[15] |
关阅章, 刘安田, 仲启钺, 等. 滨海围垦湿地芦苇凋落物分解对模拟增温的响应[J]. 华东师范大学学报(自然科学版), 2013(5):27−34.
Guan Y Z, Liu A T, Zhong Q Y, et al. Responses of decomposition of Phragmites australis litters to simulated temperature enhancement in the reclamed coastal wetland[J]. Journal of East China Normal University (Natural Science), 2013(5): 27−34.
|
[16] |
李学斌, 马林, 陈林, 等. 草地枯落物分解研究进展及展望[J]. 生态环境学报, 2010, 19(9):2260−2264. doi: 10.3969/j.issn.1674-5906.2010.09.041
Li X B, Ma L, Chen L, et al. Research progress and the prospect of grassland litters decomposition[J]. Ecology and Environmental Sciences, 2010, 19(9): 2260−2264. doi: 10.3969/j.issn.1674-5906.2010.09.041
|
[17] |
王军, 王冠钦, 李飞, 等. 短期增温对紫花针茅草原土壤微生物群落的影响[J]. 植物生态学报, 2018, 42(1):116−125. doi: 10.17521/cjpe.2017.0297
Wang J, Wang G Q, Li F, et al. Effects of short-term experimental warming on soil microbes in a typical alpine steppe[J]. Chinese Journal of Plant Ecology, 2018, 42(1): 116−125. doi: 10.17521/cjpe.2017.0297
|
[18] |
郑海峰, 陈亚梅, 杨林, 等. 高山林线土壤微生物群落结构对模拟增温的响应[J]. 应用生态学报, 2017, 28(9):2840−2848.
Zheng H F, Chen Y M, Yang L, et al. Responses of soil microbial community structure to simulated warming in alpine timberline in western Sichuan, China[J]. China Journal of Applied Ecology, 2017, 28(9): 2840−2848.
|
[19] |
Castro H F, Classen A T, Austin E E, et al. Soil microbial community responses to multiple experimental climate change drivers[J]. Applied and Enviromental Microbiology, 2010, 76: 999−1007. doi: 10.1128/AEM.02874-09
|
[20] |
Jia X, Zha T S, Wu B, et al. Biophysical controls on net ecosystem CO2 exchange over a semiarid shrubland in northwest China[J]. Biogeosciences, 2014, 11: 4679−4693. doi: 10.5194/bg-11-4679-2014
|
[21] |
Olson J S. Energy storage and the balance of producers and decomposers in ecological systems[J]. Ecology, 1963, 44(2): 322−331. doi: 10.2307/1932179
|
[22] |
Brandt L A, King J Y, Milchunas D G. Effects of ultraviolet radiation on litter decomposition depend on precipitation and litter chemistry in a shortgrass steppe ecosystem[J]. Global Change Biology, 2007, 13(10): 2193−2205. doi: 10.1111/j.1365-2486.2007.01428.x
|
[23] |
Boyero L, Pearson R G, Gessner M O, et al. A global experiment suggests climate warming will not accelerate litter decomposition in streams but might reduce carbon sequestration[J]. Ecology Letter, 2011, 14(3): 289−294. doi: 10.1111/j.1461-0248.2010.01578.x
|
[24] |
Ferreira V, Chauvet E. Future increase in temperature more than decrease in litter quality can affect microbial litter decomposition in streams[J]. Oecologia, 2011, 167(1): 279−291. doi: 10.1007/s00442-011-1976-2
|
[25] |
Song C L, Yang D, Song G, et al. Effect of nitrogen addition on decomposition of Calamagrostis angustifolia litters from freshwater marshes of Northeast China[J]. Ecological Engineering, 2011, 37(10): 1578−1582. doi: 10.1016/j.ecoleng.2011.03.036
|
[26] |
Aerts R. The freezer defrosting: global warming and litter decomposition rates in cold biomes[J]. Journal of Ecology, 2006, 94(4): 713−724. doi: 10.1111/j.1365-2745.2006.01142.x
|
[27] |
Epstein H E, Burke I C, Lauenroth W K. Regional patterns of decomposition and primary production rates in the U.S.Great Plains[J]. Ecology, 2002, 83(2): 320−327.
|
[28] |
Butenschoen O, Scheu S, Eisenhauer N. Interactive effects of warming, soil humidity and plant diversity on litter decomposition and microbial activity[J]. Soil Biology and Biochemistry, 2011, 43(9): 1902−1907. doi: 10.1016/j.soilbio.2011.05.011
|
[29] |
Weedon J T, Kowalchuk G A, Aerts R, et al. Summer warming accelerates sub-arctic peatland nitrogen cycling without changing enzyme pools or microbial community structure[J]. Global Change Biology, 2012, 18: 138−150. doi: 10.1111/j.1365-2486.2011.02548.x
|
[30] |
Xu Z F, Yin H J, Zhao C Z, et al. A review of responses of litter decomposition in terrestrial ecosystems to global warming[J]. Chinese Journal of Plant Ecology, 2009, 33(6): 1208−1219.
