• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Li Cheng, Ma Jingyong, Zhang Cai, Wang Ben, Zha Tianshan, Jia Xin. Seasonal dynamics of light-use efficiency in Artemisia ordosica shrubby desert[J]. Journal of Beijing Forestry University, 2019, 41(9): 99-107. DOI: 10.13332/j.1000-1522.20180217
Citation: Li Cheng, Ma Jingyong, Zhang Cai, Wang Ben, Zha Tianshan, Jia Xin. Seasonal dynamics of light-use efficiency in Artemisia ordosica shrubby desert[J]. Journal of Beijing Forestry University, 2019, 41(9): 99-107. DOI: 10.13332/j.1000-1522.20180217

Seasonal dynamics of light-use efficiency in Artemisia ordosica shrubby desert

More Information
  • Received Date: July 11, 2018
  • Revised Date: September 19, 2018
  • Available Online: June 02, 2019
  • Published Date: August 31, 2019
  • ObjectiveLight-use efficiency (LUE) is a key parameter to evaluation the ecosystem productivity, which shows the efficiency of vegetation photosynthesis transforming absorbed energy into organic dry matter. In order to improve the ecosystem productivity estimation and prediction accuracy of Artemisia ordosica shrubby desert , this paper studied the seasonal dynamics of LUE and the regulation mechanism of environmental factors for Artemisia ordosica shrubby desert.
    MethodWe used eddy covariance measurements in growing season (from May to October) in 2014 to analyze the net carbon exchange, photosynthetically active radiation, temperature, and moisture dynamics and the relationship between influential factors and light-use efficiency at different temporal resolutions of Artemisia ordosica shrubby desert in northern China.
    ResultAt diurnal scale, LUE showed a significant trough trend, reaching the lowest (0.000 8−0.002 4 μmol/μmol) at 14:00. Canopy conductance (gs) and photosynthetically active radiation were the main factors in affecting LUE at diurnal scale. At the seasonal scale, LUE began to rise rapidly in May and reached its peak (0.002 5 g/MJ) in September, then gradually decreased. The monthly average of LUE was between 0.000 9 and 0.002 5 g/MJ. Soil N content, canopy conductance and photosynthetically active radiation were the most factors in regularizing LUE at seasonal scale.
    ConclusionThe light-use efficiency for Artemisia ordosica shrubby desert has obvious diurnal and seasonal dynamics. At seasonal scale, increasing soil N content can promote the ecosystem primary productivity (GEP), so as to increase LUE. The results can improve the accuracy of ecosystem productivity model and provide an important reference for the sustainable management of the desert ecosystem and the restoration of the sandy area.
  • [1]
    Prince S D. A model of regional primary production for use with coarse resolution satellite data[J]. International Journal of Remote Sensing, 1991, 12(6): 1313−1330. doi: 10.1080/01431169108929728
    [2]
    Goetz S J, Prince S D. Modelling terrestrial carbon exchange and storage: evidence and implications of functional convergence in light-use efficiency[J]. Advances in Ecological Research, 1999, 28: 57−92. doi: 10.1016/S0065-2504(08)60029-X
    [3]
    Ahl D E, Gower S T, Mackay D S, et al. Heterogeneity of light use efficiency in a northern Wisconsin forest: Implications for modeling net primary production with remote sensing[J]. Remote Sensing of Environment, 2004, 93(1−2): 168−178. doi: 10.1016/j.rse.2004.07.003
    [4]
    Campbell C S, Heilman J L, Mc Innes K J, et al. Seasonal variation in radiation use efficiency of irrigated rice[J]. Agricultural and Forest Meteorology, 2001, 110(1): 45−54. doi: 10.1016/S0168-1923(01)00277-5
    [5]
    Prince S D, Goward S N. Evaluation of the NOAA/NASA pathfinder AVHRR land data set for global primary production modelling[J]. International Journal of Remote Sensing, 1996, 17(1): 217−221. doi: 10.1080/01431169608948999
    [6]
    Yuan W, Liu S, Zhou G, et al. Deriving a light use efficiency model from eddy covariance flux data for predicting daily gross primary production across biomes[J]. Agricultural and Forest Meteorology, 2007, 143(3): 189−207.
    [7]
    Ruimy A, Bondeau L K. Comparing global models of terrestrial net primary productivity (NPP): analysis of differences in light absorption and light-use efficiency[J]. Global Change Biology, 1999, 5(Suppl. 1): 56−64. doi: 10.1046/j.1365-2486.1999.00007.x
    [8]
    Plummer S E. Perspectives on combining ecological process models and remotely sensed data[J]. Ecological Modelling, 2000, 129(2−3): 169−186. doi: 10.1016/S0304-3800(00)00233-7
    [9]
    Turner D P, Urbanski S, Bremer D, et al. A cross-biome comparison of daily light use efficiency for gross primary production[J]. Global Change Biology, 2003, 9(3): 383−395. doi: 10.1046/j.1365-2486.2003.00573.x
    [10]
    Suyker A E, Verma S B, Burba G G, et al. Gross primary production and ecosystem respiration of irrigated maize and irrigated soybean during a growing season[J]. Agricultural and Forest Meteorology, 2005, 131(3−4): 180−190. doi: 10.1016/j.agrformet.2005.05.007
    [11]
    Sims D A, Rahman A F, Cordova V D, et al. Midday values of gross CO2 flux and light use efficiency during satellite overpasses can be used to directly estimate eight-day mean flux[J]. Agricultural and Forest Meteorology, 2005, 131(1): 1−12.
    [12]
    Sinclair T R, Muchow R C. Radiation use efficiency[J]. Advances in Agronomy, 1999, 65: 215−265. doi: 10.1016/S0065-2113(08)60914-1
    [13]
    Rouphael Y, Colla G. Radiation and water use efficiencies of greenhouse zucchini squash in relation to different climate parameters[J]. European Journal of Agronomy, 2005, 23(2): 183−194. doi: 10.1016/j.eja.2004.10.003
    [14]
    Kiniry J R, Landivar J A, Witt M, et al. Radiation-use efficiency response to vapor pressure deficit for maize and sorghum[J]. Field Crops Research, 1998, 56(3): 265−270. doi: 10.1016/S0378-4290(97)00092-0
    [15]
    Green D S, Erickson J E, Kruger E L. Foliar morphology and canopy nitrogen as predictors of light-use efficiency in terrestrial vegetation[J]. Agricultural and Forest Meteorology, 2003, 115(3): 163−171.
    [16]
    Sinclair T R, Horie T. Leaf nitrogen, photosynthesis, and crop radiation use efficiency: a review[J]. Crop Science, 1989, 29(1): 90−98. doi: 10.2135/cropsci1989.0011183X002900010023x
    [17]
    Farquhar G D, Caemmerer S V, Berry J A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species[J]. Planta, 1980, 149(1): 78−81. doi: 10.1007/BF00386231
    [18]
    叶子飘, 康华靖, 杨小龙. 不同CO2浓度下番茄幼苗叶片的光能利用效率[J]. 应用生态学报, 2016, 27(8):2543−2550.

