Citation: | Wu Yanshuang, Zhang Xiaoli. Object-oriented tree species classification with multi-scale texture features based on airborne hyperspectral images[J]. Journal of Beijing Forestry University, 2020, 42(6): 91-101. DOI: 10.12171/j.1000-1522.20190155 |
[1] |
刘旭升, 张晓丽. 森林植被遥感分类研究进展与对策[J]. 林业资源管理, 2004(1):61−64. doi: 10.3969/j.issn.1002-6622.2004.01.016
Liu X S, Zhang X L. Research advances and countermeasures of remote sensing classification of forest vegetation[J]. Forestry Resources Management, 2004(1): 61−64. doi: 10.3969/j.issn.1002-6622.2004.01.016
|
[2] |
樊雪, 刘清旺, 谭炳香. 基于机载PHI高光谱数据的森林优势树种分类研究[J]. 国土资源遥感, 2017, 29(2):110−116. doi: 10.6046/gtzyyg.2017.02.16
Fan X, Liu Q W, Tan B X. Classification of forest species using airborne PHI hyperspectral data[J]. Remote Sensing for Land and Resource, 2017, 29(2): 110−116. doi: 10.6046/gtzyyg.2017.02.16
|
[3] |
李明泽, 张培赢. 基于SAM算法的遥感影像湿地植被分类[J]. 森林工程, 2015, 31(2):8−13. doi: 10.3969/j.issn.1001-005X.2015.02.003
Li M Z, Zhang P Y. Classification of wetland vegetation in hyperspectral remote sensing image based on SAM algorithm[J]. Forest Engineering, 2015, 31(2): 8−13. doi: 10.3969/j.issn.1001-005X.2015.02.003
|
[4] |
张丽云.基于高光谱遥感数据的森林树种分类[D]. 北京: 北京林业大学, 2016.
Zhang L Y. The study on identification of forest tree species based on hyperspectral image[D]. Beijing: Beijing Forestry University, 2016.
|
[5] |
于丽柯, 于颖, 柳向宇, 等. 基于高光谱影像的树种分类[J]. 东北林业大学学报, 2016, 44(9):40−43, 57. doi: 10.3969/j.issn.1000-5382.2016.09.009
Yu L K, Yu Y, Liu X Y, et al. Tree species classification with hyperspectral image[J]. Journal of Northeast Forestry University, 2016, 44(9): 40−43, 57. doi: 10.3969/j.issn.1000-5382.2016.09.009
|
[6] |
Zhang J K, Rivard B, Sánchez-Azofeifa A, et al. Intra- and inter-class spectral variability of tropical tree species at La Selva, Costa Rica: implications for species identification using HYDICE imagery[J]. Remote Sensing of Environment, 2006, 105(2): 129−141. doi: 10.1016/j.rse.2006.06.010
|
[7] |
谭炳香, 李增元, 陈尔学, 等. 高光谱遥感森林信息提取研究进展[J]. 林业科学研究, 2008, 21(增刊1):105−111.
Tan B X, Li Z Y, Chen E X, et al. Research advance in forest information extraction from hyoerspectral remote sensing data[J]. Forest Research, 2008, 21(Suppl.1): 105−111.
|
[8] |
刘丽娟, 庞勇, 范文义, 等. 机载LiDAR和高光谱融合实现温带天然林树种识别[J]. 遥感学报, 2013, 17(3):679−695.
Liu L J, Pang Y, Fan W Y, et al. Fused airborne LiDAR and hyperspectral data for tree species identification in a natural temperate forest[J]. Journal of Remote Sensing, 2013, 17(3): 679−695.
|
[9] |
刘怡君, 庞勇, 廖声熙, 等. 机载LiDAR和高光谱融合实现普洱山区树种分类[J]. 林业科学研究, 2016, 29(3):407−412. doi: 10.3969/j.issn.1001-1498.2016.03.015
Liu Y J, Pang Y, Liao S X, et al. Merged airborne LiDAR and hyperspectral data for tree species classification in Puer’s mountainous area[J]. Forest Research, 2016, 29(3): 407−412. doi: 10.3969/j.issn.1001-1498.2016.03.015
|
[10] |
林雪, 彭道黎, 黄国胜, 等. 结合多尺度纹理特征的遥感影像面向对象分类[J]. 测绘工程, 2016, 25(7):22−27.
Lin X, Peng D L, Huang G S, et al. Object-oriented classification with multi-scale texture feature based on remote sensing image[J]. Engineering of Surveying and Mapping, 2016, 25(7): 22−27.
|
[11] |
朱晓荣. 基于决策树的洞庭湖湿地信息提取技术研究[D]. 北京: 中国林业科学研究院, 2012.
