• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Li Jinhang, Zhou Mei, Zhu Jiyou, Xu Chengyang. Adaptability response of root architecture of Cotinus coggygria seedlings to soil nutrient stress[J]. Journal of Beijing Forestry University, 2020, 42(3): 65-77. DOI: 10.12171/j.1000-1522.20190218
Citation: Li Jinhang, Zhou Mei, Zhu Jiyou, Xu Chengyang. Adaptability response of root architecture of Cotinus coggygria seedlings to soil nutrient stress[J]. Journal of Beijing Forestry University, 2020, 42(3): 65-77. DOI: 10.12171/j.1000-1522.20190218

Adaptability response of root architecture of Cotinus coggygria seedlings to soil nutrient stress

More Information
  • Received Date: May 08, 2019
  • Revised Date: December 12, 2019
  • Available Online: March 11, 2020
  • Published Date: March 30, 2020
  • ObjectiveThe study was conducted to explore the adaptability strategy of root architecture of Cotinus coggygria seedlings to soil nutrient stress environment.
    MethodTaking one-year-old C. coggygria seedlings as research object and carrying out pot-culturing simulation control test, five soil nutrient gradients were set: nutrient-rich condition (sand proportion 0, CK), slight nutrient stress condition (sand proportion 30%, N1), medium nutrient stress condition (sand proportion 50%, N2), severe nutrient stress condition (sand proportion 70%, N3) and extreme nutrient stress condition (sand proportion 100%, N4). Seedlings were sampled at 31th, 38th, 45th, 52th and 59th day after transplanting to explore the changing rules of branching pattern and geometric characteristics of seedling root, fine root morphology at varied diameter classes under the above nutrient conditions.
    Result(1) Topological indices (TI or DBI) under CK were higher than the other treatments, but the number of root longest link path (a), the number of root external link (μ) and the total number of all root link paths (Pe) were lowest. Seedlings in the N1 treatment showed the lowest TI and DBI while the highest a, μ and Pe , which were higher than those in CK by 53.2%, 131.6% and 194.7%, respectively. (2) In the N1, N2, N3 and N4 treatments, specific root length (SRL), specific root surface area (SRA) and root branching index (RBI) increased gradually with the nutrient stress degree rising. Among which, SRL, SRA and SRA of seedlings under N4 treatment were higher than those in CK by 67.7%−157.4%, 52.3%−120.7% and 14.7%−42.1%, respectively.The number of root tip (RT), the number of root link (RLN), root link total length (RLTL) and the branching number of root (RF) decreased with the nutrient stress degree rising. All these four parameters in N1 treatment were highest, and higher than those in CK by 95.0%−279.6%, 104.3%−247.4%, 77.4%−193.5% and 102.6%−235.0%, respectively. Root link average length (RLAL), root link average diameter (RLAD) and root tissue density (RTID) had a reducing trend with the nutrient stress degree rising, and RLAL, RLAD and RTID in N4 were lower than those in CK by 15.2%−22.7%, 9.3%−21.4% and 32.4%−42.7%, respectively. (3) The positive correlation coefficient (0.951) between SRL and SRA was highest under CK environment, and the positive correlation coefficients between RF and RLN (0.989) and between RLAL and RLAD (0.904) were highest under N4 environment. The negative correlation coefficients under N1, N2 and N3 treatments were − 0.915, − 0.889 and − 0.893, respectively. (4) The average length proportion, average surface area proportion, average volume proportion and the average tip number proportion of fine roots in 0−0.50 mm were all higher than the other treatments, and they were 86.3% and 86.1%, 67.6% and 66.7%, 40.2% and 38.1%, 98.6% and 98.4% in N3 and N4, respectively. While these parameters under CK were lowest, which were 80.9%, 59.4%, 32.2% and 97.2%, respectively.
    Conclusion(1) The root system of C. coggygria in soil nutrient-rich environment is closest to the herringbone pattern with few branches and a relatively simple structure. It also has an extending tendency towards deeper layers of soil. In contrast, C. coggygria develops increased branches and a high degree of secondary root overlap in slight nutrient stress soil. Under medium, severe and extreme nutrient stress conditions, the relatively simple root structure strategy is adopted, and the root system strengthens the ability of local nutrient utilization by forming short, thin and dense lateral branches (mainly fine roots). (2) The adjustment of coordination and trade-off relationships between geometric characteristic parameters of root architecture for economizing soil resource utilization is also an important aspect for C. coggygria to cope with different soil nutrient environments. (3) The differentiation of fine roots in 0−0.50 mm is markedly enhanced from soil nutrient-rich to extreme nutrient stress environment. Fine roots in 0−0.50 mm diameter are the significantly active organs for C. coggygria to absorb nutrients in severe stress environment. When the soil is extremely poor, a certain number of fine roots of 0.50−2.00 mm diameter are promoted production to reduce the carbon consumption caused by fine root turnover, and then to maintain the root resource utilization efficiency.
  • [1]
    Fortunel C, Fine P V A, Baraloto C. Leaf, stem and root tissue strategies across 758 Neotropical tree species[J]. Functional Ecology, 2012, 26(5): 1153−1161. doi: 10.1111/j.1365-2435.2012.02020.x
    [2]
    Ristova D, Busch W. Natural variation of root traits: from development to nutrient uptake[J]. Plant Physiology, 2014, 116(2): 518−527.
    [3]
    李洪波, 薛慕瑶, 林雅茹, 等. 土壤养分空间异质性与根系觅食作用: 从个体到群落[J]. 植物营养与肥料学, 2013, 19(4):995−1004.

