• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Wu Yanshuang, Zhang Xiaoli. Object-oriented tree species classification with multi-scale texture features based on airborne hyperspectral images[J]. Journal of Beijing Forestry University, 2020, 42(6): 91-101. DOI: 10.12171/j.1000-1522.20190155
Citation: Wu Yanshuang, Zhang Xiaoli. Object-oriented tree species classification with multi-scale texture features based on airborne hyperspectral images[J]. Journal of Beijing Forestry University, 2020, 42(6): 91-101. DOI: 10.12171/j.1000-1522.20190155

Object-oriented tree species classification with multi-scale texture features based on airborne hyperspectral images

More Information
  • Received Date: March 20, 2019
  • Revised Date: September 19, 2019
  • Available Online: June 23, 2020
  • Published Date: June 30, 2020
  • ObjectiveBased on the classification of airborne hyperspectral imagery, the method of combining different scale texture features with object-oriented classification was less applied to the classification of tree species, and the related research was mainly for single tree species identification without considering multiple tree species, therefore, the ability to identify tree species in complex forests needs further study. However, the study in such research was scanty, so this study intended to explore the application of different scale texture features and object-oriented classification techniques in the fine classification of tree species.
    MethodWe used airborne hyperspectral data with object-oriented classification to classify tree species. According to the type of land cover in the study area, we used stratified classification method to distinguish non-forest land, other forest land and forested land, and finely classify tree species in forest land. Feature variables were extracted from airborne hyperspectral images, including independent component analysis (ICA) transformation images and spatial texture features, analyzed the spectral reflectance and the suitable texture scale of each tree species. The tree species were classified according to different scale texture features, and compared tree species classification results of different features by support vector machine (SVM).
    ResultConcerning the object-oriented tree species classification combined with texture features, the overall accuracy of single-scale texture features was 87.11%, and the Kappa coefficient was 0.846. Combined with different scale texture features, the overall accuracy was 89.13%, and the Kappa coefficient was 0.87. Compared with the accuracy based on spectral features, the classification accuracy was improved by 4.03% and 6.05%, respectively. It showed that in object-oriented classification, the addition of texture features had a significant effect on improving the accuracy of tree species classification. The classification accuracy of tree species combined with different scale texture features was higher than single scale texture features, especially in the classification of other broadleaved tree species and Masson pine (Pinus massoniana), the producer accuracy was higher than single texture scale by 5.48% and 6.12%, respectively.
    ConclusionDifferent scale texture feature is more advantageous than single-scale texture feature, which improves the contribution of texture features in tree species classification. The spectrum of integrated airborne hyperspectral imagery and object-oriented classification of different scale texture features make the tree species identification more precise and accurate. It is effective for tree species classification in complex forest, and meets the application requirements in fine tree species identification based on airborne hyperspectral images.
  • [1]
    刘旭升, 张晓丽. 森林植被遥感分类研究进展与对策[J]. 林业资源管理, 2004(1):61−64. doi: 10.3969/j.issn.1002-6622.2004.01.016

    Liu X S, Zhang X L. Research advances and countermeasures of remote sensing classification of forest vegetation[J]. Forestry Resources Management, 2004(1): 61−64. doi: 10.3969/j.issn.1002-6622.2004.01.016
    [2]
    樊雪, 刘清旺, 谭炳香. 基于机载PHI高光谱数据的森林优势树种分类研究[J]. 国土资源遥感, 2017, 29(2):110−116. doi: 10.6046/gtzyyg.2017.02.16

    Fan X, Liu Q W, Tan B X. Classification of forest species using airborne PHI hyperspectral data[J]. Remote Sensing for Land and Resource, 2017, 29(2): 110−116. doi: 10.6046/gtzyyg.2017.02.16
    [3]
    李明泽, 张培赢. 基于SAM算法的遥感影像湿地植被分类[J]. 森林工程, 2015, 31(2):8−13. doi: 10.3969/j.issn.1001-005X.2015.02.003

    Li M Z, Zhang P Y. Classification of wetland vegetation in hyperspectral remote sensing image based on SAM algorithm[J]. Forest Engineering, 2015, 31(2): 8−13. doi: 10.3969/j.issn.1001-005X.2015.02.003
    [4]
    张丽云.基于高光谱遥感数据的森林树种分类[D]. 北京: 北京林业大学, 2016.

