• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Wang Xiaosong, Yang Gang. A multi-objective optimization segmentation method for tree image based on fusion clustering and classification algorithm[J]. Journal of Beijing Forestry University, 2018, 40(12): 124-131. DOI: 10.13332/j.1000-1522.20180160
Citation: Wang Xiaosong, Yang Gang. A multi-objective optimization segmentation method for tree image based on fusion clustering and classification algorithm[J]. Journal of Beijing Forestry University, 2018, 40(12): 124-131. DOI: 10.13332/j.1000-1522.20180160

A multi-objective optimization segmentation method for tree image based on fusion clustering and classification algorithm

More Information
  • Received Date: May 14, 2018
  • Revised Date: September 16, 2018
  • Published Date: November 30, 2018
  • ObjectiveIn order to improve the accuracy of tree image segmentation under natural background, this paper studies how to combine the color and texture features of tree image, and combine clustering and classification algorithm to optimize multi-objective segmentation of tree image.
    MethodBased on the tree image feature analysis, this paper proposes a multi-objective tree image segmentation method based on clustering and classification algorithm. Firstly, using the MSCC framework theory, the clustering and classification objective function depends on clustering center simultaneously. Then, the cluster performance evaluation index function and the classification performance evaluation index function were selected. Finally, the multi-objective evolutionary optimization method, NSGA-II algorithm was used to optimize, and the Pareto front-end optimal solution set was obtained. The I index was used to select the optimal solution from the optimal solution set. In this paper, we selected four images taken under the natural background, such as Oriental plane, Platycladus orientalis, pine and apricot, as samples. K-means, Fuzzy C-means, single-objective optimization of clustering objective function, multi-objective optimization using MOPSO method and multi-objective optimization using NSGA-II method were used to segment the sample images.
    ResultWhen the number of cluster centers, the size of population and the number of genetic iterations were the same, the value of index I can verify that the proposed segmentation method had significant advantages. Comparing the index I values of four different sample image segmentation, we can see that the result of genetic optimization using HF index as single objective function was better than that using K-means and FCM algorithm alone. The result of MOPSO multi-objective optimization method was better than that of single objective optimization method, but the result of multi-objective function segmentation based on NSGA-II optimization was better than that of MOPSO objective optimization results.
    ConclusionThe experimental results show that the segmentation accuracy of the method proposed in this paper is obviously better than that of single-objective optimization segmentation and K-means, Fuzzy c-means and other segmentation methods, the color and texture features of the tree image are better preserved. So the accuracy of segmentation is significantly improved.
  • [1]
    葛玉峰, 周宏平, 郑加强, 等.基于相对色彩因子的树木图像分割算法[J].南京林业大学学报(自然科学版), 2004, 28(4):19-22. doi: 10.3969/j.issn.1000-2006.2004.04.004

    Ge Y F, Zhou H P, Zheng J Q, et al. Tree image segmentation algorithm based on relative color factor[J].Journal of Nanjing Forestry University(Natural Science Edition), 2004, 28(4):19-22. doi: 10.3969/j.issn.1000-2006.2004.04.004
    [2]
    赵茂程, 郑加强, 林小静, 等.基于分形理论的树木图像分割方法[J].农业机械学报, 2004, 35(2):72-75. doi: 10.3969/j.issn.1000-1298.2004.02.021

    Zhao M C, Zheng J Q, Lin X J, et al. Tree image segmentation based on fractal theory[J].Transactions of the Chinese Society of Agricultural Machinery, 2004, 35(2):72-75. doi: 10.3969/j.issn.1000-1298.2004.02.021
    [3]
    蔡世捷.基于Matlab的树木图像分割方法研究[D].南京: 南京林业大学, 2005. http://cdmd.cnki.com.cn/Article/CDMD-10298-2005103040.htm

    Cai S J. Research on tree image segmentation based on matlab[D]. Nanjing: Nanjing Forestry University, 2005. http://cdmd.cnki.com.cn/Article/CDMD-10298-2005103040.htm
    [4]
    李云峰, 曹渝昆, 朱庆生, 等.基于小波域隐马模型的树木类图像分割算法[J].计算机应用研究, 2007, 24(8): 233-235. doi: 10.3969/j.issn.1001-3695.2007.08.076

    Li Y F, Cao Y K, Zhu Q S, et al. Tree image segmentation algorithm based on wavelet-domain hidden-maze model[J]. Research of Computer Applications, 2007, 24(8):233-235. doi: 10.3969/j.issn.1001-3695.2007.08.076
    [5]
    张娜.树木图像分割方法的研究[D].哈尔滨: 东北林业大学, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10225-1013371465.htm

    Zhang N.Research on tree image segmentation method[D]. Harbin: Northeast Forestry University, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10225-1013371465.htm
    [6]
    程磊.树木图象的分割方法初探[D].北京: 北京林业大学, 2004. http://cdmd.cnki.com.cn/article/cdmd-10022-2004116979.htm