    Li H B, Xue M Y, Lin Y R, et al. Spatial heterogeneity of soil nutrients and root foraging from individual to community[J]. Journal of Plant Nutrition and Fertilizer, 2013, 19(4): 995−1004.
    [4]
    陈伟立, 李娟, 朱红惠, 等. 根际微生物调控植物根系构型的研究进展[J]. 生态学报, 2016, 36(17):1−13.

    Chen W L, Li J, Zhu H H, et al. A review of the regulation of plant root system architecture by rhizosphere microorganisms[J]. Acta Ecologica Sinica, 2016, 36(17): 1−13.
    [5]
    郑慧玲, 赵成章, 段贝贝, 等. 琵琶柴根系分叉数与连接长度权衡关系的坡向差异[J]. 生态学杂志, 2015, 34(10):2727−2732.

    Zheng H L, Zhao C Z, Duan B B, et al. Differences of trade-off relationship among root forks and link length in Reaumuria soongorica on slopes of different aspects[J]. Chinese Journal of Ecology, 2015, 34(10): 2727−2732.
    [6]
    Paez-Garcia A, Motes C M, Scheible W R, et al. Root traits and phenotyping strategies for plant improvement[J]. Plants, 2015, 4(2): 334−355. doi: 10.3390/plants4020334
    [7]
    Rogers E D, Benfey P N. Regulation of plant root system architecture: implications for crop advancement[J]. Biotechnology, 2015, 32: 93−98.
    [8]
    叶子奇, 邓如军, 王雨辰, 等. 胡杨繁殖根系分枝特征及其与土壤因子的关联性[J]. 北京林业大学学报, 2018, 40(2):31−39.

    Ye Z Q, Deng R J, Wang Y C, et al. Branching patterns of clonal root of Populus euphratica and its associations with soil factors[J]. Journal of Beijing Forestry University, 2018, 40(2): 31−39.
    [9]
    单立山, 李毅, 董秋莲, 等. 红砂根系构型对干旱的生态适应[J]. 中国沙漠, 2012, 32(5):1283−1290.

    Shan L S, Li Y, Dong Q L, et al. Ecological adaption of Reaumuria Soongorica root system architecture to arid environment[J]. Journal of Desert Research, 2012, 32(5): 1283−1290.
    [10]
    李秉钧, 颜耀, 吴文景, 等. 环境因子对植物根系及其构型的影响研究进展[J]. 亚热带水土保持, 2019, 31(3):41−45. doi: 10.3969/j.issn.1002-2651.2019.03.008

    Li B J, Yan Y, Wu W J, et al. Research progress on the influences of environmental factors on plant root and root architecture[J]. Subtropical Soil and Water Conservation, 2019, 31(3): 41−45. doi: 10.3969/j.issn.1002-2651.2019.03.008
    [11]
    杜建会, 刘安隆, 董玉祥, 等. 华南海岸典型沙生植物根系构型特征[J]. 植物生态学报, 2014, 38(8):888−895.