    Ye Z P, Kang H J, Yang X L. Light-use efficiency of tomato seedling leaves at different CO2 concentrations.[J]. Chinese Journal of Applied Ecology, 2016, 27(8): 2543−2550.
    [19]
    Running S W, Nemani R R, Heinsch F A, et al. A continuous satellite-derived measure of global terrestrial primary production[J]. Bioscience, 2004, 54(6): 547−560. doi: 10.1641/0006-3568(2004)054[0547:ACSMOG]2.0.CO;2
    [20]
    Jia X, Zha T S, Wu B, et al. Biophysical controls on net ecosystem CO2 exchange over a semiarid shrubland in northwest China[J]. Biogeosciences, 2014, 11(17): 4679−4693. doi: 10.5194/bg-11-4679-2014
    [21]
    Xie J, Zha T, Jia X, et al. Irregular precipitation events in control of seasonal variations in CO2 exchange in a cold desert-shrub ecosystem in northwest China[J]. Journal of Arid Environments, 2015, 120: 33−41. doi: 10.1016/j.jaridenv.2015.04.009
    [22]
    唐思凌, 贾昕, 郭建斌, 等. 沙蒿(Artemisia ordosica)叶面积指数的测定及模拟[J]. 生态学杂志, 2014, 33(2):547−554.