    Cheng L. The method of tree image segmentation[D]. Beijing: Beijing Forestry University, 2004. http://cdmd.cnki.com.cn/article/cdmd-10022-2004116979.htm
    [7]
    郭晶晶, 李庆武, 程海粟, 等.基于Lab颜色距离和GMM的树木图像分割算法[J].信息技术, 2016(2):1-4, 9. http://d.old.wanfangdata.com.cn/Periodical/xxjs201602001

    Guo J J, Li Q W, Cheng H S, et al. Tree image segmentation algorithm based on lab color distance and GMM[J]. Information Technology, 2016(2):1-4, 9. http://d.old.wanfangdata.com.cn/Periodical/xxjs201602001
    [8]
    王晓松, 黄心渊.一种改进的基于MRF的树木图像提取方法[J].北京林业大学学报, 2012, 34(5):128-133. http://j.bjfu.edu.cn/article/id/9811

    Wang X S, Huang X Y. An improved MRF based tree image extraction method[J].Journal of Beijing Forestry University, 2012, 34(5):128-133. http://j.bjfu.edu.cn/article/id/9811
    [9]
    Ye N, Li X Y. A scalable, incremental learning algorithm for classification problems[J]. Computers & Industrial Engineering, 2002, 43(4): 677-692. http://cn.bing.com/academic/profile?id=42c70044a0b7abac36225de930766425&encoded=0&v=paper_preview&mkt=zh-cn
    [10]
    Musavi M T, Ahmed W, Chan K H, et al. On the training of radial basis function classifiers[J]. Neural Networks, 1992, 5(4): 595-603. doi: 10.1016/S0893-6080(05)80038-3
    [11]
    Kim S W, Oommen B J. Enhancing prototype reduction schemes with LVQ3-type algorithms[J]. Pattern Recognition, 2003, 36(5): 1083-1093. doi: 10.1016/S0031-3203(02)00115-2
    [12]
    Li X, Ye N. A supervised clustering and classification algorithm for mining data with mixed variables[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans, 2006, 36(2): 396-406. doi: 10.1109/TSMCA.2005.853501
    [13]
    Setnes M, Babuska R. Fuzzy relational classifier trained by fuzzy clustering[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetic, 1999, 29(5): 619-625. doi: 10.1109/3477.790444
    [14]
    Cai W L, Chen S C, Zhang D Q. A simultaneous learning framework for clustering and classification[J]. Pattern Recognition, 2009, 42(7): 1248-1259. doi: 10.1016/j.patcog.2008.11.029
    [15]
    Cai W L, Chen S C, Zhang D Q. A multiobjective simultaneous learning framework for clustering and classification[J]. IEEE Transactions on Neural Networks, 2010, 21(2): 185-200. doi: 10.1109/TNN.2009.2034741
    [16]
    Bezdek J C, Ehrlich R, Full W. FCM: the fuzzy c-means clustering algorithm[J]. Computers & Geosciences, 1984, 10(2/3): 191-203. http://d.old.wanfangdata.com.cn/Periodical/gpxygpfx201012036
    [17]
    Coello C A C, Pulido G T, Lechuga M S. Handling multiple objectives with particle swarm optimization[J]. IEEE Transactions on Evolutionary Computation, 2004, 8(3): 256-279. doi: 10.1109/TEVC.2004.826067
    [18]
    Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197. doi: 10.1109/4235.996017
    [19]
    Wu C H, Ouyang C S, Chen L W, et al. A new fuzzy clustering validity index with a median factor for centroid-based clustering[J]. IEEE Transactions on Fuzzy Systems, 2015, 23(3): 701-718. doi: 10.1109/TFUZZ.2014.2322495
    [20]
    Tang Y G, Sun F C, Sun Z Q. Improved validation index for fuzzy clustering[C]//Proceedings of the 2005, American Control Conference, 2005. Portland: IEEE, 2005, 2: 1120-1125.
    [21]
    Haouas F, Dhiaf Z B, Hammouda A, et al. A new efficient fuzzy cluster validity index: application to images clustering[C]//2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). Naples: IEEE, 2017.
    [22]
    Deb K, Agrawal R B. Simulated binary crossover for continuous search space[J]. Complex Systems, 1994, 9(3): 115-148. http://cn.bing.com/academic/profile?id=fc75f2c786e997992685ce3da77fbd15&encoded=0&v=paper_preview&mkt=zh-cn
    [23]
    Deb K, Goyal M. A combined genetic adaptive search (GeneAS) for engineering design[J]. Computer Science Informatics, 1996, 26(4): 30-45. http://cn.bing.com/academic/profile?id=ca0c97135300a100909d6ad8af227e7b&encoded=0&v=paper_preview&mkt=zh-cn
    [24]
    Maulik U, Bandyopadhyay S. Performance evaluation of some clustering algorithms and validity indices[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(12): 1650-1654. doi: 10.1109/TPAMI.2002.1114856
  • Related Articles