    Du J H, Liu A L, Dong Y X, et al. Architectural characteristics of roots in typical coastal psammophytes of South China[J]. Chinese Journal of Plant Ecology, 2014, 38(8): 888−895.
    [12]
    Larson J E, Funk J L. Seedling root responses to soil moisture and the identification of a belowground trait spectrum across three growth forms[J]. New Phytologist, 2016, 210(3): 827−838. doi: 10.1111/nph.13829
    [13]
    Fort F, Volaire F, Guilioni L, et al. Root traits are related to plant water-use among rangeland Mediterranean species[J]. Functional Ecology, 2017, 31(9): 1700−1709. doi: 10.1111/1365-2435.12888
    [14]
    郭京衡, 曾凡江, 李尝君, 等. 塔克拉玛干沙漠南缘三种防护林植物根系构型及其生态适应策略[J]. 植物生态学报, 2014, 38(1):36−44. doi: 10.3724/SP.J.1258.2014.00004

    Guo J H, Zeng F J, Li C J, et al. Root architecture and ecological adaption strategies in three shelterbelt plant species in the southern Taklimakan Desert[J]. Chinese Journal of Plant Ecology, 2014, 38(1): 36−44. doi: 10.3724/SP.J.1258.2014.00004
    [15]
    Fitter A H. An architectural approach to the comparative ecology of plant root systems[J]. New Phytologist, 1987, 106(1): 61−77.
    [16]
    Fitter A H, Stickland T R, Harvey M L, et al. Architectural analysis of plant root systems (1): architectural correlates of exploitation efficiency[J]. New Phytologist, 1991, 118: 375−382. doi: 10.1111/j.1469-8137.1991.tb00018.x
    [17]
    Fitter A H, Sticklabd T R. Architectural analysis of plant root systems (2): influence of nutrient supply on architecture in contrasting plant species[J]. New Phytologist, 1991, 118: 383−389. doi: 10.1111/j.1469-8137.1991.tb00019.x
    [18]
    杨小林, 张希明, 李义玲, 等. 塔克拉玛干沙漠腹地3种植物根系构型及其生境适应策略[J]. 植物生态学报, 2008, 32(6):1268−1276. doi: 10.3773/j.issn.1005-264x.2008.06.007

    Yang X L, Zhang X M, Li Y L, et al. Analysis of root architecture and root adaptive strategy in the Taklimakan Desert area of China[J]. Journal of Plant Ecology, 2008, 32(6): 1268−1276. doi: 10.3773/j.issn.1005-264x.2008.06.007
    [19]
    Beidler K V, Taylor B N, Strand A E, et al. Changes in root architecture under elevated concentrations of CO2 and nitrogen reflect alternate soil exploration strategies[J]. New Phytologist, 2015, 205(3): 1153−1163. doi: 10.1111/nph.13123
    [20]
    Janecek S, Janecek P, Leps J. Effect of competition and soil quality on root topology of the perennial grass Molinia caerulea[J]. Preslia, 2007, 79(1): 23−32.
    [21]
    黄同丽, 唐丽霞, 陈龙, 等. 喀斯特区3种灌木根系构型及其生态适应策略[J]. 中国水土保持科学, 2019, 17(1):89−94.

    Huang T L, Tang L X, Chen L, et al. Root architecture and ecological adaption strategy of three shrubs in karst area[J]. Science of Soil and Water Conservation, 2019, 17(1): 89−94.
    [22]
    Bouma T J, Nielsen K L, Vanhal J, et al. Root system topology and diameter distribution of species from habitats differing in inundation frequency[J]. Functional Ecology, 2001, 15(3): 360−369. doi: 10.1046/j.1365-2435.2001.00523.x
    [23]
    刘佳, 项文化, 徐晓, 等. 湖南会同5个亚热带树种的细根构型及功能特征分析[J]. 植物生态学报, 2010, 34(8):938−945. doi: 10.3773/j.issn.1005-264x.2010.08.006

    Liu J, Xiang W H, Xu X, et al. Analysis of architecture and functions of fine roots of five subtropical tree species in Huitong, Hunan Province, China[J]. Chinese Journal of Plant Ecology, 2010, 34(8): 938−945. doi: 10.3773/j.issn.1005-264x.2010.08.006
    [24]
    Abenavoli M R, Leone M, Sunseri F, et al. Root phenotyping for drought tolerance in bean landraces from Calabria (Italy)[J]. Journal of Agronomy and Crop Science, 2016, 202(1): 1−11. doi: 10.1111/jac.12124
    [25]
    张伟涛, 赵成章, 宋清华, 等. 高寒退化草地星毛委陵菜根系分叉数和连接长度的关系[J]. 生态学报, 2017, 37(24):1−7.