    Zhang L Y. The study on identification of forest tree species based on hyperspectral image[D]. Beijing: Beijing Forestry University, 2016.
    [5]
    于丽柯, 于颖, 柳向宇, 等. 基于高光谱影像的树种分类[J]. 东北林业大学学报, 2016, 44(9):40−43, 57. doi: 10.3969/j.issn.1000-5382.2016.09.009

    Yu L K, Yu Y, Liu X Y, et al. Tree species classification with hyperspectral image[J]. Journal of Northeast Forestry University, 2016, 44(9): 40−43, 57. doi: 10.3969/j.issn.1000-5382.2016.09.009
    [6]
    Zhang J K, Rivard B, Sánchez-Azofeifa A, et al. Intra- and inter-class spectral variability of tropical tree species at La Selva, Costa Rica: implications for species identification using HYDICE imagery[J]. Remote Sensing of Environment, 2006, 105(2): 129−141. doi: 10.1016/j.rse.2006.06.010
    [7]
    谭炳香, 李增元, 陈尔学, 等. 高光谱遥感森林信息提取研究进展[J]. 林业科学研究, 2008, 21(增刊1):105−111.

    Tan B X, Li Z Y, Chen E X, et al. Research advance in forest information extraction from hyoerspectral remote sensing data[J]. Forest Research, 2008, 21(Suppl.1): 105−111.
    [8]
    刘丽娟, 庞勇, 范文义, 等. 机载LiDAR和高光谱融合实现温带天然林树种识别[J]. 遥感学报, 2013, 17(3):679−695.

    Liu L J, Pang Y, Fan W Y, et al. Fused airborne LiDAR and hyperspectral data for tree species identification in a natural temperate forest[J]. Journal of Remote Sensing, 2013, 17(3): 679−695.
    [9]
    刘怡君, 庞勇, 廖声熙, 等. 机载LiDAR和高光谱融合实现普洱山区树种分类[J]. 林业科学研究, 2016, 29(3):407−412. doi: 10.3969/j.issn.1001-1498.2016.03.015

    Liu Y J, Pang Y, Liao S X, et al. Merged airborne LiDAR and hyperspectral data for tree species classification in Puer’s mountainous area[J]. Forest Research, 2016, 29(3): 407−412. doi: 10.3969/j.issn.1001-1498.2016.03.015
    [10]
    林雪, 彭道黎, 黄国胜, 等. 结合多尺度纹理特征的遥感影像面向对象分类[J]. 测绘工程, 2016, 25(7):22−27.

    Lin X, Peng D L, Huang G S, et al. Object-oriented classification with multi-scale texture feature based on remote sensing image[J]. Engineering of Surveying and Mapping, 2016, 25(7): 22−27.
    [11]
    朱晓荣. 基于决策树的洞庭湖湿地信息提取技术研究[D]. 北京: 中国林业科学研究院, 2012.

    Zhu X R. Research for informations to be extracted form Dongting Lake Wetland based on decision tree[D]. Beijing: Chinese Academy of Forestry, 2012.
    [12]
    陈亮, 张友静, 陈波. 结合多尺度纹理的高分辨率遥感影像决策树分类[J]. 地理与地理信息科学, 2007, 23(4):18−21. doi: 10.3969/j.issn.1672-0504.2007.04.005