|
[31] |
Berg B, Johansson M B, Meentemeyer V. Litter decomposition in a transect of Norway spruce forests: substrate quality and climate control[J]. Canadian Journal of Forest Research, 2000, 30(7): 1136−1147. doi: 10.1139/x00-044
|
[32] |
Sariyildiz T, Anderson J M. Interactions between litter quality, decomposition and soil fertility: a laboratory study[J]. Soil Biology and Biochemistry, 2003, 35(3): 391−399. doi: 10.1016/S0038-0717(02)00290-0
|
[33] |
Yang W Q, Deng R J, Zhang J. Forest litter decomposition and its responses to global climate change[J]. Chinese Journal of Applied Ecology, 2007, 18(12): 2889−2895.
|
[34] |
Day T A, Ruhland C T, Xiong F S. Warming increases aboveground plant biomass and C stocks in vascular plant dominated Antarctic tundra[J]. Global Change Biology, 2008, 14(8): 1827−1843. doi: 10.1111/j.1365-2486.2008.01623.x
|
[1] | Li Yang, Kang Xingang. Mixed model of forest space utilization in spruce-fir coniferous and broadleaved mixed forest of Changbai Mountains, northeastern China[J]. Journal of Beijing Forestry University, 2020, 42(5): 71-79. DOI: 10.12171/j.1000-1522.20190112 |
[2] | Li Cheng, Ma Jingyong, Zhang Cai, Wang Ben, Zha Tianshan, Jia Xin. Seasonal dynamics of light-use efficiency in Artemisia ordosica shrubby desert[J]. Journal of Beijing Forestry University, 2019, 41(9): 99-107. DOI: 10.13332/j.1000-1522.20180217 |
[3] | Wen Yongbin, Han Hairong, Cheng Xiaoqin, Li Zuzheng. Forest water use efficiency in Qianyanzhou based on Biome-BGC model, Jiangxi Province of eastern China[J]. Journal of Beijing Forestry University, 2019, 41(4): 69-77. DOI: 10.13332/j.1000-1522.20190001 |
[4] | YANG Shuang, YUAN Xiao-na, WANG Zhong-xuan, ZHU Pu, JIA Gui-xia. Effects of HgCl2 stress on the upper leaf necroses and water use efficiency of oriental hybrid lilies[J]. Journal of Beijing Forestry University, 2016, 38(5): 114-119. DOI: 10.13332/j.1000-1522.20150306 |
[5] | WEN Yi-bo, CHANG Ying, FAN Wen-yi. Algorithm for leaf area index inversion in the Great Xing'an Mountains using MISR data and spatial scaling for the validation[J]. Journal of Beijing Forestry University, 2016, 38(5): 1-10. DOI: 10.13332/j.1000-1522.20150204 |
[6] | JIANG Dong-yue, QIAN Yong-qiang, LIU Jun-xiang, WANG Zheng-chao, FEI Ying-jie, SUN Zhen-yuan. Evaluation of radiation use efficiency of superior clones of Salix based on photosynthetic light-response characteristics.[J]. Journal of Beijing Forestry University, 2015, 37(5): 49-61. DOI: 10.13332/j.1000-1522.20140187 |
[7] | GUO Peng, XING Hai-tao, XIA Xin-li, YIN Wei-lun. Discrimination of water use efficiency(WUE) among three Populus deltoids clones.[J]. Journal of Beijing Forestry University, 2011, 33(2): 19-24. |
[8] | DUAN Ai-guo, ZHANG Jian-guo, ZHANG Jun-pei, HE Cai-yun. Dynamics of water-use efficiency of tree species for vegetation restoration in dry-hot river valleys[J]. Journal of Beijing Forestry University, 2010, 32(6): 13-19. |
[9] | ZHANG Jian-jun, DONG Huang-biao, NA Lei, WANG Peng. Comparison of rainfallrunoff process in watersheds under different scales on the loess area in western Shanxi Province, northern China.[J]. Journal of Beijing Forestry University, 2008, 30(2): 106-112. |
[10] | ZHAO Feng-jun, SHEN Ying-bai, GAO Rong-fu, SU Xiao-hua, ZHANG Bing-yu. Relationship between foliar carbon isotope composition (δ13C) and long-term water use efficiency (WUEL)[J]. Journal of Beijing Forestry University, 2006, 28(6): 40-45. |
1. |
包塔娜,范文义. 基于集合卡尔曼滤波的帽儿山森林多源LAI产品重建及融合校正方法. 浙江农林大学学报. 2024(04): 841-849 .
![]() | |
2. |
郝兵,李萍,刘东. 基于模糊小波的光照干扰图像对比度增强方法. 激光杂志. 2023(11): 104-108 .
![]() |