    Zhang W T, Zhao C Z, Song Q H, et al. Trade-off between root forks and link length of Potentilla acaulis in degraded alpine grassland[J]. Acta Ecologica Sinica, 2017, 37(24): 1−7.
    [26]
    郑慧玲, 赵成章, 徐婷, 等. 红砂根系分叉数和分支角度权衡关系的坡向差异[J]. 植物生态学报, 2015, 39(11):1062−1070. doi: 10.17521/cjpe.2015.0103

    Zheng H L, Zhao C Z, Xu T, et al. Trade-off relationship between root forks and branch angle of Reaumuria songrica on different aspects of slopes[J]. Chinese Journal of Plant Ecology, 2015, 39(11): 1062−1070. doi: 10.17521/cjpe.2015.0103
    [27]
    宋清华, 赵成章, 史元春, 等. 不同坡向甘肃臭草根系分叉数和连接长度的权衡关系[J]. 植物生态学报, 2015, 39(6):577−585. doi: 10.17521/cjpe.2015.0055

    Song Q H, Zhao C Z, Shi Y C, et al. Trade-off between root forks and link length of Melica przewalskyi on different aspects of slopes[J]. Chinese Journal of Plant Ecology, 2015, 39(6): 577−585. doi: 10.17521/cjpe.2015.0055
    [28]
    Martinez-Sanchez J J, Ferrandis P, Trabaud L, et al. Comparative root system structure of post-fire Pinus halepensis Mill. and Cistus monspeliensis L. saplings[J]. Plant Ecology, 2003, 168(2): 309−320. doi: 10.1023/A:1024406029497
    [29]
    刘刚, 张光灿, 刘霞. 土壤干旱胁迫对黄栌叶片光合作用的影响[J]. 应用生态学报, 2010, 21(7):1697−1701.

    Liu G, Zhang G C, Liu X. Responses of Cotinus coggygria var. cinereal photosynthesis to soil drought stress[J]. Chinese Journal of Applied Ecology, 2010, 21(7): 1697−1701.
    [30]
    李金航, 齐秀慧, 徐程扬, 等. 黄栌幼苗叶片气体交换对干旱胁迫的短期响应[J]. 林业科学, 2015, 51(1):29−41.

    Li J H, Qi X H, Xu C Y, et al. Short-term responses of leaf gas exchange characteristics to drought stress of Cotinus coggygria seedlings[J]. Scientia Silvae Sinicae, 2015, 51(1): 29−41.
    [31]
    孙鹏, 李金航, 刘海轩, 等. 黄栌根系结构与个体健康程度的关系[J]. 西北林学院学报, 2016, 31(2):20−27. doi: 10.3969/j.issn.1001-7461.2016.02.04

    Sun P, Li J H, Liu H X, et al. Relationship between root structure and health level of Cotinus coggygria trees[J]. Journal of Northwest Forestry University, 2016, 31(2): 20−27. doi: 10.3969/j.issn.1001-7461.2016.02.04
    [32]
    靳泽辉, 苗峻峰, 张永端, 等. 华北地区极端降水变化特征及多模式模拟评估[J]. 气象科技, 2017, 45(1):91−100.

    Jin Z H, Miao J F, Zhang Y D, et al. Characteristics of extreme precipitation and its multi-model simulation evaluation in North China[J]. Meteorological Science and Technology, 2017, 45(1): 91−100.
    [33]
    路炳军, 王志强. 北京西部山区径流小区产流产沙和土壤养分流失特征[J]. 中国水土保持科学, 2015, 13(6):33−39. doi: 10.3969/j.issn.1672-3007.2015.06.005

    Lu B J, Wang Z Q. Water and nutrient losses on runoff plots in the mountainous area at western Beijing[J]. Science of Soil and Water Conservation, 2015, 13(6): 33−39. doi: 10.3969/j.issn.1672-3007.2015.06.005
    [34]
    史佳良, 王秀茹, 李淑芳, 等. 次降雨过程中北京市不同土地利用方式下土壤养分流失特征[J]. 水土保持学报, 2016, 30(5):58−63.

    Shi J L, Wang X R, Li S F, et al. Characteristics of soil nutrients loss under different land use patterns in Beijing during course of rain[J]. Journal of Soil and Water Conservation, 2016, 30(5): 58−63.
    [35]
    李金航, 齐秀慧, 徐程扬, 等. 华北4产地黄栌幼苗根系形态对干旱胁迫的短期响应[J]. 北京林业大学学报, 2014, 36(1):48−54.