    Chen L, Zhang Y J, Chen B. High spatial resolution remote sensing image classification based on decision tree classification combined with multiscale texture[J]. Geography and Geo-Information Science, 2007, 23(4): 18−21. doi: 10.3969/j.issn.1672-0504.2007.04.005
    [13]
    I Koukal T, Immitzer M, Atzberger C. Tree species classification with random forest using very high spatial resolution 8-band WorldView-2 satellite data[J]. Remote Sensing, 2012, 4(9): 2661−2693. doi: 10.3390/rs4092661
    [14]
    Pu R L, Landry S. A comparative analysis of high spatial resolution IKONOS and WorldView-2 imagery for mapping urban tree species[J]. Remote Sensing of Environment, 2012, 124: 516−533. doi: 10.1016/j.rse.2012.06.011
    [15]
    荚文, 庞勇, 岳彩荣, 等. 机载AISA Eagle Ⅱ高光谱数据处理:以额济纳旗试验区为例[J]. 遥感技术与应用, 2016, 31(3):504−510.

    Jia W, Pang Y, Yue C R, et al. The processing of airborne AISA Eagle Ⅱ data in Ejina Banner study area[J]. Remote Sensing Technology and Application, 2016, 31(3): 504−510.
    [16]
    Pang Y, Li Z Y, Ju H B, et al. LiCHy: the CAF’s LiDAR, CCD and hyperspectral integrated airborne observation system[J]. Remote Sensing, 2016, 8(5): 398. doi: 10.3390/rs8050398
    [17]
    郝建亭, 杨武年, 李玉霞, 等. 基于FLAASH的多光谱影像大气校正应用研究[J]. 遥感信息, 2008(1):78−81. doi: 10.3969/j.issn.1000-3177.2008.01.015

    Hao J T, Yang W N, Li Y X, et al. Atmospheric correction of multi-spectral imagery ASTER[J]. Remote Sensing Information, 2008(1): 78−81. doi: 10.3969/j.issn.1000-3177.2008.01.015
    [18]
    谭炳香, 李增元, 陈尔学, 等. EO-1 Hyperion高光谱数据的预处理[J]. 遥感信息, 2005(6):36−41. doi: 10.3969/j.issn.1000-3177.2005.06.010

    Tan B X, Li Z Y, Chen E X, et al. Preprocessing of EO-1 Hyperion hyperspectral data[J]. Remote Sensing Information, 2005(6): 36−41. doi: 10.3969/j.issn.1000-3177.2005.06.010
    [19]
    国家林业局. 森林资源数据采集技术规范 第1部分: 森林资源连续清查: LY/T 2188.1—2013[S]. 北京: 中国标准出版社, 2014.

    State Forestry Administration. Forest resource data collection technical specification(part 1): forest continuous inventory: LY/T 2188.1−2013[S]. Beijing: China Standard Press, 2014.
    [20]
    郝泷, 陈永富, 刘华, 等. 基于纹理信息CART决策树的林芝县森林植被面向对象分类[J]. 遥感技术与应用, 2017, 32(2):386−394.

    Hao L, Chen Y F, Liu H, et al. Object-oriented forest classification of Linzhi county based on CART decision tree with texture information[J]. Remote Sensing Technology and Application, 2017, 32(2): 386−394.
    [21]
    谭琨, 杜培军. 基于支持向量机的高光谱遥感图像分类[J]. 红外与毫米波学报, 2008, 27(2):123−128. doi: 10.3321/j.issn:1001-9014.2008.02.010

    Tan K, Du P J. Hyperspectral remote sensing image classification based on support vector machine[J]. Journal of Infrared and Millimeter Waves, 2008, 27(2): 123−128. doi: 10.3321/j.issn:1001-9014.2008.02.010
    [22]
    Pu R L, Gong P. Hyperspectral remote sensing of vegetation bioparameters[M]//Wang Q. Advances in environmental remote sensing: sensors, algorithms, and applications. London: CRC Press, 2011: 101−142.
    [23]
    Cao J J, Leng W C, Liu K, et al. Object-based mangrove species classification using unmanned aerial vehicle hyperspectral images and digital surface models[J/OL]. Remote Sensing, 2018, 10(1): 89[2018−12−02]. https://www.mdpi.com/2072-4292/10/1/89.
    [24]
    Lu D S, Li G Y, Moran E, et al. The roles of textural images in improving land-cover classification in the Brazilian Amazon[J]. International Journal of Remote Sensing, 2014, 35(24): 8188−8207. doi: 10.1080/01431161.2014.980920
  • Cited by