    Tang S L, Jia X, Guo J B, et al. Measuring and modeling leaf area index for Artemisia ordosica[J]. Chinese Journal of Ecology, 2014, 33(2): 547−554.
    [23]
    陈志豪, 郭建斌, 查天山, 等. 三种沙生灌木叶片含氮量的季节变化及其水分响应[J]. 干旱区资源与环境, 2014, 28(6):63−67.

    Chen Z H, Guo J B, Zha T S, et al. Seasonal variation and water response of leaf nitrogen content for three psammophytic shrub species.[J]. Journal of Arid Land Resources and Environment, 2014, 28(6): 63−67.
    [24]
    Aubinet M, Grelle A, Ibrom A, et al. Estimates of the annual net carbon and water exchange of forests: the EUROFLUX methodology[J]. Advances in Ecological Research, 1999, 30: 113−175. doi: 10.1016/S0065-2504(08)60018-5
    [25]
    Vickers D, Mahrt L. Quality control and flux sampling problems for tower and aircraft data[J]. Journal of Atmospheric and Oceanic Technology, 1997, 14(3): 512−526. doi: 10.1175/1520-0426(1997)014<0512:QCAFSP>2.0.CO;2
    [26]
    Nakai M, Kashiwazaki N, Takizawa A, et al. Morphologic changes in boar sperm nuclei with reduced disulfide bonds in electrostimulated porcine oocytes[J]. Reproduction, 2006, 131(3): 603−611. doi: 10.1530/rep.1.01001
    [27]
    Fan S M, Wofsy S C, Bakwin P S, et al. Atmosphere-biosphere exchange of CO2 and O3 in the central Amazon forest[J]. Journal of Geophysical Research, 1990, 95(16): 851−864.
    [28]
    Moncrieff J B, Massheder J M, De Bruin H, et al. A system to measure surface fluxes of momentum, sensible heat, water vapour and carbon dioxide[J]. Journal of Hydrology, 1997, 188: 589−611.
    [29]
    Lloyd J, Taylor J A. On the temperature dependence of soil respiration[J]. Functional Ecology, 1994, 8(3): 315−323. doi: 10.2307/2389824
    [30]
    Noormets A, Chen J Q, Crow T R. Age-dependent changes in ecosystem carbon flux in managed forests in northern Wisconsin, USA[J]. Ecosystems, 2007, 10(2): 187−203. doi: 10.1007/s10021-007-9018-y
    [31]
    Wilson T B, Meyers T P. Determining vegetation indices from solar and photosynthetically active radiation fluxes[J]. Agricultural and Forest Meteorology, 2007, 144(3−4): 160−179. doi: 10.1016/j.agrformet.2007.04.001
    [32]
    Krishnan P, Meyers T P, Scott R L, et al. Energy exchange and evapotranspiration over two temperate semi-arid grasslands in North America[J]. Agricultural and Forest Meteorology, 2012, 153: 31−44. doi: 10.1016/j.agrformet.2011.09.017
    [33]
    Xiao X, Zhang Q, Saleska S, et al. Satellite-based modeling of gross primary production in a seasonally moist tropical evergreen forest[J]. Remote Sensing of Environment, 2005, 94(1): 105−122. doi: 10.1016/j.rse.2004.08.015
    [34]
    赵育民, 牛树奎, 王军邦, 等. 植被光能利用率研究进展[J]. 生态学杂志, 2007, 26(9):1471−1477.