    Li J H, Qi X H, Xu C Y, et al. Short term responses of root morphology to drought stress of Cotinus coggygria seedlings from four varied locations in northern China[J]. Journal of Beijing Forestry University, 2014, 36(1): 48−54.
    [36]
    王艺霖, 周玫, 李苹, 等. 根系形态可塑性决定黄栌幼苗在瘠薄土壤中的适应对策[J]. 北京林业大学学报, 2017, 39(6):60−67.

    Wang Y L, Zhou M, Li P, et al. Root morphological plasticity determining the adaptive strategies of Cotinus coggygria seedlings in barren soil environment[J]. Journal of Beijing Forestry University, 2017, 39(6): 60−67.
    [37]
    Alvarez-Flores R, Winkel T, Nguyen-Thi-Truc A, et al. Root foraging capacity depends on root system architecture and ontogeny in seedlings of three Andean Chenopodium species[J]. Plant and Soil, 2014, 380(1−2): 415−428. doi: 10.1007/s11104-014-2105-x
    [38]
    Birouste M, Zamora-Ledezma E, Bossard C, et al. Measurement of fine root tissue density: a comparison of three methods reveals the potential of root dry matter content[J]. Plant Soil, 2014, 374(1−2): 299−313. doi: 10.1007/s11104-013-1874-y
    [39]
    Hodge A. Plastic plants and patchy soils[J]. Journal of Experimental Botany, 2006, 57(2): 401−411. doi: 10.1093/jxb/eri280
    [40]
    Hodge A. The plastic plant: root responses to heterogeneous supplies of nutrients[J]. New Phytologist, 2003, 162(1): 9−24.
    [41]
    王庆成, 程云环. 土壤养分空间异质性与植物根系的觅食反应[J]. 应用生态学报, 2004, 15(6):1063−1068. doi: 10.3321/j.issn:1001-9332.2004.06.030

    Wang Q C, Cheng Y H. Response of fine roots to soil nutrient spatial heterogeneity[J]. Chinese Journal of Applied Ecology, 2004, 15(6): 1063−1068. doi: 10.3321/j.issn:1001-9332.2004.06.030
    [42]
    梅莉, 王政权, 韩有志, 等. 水曲柳根系生物量、比根长和根长密度的分布格局[J]. 应用生态学报, 2006, 17(1):1−4. doi: 10.3321/j.issn:1001-9332.2006.01.001

    Mei L, Wang Z Q, Han Y Z, et al. Distribution patterns of Fraxinus mandshurica root biomass, specific root length and root length density[J]. Chinese Journal of Applied Ecology, 2006, 17(1): 1−4. doi: 10.3321/j.issn:1001-9332.2006.01.001
    [43]
    于立忠, 丁国泉, 史建伟, 等. 施肥对日本落叶松人工林细根直径、根长和比根长的影响[J]. 应用生态学报, 2007, 18(5):957−962. doi: 10.3321/j.issn:1001-9332.2007.05.003

    Yu L Z, Ding G Q, Shi J W, et al. Effects of fertilization on fine root diameter, root length and specific root length in Larix kaempferi plantation[J]. Chinese Journal of Applied Ecology, 2007, 18(5): 957−962. doi: 10.3321/j.issn:1001-9332.2007.05.003
    [44]
    Wu Q, Pages L, Wu J. Relationships between root diameter, root length and root branching along lateral roots in adult, field-grown maize[J]. Annals of Botany, 2016, 117(3): 379−390. doi: 10.1093/aob/mcv185
    [45]
    何广志, 陈亚宁, 陈亚鹏, 等. 柽柳根系构型对干旱的适应策略[J]. 北京师范大学学报(自然科学版), 2016, 52(3):277−281.

    He G Z, Chen Y N, Chen Y P, et al. Adaptive strategy of Tamarix spp. root architecture in arid environment[J]. Journal of Beijing Normal University (Natural Sciences), 2016, 52(3): 277−281.
    [46]
    梅莉, 王政权, 程云环, 等. 林木细根寿命及其影响因子研究进展[J]. 植物生态学报, 2004, 28(4):704−710.

    Mei L, Wang Z Q, Cheng Y H, et al. A review: factors influencing fine root longevity in forest ecosystems[J]. Acta Phytoecologica Sinica, 2004, 28(4): 704−710.
    [47]
    张旭东, 王智威, 韩清芳, 等. 玉米早期根系构型及其生理特性对土壤水分的响应[J]. 生态学报, 2016, 36(10):1−10.