    Periodical cited type(19)

    1. 陈逊龙,孙一铭,郭仕杰,段煜柯,唐桉琦,叶章熙,张厚喜. 应用无人机可见光影像和面向对象的随机森林模型对城市树种分类. 东北林业大学学报. 2024(03): 48-59 .
    2. 王柳,肖艳琴,陈秋月,周增志,阿开贤,赵明,马燕. 茶园间种桉树对茶叶品质的影响研究. 茶叶通讯. 2024(01): 37-47 .
    3. 付永浩,李伟坡,张爱军. 面向对象和集成学习算法在森林蓄积量遥感估测中的应用. 东北林业大学学报. 2024(06): 64-69+78 .
    4. 孙妙琦,岳彩荣,段云芳,罗洪斌,余琼芬,罗广飞,徐天蜀. 光学协同合成孔径雷达数据的森林类型分类研究. 森林工程. 2024(04): 115-126 .
    5. 周湘山,杨武年,罗可,朴虹奕,周涛,周杰,唐晓鹿. 基于机器学习算法和空间分辨率调整的无人机高光谱树种分类研究. 遥感技术与应用. 2024(04): 880-896 .
    6. 谢天义,潘洁,孙玉琳,郑光. 应用多维遥感信息协同的森林树种分类. 东北林业大学学报. 2023(03): 73-78 .
    7. 董世英,吴田军,焦思佳. 地块级航空高光谱遥感土地覆盖制图及其精度评估. 遥感技术与应用. 2023(02): 353-361 .
    8. 帅爽,张志,张天,张焜,肖成志,陈安. 特征优化结合随机森林算法的干旱区植被高光谱遥感分类方法. 农业工程学报. 2023(09): 287-293 .
    9. 胡振华,张乔艳. 基于ASD与Hyperion高光谱数据的主要针叶树种分类研究. 林业调查规划. 2023(03): 1-6+12 .
    10. 邹泽林,程霞,刘紫薇,黄鑫. Stacking集成学习模型在森林蓄积量估测中的应用. 湖北林业科技. 2023(04): 52-57 .
    11. 王钰,董亚坤,何紫玲,王鹏,赵昊,曾维军. 基于Sentinel-2A影像的复合轮作种植结构提取. 南方农业学报. 2023(08): 2490-2498 .
    12. 温昱婷,赵静,兰玉彬,杨东建,潘方江,曹佃龙. 基于无人机可见光影像和面向对象的树种分类研究. 西北林学院学报. 2022(01): 74-80+144 .
    13. 郑迪,沈国春,王舶鉴,戴冠华,蔺菲,胡家瑞,叶吉,房帅,郝占庆,王绪高,原作强. 基于无人机高光谱影像和深度学习算法的长白山针阔混交林优势树种分类. 生态学杂志. 2022(05): 1024-1032 .
    14. 刘曼,张静. 基于多特征融合的白鹿原地区土地利用分类研究. 农业与技术. 2022(20): 84-90 .
    15. 顾云志,曹月娥,赵珮珮. 干旱区水浇地提取研究. 江苏农业科学. 2021(10): 176-182 .
    16. 钟浩,刘浩然,林文树. 激光雷达和高光谱遥感技术在树种识别中的应用. 世界林业研究. 2021(04): 41-45 .
    17. 唐锡奎. 桉树套种湿地松的生长问题探讨——以广西国有钦廉林场为例. 绿色科技. 2021(13): 117-119 .
    18. 王娟,陈永富,陈巧,李华玉,张超. 基于无人机遥感的森林参数信息提取研究进展. 林业资源管理. 2020(05): 144-151 .
    19. 邢璐琪,张桂莲,张浪,易扬,林勇,江子尧,郑谐维. 高光谱技术在植被特征监测中的应用. 园林. 2020(11): 8-14 .

    Other cited types(23)

Catalog

    Article views (1864) PDF downloads (86) Cited by(42)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return