    Zhao Y M, Niu S K, Wang J B, et al. Light use efficiency of vegetation: a review[J]. Chinese Journal of Ecology, 2007, 26(9): 1471−1477.
    [35]
    Alton P B, North P R, Los S O. The impact of diffuse sunlight on canopy light-use efficiency, gross photosynthetic product and net ecosystem exchange in three forest biomes[J]. Global Change Biology, 2007, 13(4): 776−787. doi: 10.1111/j.1365-2486.2007.01316.x
    [36]
    Mercado L M, Bellouin N, Sitch S, et al. Impact of changes in diffuse radiation on the global land carbon sink[J]. Nature, 2009, 458: 1014−1017. doi: 10.1038/nature07949
    [37]
    Nakaji T, Ide R, Takagi K, et al. Utility of spectral vegetation indices for estimation of light conversion efficiency in coniferous forests in Japan[J]. Agricultural and Forest Meteorology, 2008, 148(5): 776−787. doi: 10.1016/j.agrformet.2007.11.006
    [38]
    蒋冬月, 钱永强, 刘俊祥, 等. 基于光合:光响应特性的柳树优良无性系光能利用效率的评价[J]. 北京林业大学学报, 2015, 37(5):49−61.

    Jiang D Y, Qian Y Q, Liu J X, et al. Evaluation of radiation use efficiency of superior clons of Salix based on photosynthetic light-response characteristics[J]. Journal of Beijing Forestry University, 2015, 37(5): 49−61.
    [39]
    朱文泉, 潘耀忠, 何浩, 等. 中国典型植被最大光利用率模拟[J]. 科学通报, 2006, 51(6):700−706. doi: 10.3321/j.issn:0023-074X.2006.06.014

    Zhu W Q, Pan Y Z, He H, et al. Simulation of maximum light use efficiency of typical vegetation in China[J]. Chinese Science Bulletin, 2006, 51(6): 700−706. doi: 10.3321/j.issn:0023-074X.2006.06.014
    [40]
    同小娟, 张劲松, 孟平, 等. 华北低丘山地人工林生态系统净碳交换与气象因子的关系[J]. 生态学报, 2009, 29(12):679−686.

    Tong X J, Zhang J S, Meng P, et al. Relationship between net ecosystem carbon exchange and meteorological factors in a plantation in the hilly area of the North China[J]. Acta Ecologica Sinica, 2009, 29(12): 679−686.
    [41]
    包刚, 辛晓平, 包玉海, 等. 内蒙古草原植被最大光能利用率取值优化研究[J]. 光谱学与光谱分析, 2016, 36(10):3280−3286.

    Bao G, Xin X P, Bao Y H, et al. Optimization of maximum light use efficiency in inner mongolian steppe[J]. Spectroscopy & Spectral Analysis, 2016, 36(10): 3280−3286.
    [42]
    卫亚星, 王莉雯. 青海省植被光能利用率模拟研究[J]. 生态学报, 2010, 30(19):5209−5216.

    Wei Y X, Wang L W. The study on simulating light use efficiency of vegetation in Qinghai Province[J]. Acta Ecologica Sinica, 2010, 30(19): 5209−5216.
    [43]
    Demmigadams B, Iii W W A. Photosynthesis: harvesting sunlight safely[J]. Nature, 2000, 403: 371−374. doi: 10.1038/35000315
    [44]
    Jia X, Zha T, Gong J, et al. Carbon and water exchange over a temperate semi-arid shrubland during three years of contrasting precipitation and soil moisture patterns[J]. Agricultural and Forest Meteorology, 2016, 228: 120−129.
    [45]
    Liu R, Cieraad E, Li Y, et al. Precipitation pattern determines the inter-annual variation of herbaceous layer and carbon fluxes in a phreatophyte-dominated desert ecosystem[J]. Ecosystems, 2016, 19(4): 601−614. doi: 10.1007/s10021-015-9954-x
    [46]
    苏培玺, 赵爱芬, 张立新, 等. 荒漠植物梭梭和沙拐枣光合作用, 蒸腾作用及水分利用效率特征[J]. 西北植物学报, 2003, 23(1):11−17. doi: 10.3321/j.issn:1000-4025.2003.01.003

    Su P X, Zhao A F, Zhang L X, et al. Characteristic in photosynthesis, transpiration and water use efficiency of Haloxylon ammodendron and Calligonum mongolicum of desert species[J]. Acta Botanica Boreali-Occidentalia Sinica, 2003, 23(1): 11−17. doi: 10.3321/j.issn:1000-4025.2003.01.003
  • Related Articles