    [1]He Xuegao, Liu Huan, Zhang Jing, Cheng Wei, Ding Peng, Jia Fengming, Li Qing, Liu Chao. Predicting potential suitable distribution areas for Juniperus przewalskii in Qinghai Province of northwestern China based on the optimized MaxEnt model[J]. Journal of Beijing Forestry University, 2023, 45(12): 19-31. DOI: 10.12171/j.1000-1522.20220515
    [2]Zhang Hanyue, Feng Zhongke, Huang Guosheng, Yang Xueqing, Feng Zemin. Research on the growth rate model of Populus spp. considering environmental factors[J]. Journal of Beijing Forestry University, 2022, 44(11): 50-59. DOI: 10.12171/j.1000-1522.20210201
    [3]Zhou Zhenghu, Liu Lin, Hou Lei. Soil organic carbon stabilization and formation: mechanism and model[J]. Journal of Beijing Forestry University, 2022, 44(10): 11-22. DOI: 10.12171/j.1000-1522.20220183
    [4]Wang Peng, Shang Shuaishuai, Guo Fan, Qiu Jingcong, Wang Xinqing, Wang Shiqi, Wang Chunmei. Analyzing the effects of freeze-thaw on dissolved organic matter in alpine peat wetland soil based on EEM-PARAFAC[J]. Journal of Beijing Forestry University, 2021, 43(11): 99-108. DOI: 10.12171/j.1000-1522.20210096
    [5]Ge Huishuo, Song Yuepeng, Su Xuehui, Zhang Deqiang, Zhang Xiaoyu. Optimal growth model of Populus simonii seedling combination based on Logistic and Gompertz models[J]. Journal of Beijing Forestry University, 2020, 42(5): 59-70. DOI: 10.12171/j.1000-1522.20190296
    [6]Cao Meng, Pan Ping, Ouyang Xunzhi, Zang Hao, Wu Zirong, Yang Yang, Zhan Changyan. Growth model of DBH and tree height for individual tree of natural secondary Phoebe bournei forest based on dummy variable[J]. Journal of Beijing Forestry University, 2019, 41(5): 88-96. DOI: 10.13332/j.1000-1522.20190026
    [7]ZHENG Dong-mei, ZENG Wei-sheng.. Using dummy variable approach to construct segmented aboveground biomass models for larch and oak in northeastern China.[J]. Journal of Beijing Forestry University, 2013, 35(6): 23-27.
    [8]WANG Lei-hong, YANG Jun-xian, ZHENG Yu-hong, TANG Geng-guo. Modelling the geographic distribution of Malus baccata[J]. Journal of Beijing Forestry University, 2011, 33(3): 70-74.
    [9]WANG Dan, WANG Bing, DAI Wei, LI Ping. Sensitivity analysis of variables correlated to soil organic matter in Chinese fir plantations[J]. Journal of Beijing Forestry University, 2011, 33(1): 78-83.
    [10]YU Yun-shui, HE Wei-li, LI Li-jun, ZHAO Ren-jie. Optimal design of the mechanical properties of bamboo plywood form based on response surface model.[J]. Journal of Beijing Forestry University, 2009, 31(6): 103-107.
  • Cited by

    Periodical cited type(7)

    1. 张高玲,谢红霞,盛浩,周清,段良霞,吴燕语. 亚热带山区红壤可蚀性对土地利用变化的响应. 长江科学院院报. 2022(02): 63-69 .
    2. 孙文泰,马明,牛军强,尹晓宁,董铁,刘兴禄. 陇东雨养苹果覆膜对土壤团聚体结构稳定性与细根分布的影响. 生态学报. 2022(04): 1582-1593 .
    3. 崔芯蕊,张嘉良,王云琦,王玉杰,王鑫皓. 甘肃小陇山林区不同林分对土壤团聚体稳定性的影响. 水土保持学报. 2021(04): 275-281 .
    4. 赵庆营. 河道格宾生态护岸结构选择方案设计与质量控制研究. 地下水. 2021(05): 246-248 .
    5. 蔡保国. 北方地区格宾生态护岸结构形式选择及质量控制. 水利规划与设计. 2020(01): 113-116 .
    6. 吴军虎,刘侠,邵凡凡,李玉晨,王泽祥. 天然沸石对土壤水分运动特性及水稳性团聚体的影响. 灌溉排水学报. 2020(04): 34-41 .
    7. 白录顺,范茂攀,王自林,王婷,邓超,李永梅. 间作模式下玉米/大豆的根系特征及其与团聚体稳定性的关系. 水土保持研究. 2019(01): 124-129 .

    Other cited types(7)

Catalog

    Article views (1773) PDF downloads (35) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return