Zhu X R. Research for informations to be extracted form Dongting Lake Wetland based on decision tree[D]. Beijing: Chinese Academy of Forestry, 2012.
|
[12] |
陈亮, 张友静, 陈波. 结合多尺度纹理的高分辨率遥感影像决策树分类[J]. 地理与地理信息科学, 2007, 23(4):18−21. doi: 10.3969/j.issn.1672-0504.2007.04.005
Chen L, Zhang Y J, Chen B. High spatial resolution remote sensing image classification based on decision tree classification combined with multiscale texture[J]. Geography and Geo-Information Science, 2007, 23(4): 18−21. doi: 10.3969/j.issn.1672-0504.2007.04.005
|
[13] |
I Koukal T, Immitzer M, Atzberger C. Tree species classification with random forest using very high spatial resolution 8-band WorldView-2 satellite data[J]. Remote Sensing, 2012, 4(9): 2661−2693. doi: 10.3390/rs4092661
|
[14] |
Pu R L, Landry S. A comparative analysis of high spatial resolution IKONOS and WorldView-2 imagery for mapping urban tree species[J]. Remote Sensing of Environment, 2012, 124: 516−533. doi: 10.1016/j.rse.2012.06.011
|
[15] |
荚文, 庞勇, 岳彩荣, 等. 机载AISA Eagle Ⅱ高光谱数据处理:以额济纳旗试验区为例[J]. 遥感技术与应用, 2016, 31(3):504−510.
Jia W, Pang Y, Yue C R, et al. The processing of airborne AISA Eagle Ⅱ data in Ejina Banner study area[J]. Remote Sensing Technology and Application, 2016, 31(3): 504−510.
|
[16] |
Pang Y, Li Z Y, Ju H B, et al. LiCHy: the CAF’s LiDAR, CCD and hyperspectral integrated airborne observation system[J]. Remote Sensing, 2016, 8(5): 398. doi: 10.3390/rs8050398
|
[17] |
郝建亭, 杨武年, 李玉霞, 等. 基于FLAASH的多光谱影像大气校正应用研究[J]. 遥感信息, 2008(1):78−81. doi: 10.3969/j.issn.1000-3177.2008.01.015
Hao J T, Yang W N, Li Y X, et al. Atmospheric correction of multi-spectral imagery ASTER[J]. Remote Sensing Information, 2008(1): 78−81. doi: 10.3969/j.issn.1000-3177.2008.01.015
|
[18] |
谭炳香, 李增元, 陈尔学, 等. EO-1 Hyperion高光谱数据的预处理[J]. 遥感信息, 2005(6):36−41. doi: 10.3969/j.issn.1000-3177.2005.06.010
Tan B X, Li Z Y, Chen E X, et al. Preprocessing of EO-1 Hyperion hyperspectral data[J]. Remote Sensing Information, 2005(6): 36−41. doi: 10.3969/j.issn.1000-3177.2005.06.010
|
[19] |
国家林业局. 森林资源数据采集技术规范 第1部分: 森林资源连续清查: LY/T 2188.1—2013[S]. 北京: 中国标准出版社, 2014.
State Forestry Administration. Forest resource data collection technical specification(part 1): forest continuous inventory: LY/T 2188.1−2013[S]. Beijing: China Standard Press, 2014.
|
[20] |
郝泷, 陈永富, 刘华, 等. 基于纹理信息CART决策树的林芝县森林植被面向对象分类[J]. 遥感技术与应用, 2017, 32(2):386−394.
Hao L, Chen Y F, Liu H, et al. Object-oriented forest classification of Linzhi county based on CART decision tree with texture information[J]. Remote Sensing Technology and Application, 2017, 32(2): 386−394.
|
[21] |
谭琨, 杜培军. 基于支持向量机的高光谱遥感图像分类[J]. 红外与毫米波学报, 2008, 27(2):123−128. doi: 10.3321/j.issn:1001-9014.2008.02.010
Tan K, Du P J. Hyperspectral remote sensing image classification based on support vector machine[J]. Journal of Infrared and Millimeter Waves, 2008, 27(2): 123−128. doi: 10.3321/j.issn:1001-9014.2008.02.010
|
[22] |
Pu R L, Gong P. Hyperspectral remote sensing of vegetation bioparameters[M]//Wang Q. Advances in environmental remote sensing: sensors, algorithms, and applications. London: CRC Press, 2011: 101−142.
|
[23] |
Cao J J, Leng W C, Liu K, et al. Object-based mangrove species classification using unmanned aerial vehicle hyperspectral images and digital surface models[J/OL]. Remote Sensing, 2018, 10(1): 89[2018−12−02]. https://www.mdpi.com/2072-4292/10/1/89.
|
[24] |
Lu D S, Li G Y, Moran E, et al. The roles of textural images in improving land-cover classification in the Brazilian Amazon[J]. International Journal of Remote Sensing, 2014, 35(24): 8188−8207. doi: 10.1080/01431161.2014.980920
|