    [1]Jiang Hong, Meng Zhaojun, Li Peng, Xue Yi, Jiang Dun, Li Guojiang, Yan Shanchun. Effects of banding mixed forest on activity of defensive proteins in Larix olgensis[J]. Journal of Beijing Forestry University, 2022, 44(11): 82-89. DOI: 10.12171/j.1000-1522.20210249
    [2]Wu Shuai, Jiang Dun, Ma Qinghui, Tan Mingtao, Zhao Jiaqi, Liu Xiaoxia, Meng Zhaojun, Yan Shanchun. Effects of arbuscular mycorrhizal fungi on metabolism and chemical defense of Populus alba × P. berolinensis leaves[J]. Journal of Beijing Forestry University, 2021, 43(5): 86-92. DOI: 10.12171/j.1000-1522.20200172
    [3]Jiang Dun, Wang Yueyue, Yan Shanchun. Effects of Zn stress on growth development and chemical defense of Populus alba 'berolinensis' seedlings[J]. Journal of Beijing Forestry University, 2018, 40(11): 42-48. DOI: 10.13332/j.1000-1522.20180131
    [4]Jiang Dun, Wang Yue-yue, Yan Shan-chun. Accumulation characteristics in all parts of Populus alba 'Berolinensis' to cadmium, zinc, and lead[J]. Journal of Beijing Forestry University, 2018, 40(1): 83-88. DOI: 10.13332/j.1000-1522.20170191
    [5]JIANG Dun, MENG Zhao-jun, YAN Shan-chun. Effects of partially spraying Larix olgensis seedlings with exogenous methyl jasmonate on the defensive enzyme activities of Dendrolimus superans larvae[J]. Journal of Beijing Forestry University, 2017, 39(2): 58-63. DOI: 10.13332/j.1000-1522.20160291
    [6]ZHANG Rui-bin, HU Xiao, LIU Tong, YAN Shan-chun. Effects of sex, DBH, and needle age of Taxus cuspidata on the activities of the needle defensive proteins[J]. Journal of Beijing Forestry University, 2015, 37(8): 48-52. DOI: 10.13332/j.1000-1522.20140115
    [7]LIU Yu-jie, MAN Xiu-ling. Morphology of soil Zn and Mn in main forest types and potential ecological risk in the Great Xing'an Mountains[J]. Journal of Beijing Forestry University, 2015, 37(7): 45-52. DOI: 10.13332/j.1000-1522.20140482
    [8]YAN Jun-xin, CHI De-fu, ZHANG Yong-qiang2, PANG Hai-yu. Effects of JA and SA on the growth and development as well as defensive enzyme activity of Rosa rugosa.[J]. Journal of Beijing Forestry University, 2013, 35(3): 128-136.
    [9]DONG Yan-he, WANG Cheng-zhang, YE Jian-zhong, ZHOU Hao. Extraction process and chemical constituents of lacquer wax.[J]. Journal of Beijing Forestry University, 2010, 32(4): 256-260.
    [10]SUN De-zhi, , HUANG Xin-rui, CHENG Xiang, CHEN Ai-yan. Phosphate adsorption from sewage sludge filtrate by ZnAl hydrotacitelike compounds. [J]. Journal of Beijing Forestry University, 2009, 31(2): 128-132.
  • Cited by

    Periodical cited type(4)

    1. 张月莹,蒋丽伟,王焱,李宗伦. 北京明长城沿线森林景观斑块地形梯度分布特征. 绿色科技. 2023(12): 1-7+12 .
    2. 李国庆,赵洪升,张浩东. 淮北市林地景观格局特征与优化研究. 绿色科技. 2023(19): 96-100 .
    3. 张磊,姜锡川,董运斋. 青岛生态间隔区规划建设初探. 绿色科技. 2022(01): 132-136 .
    4. 武田艳,宋璐璐,梁坤宇. 基于SA算法的应急公共服务设施布局优化研究——以上海市长宁区应急避难场所为例. 数学的实践与认识. 2018(24): 32-40 .

    Other cited types(7)

Catalog

    Article views (2158) PDF downloads (59) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return