    Zhang X D, Wang Z W, Han Q F, et al. Effects of water stress on the root structure and physiological characteristics of early-stage maize[J]. Acta Ecologica Sinica, 2016, 36(10): 1−10.
  • Related Articles

    [1]Chen Ling, Chen Feng, Niu Shukui, Li Lianqiang, Tao Changsen. Correlation analysis between the spatial characteristics of landscape pattern and risk of forest fire in Jiufeng Forest Park of Beijing[J]. Journal of Beijing Forestry University, 2021, 43(6): 41-49. DOI: 10.12171/j.1000-1522.20180431
    [2]Li Lianqiang, Yang Huixia, Ding Guoquan, Li Chun. Precipitation redistribution characteristics and its correlation analysis of Pinus densiflora and Quercus mongolica forests in the Liaodong Peninsula of northeastern China[J]. Journal of Beijing Forestry University, 2020, 42(11): 47-55. DOI: 10.12171/j.1000-1522.20200009
    [3]Luo Guisheng, Ma Lüyi, Jia Zhongkui, Wu Danni, Chi Mingfeng, Zhang Shumin, Zhao Guijuan. Correlation analysis between natural regeneration and environment in canopy gap of Chinese pine (Pinus tabuliformis) plantation[J]. Journal of Beijing Forestry University, 2019, 41(9): 59-68. DOI: 10.13332/j.1000-1522.20180416
    [4]Li Lianqiang, Niu Shukui, Tao Changsen, Chen Ling, Chen Feng. Correlations between stand structure and surface potential fire behavior of Pinus tabuliformis forests in Miaofeng Mountain of Beijing[J]. Journal of Beijing Forestry University, 2019, 41(1): 73-81. DOI: 10.13332/j.1000-1522.20180304
    [5]WANG Xin, LIU Qin, HUANG Qin, ZHANG Hua-yu, LI Zong-feng, ZHANG Shi-qiang, DENG Hong-ping. Niche characteristics and CCA ordination of dominant species of Thuja sutchuenensis community[J]. Journal of Beijing Forestry University, 2017, 39(8): 60-67. DOI: 10.13332/j.1000-1522.20160172
    [6]CHEN Wu, KONG De-cang, CUI Yan-hong, CAO Ming, PANG Xiao-ming, LI Ying-yue. Phenotypic genetic diversity of a core collection of Ziziphus jujuba and correlation analysis of dehiscent characters[J]. Journal of Beijing Forestry University, 2017, 39(6): 78-84. DOI: 10.13332/j.1000-1522.20170024
    [7]MA Feng-feng, PAN Gao, LI Xi-quan, HAN Yun-juan. Interspecific relationship and canonical correspondence analysis within woody plant communities in the karst mountains of Southwest Guangxi, southern China[J]. Journal of Beijing Forestry University, 2017, 39(6): 32-44. DOI: 10.13332/j.1000-1522.20160379
    [8]WANG Dan, WANG Bing, DAI Wei, LI Ping. Sensitivity analysis of variables correlated to soil organic matter in Chinese fir plantations[J]. Journal of Beijing Forestry University, 2011, 33(1): 78-83.
    [9]LIU Chun-yan, , GU Jian-cai, LI Ji-yue, CHEN Ping, LU Gu i-qiao, TIAN Guo-heng. Correlated analysis between the growth of Larix principisrupprechtii and climatic factors in Saihanba Nature Reserve, northern Hebei Province.[J]. Journal of Beijing Forestry University, 2009, 31(4): 102-105.
    [10]ZHANG Qiu-hui, ZHAO Guang-jie, ZHONG Jie.. Liquefaction of waste CCA-treated wood in phenol and the technology of metal removing processing.[J]. Journal of Beijing Forestry University, 2009, 31(3): 111-115.
  • Cited by

    Periodical cited type(13)

    1. 熊海贝,龙有为,陈琳,丁叶蔚. 木结构无损检测技术研究与应用综述. 结构工程师. 2023(01): 191-201 .
    2. 王祺,冯鑫浩,史诗琪,杨兆哲,詹先旭,吴智慧. 机器视觉在木制品制造中的应用. 木材科学与技术. 2022(05): 17-24 .
    3. 王锦亚,李振业,倪超. 基于机器视觉的实木地板在线分色识别算法. 林业工程学报. 2021(05): 135-139 .
    4. 庄子龙,刘英,沈鹭翔,丁奉龙,王争光. 基于多层感知机的木材颜色分类. 林业机械与木工设备. 2020(06): 8-14 .
    5. 陈威,刘艳,雷庆. 基于智能视觉的小差异行为特征分类. 计算机科学. 2019(03): 298-302 .
    6. 孙建平,梁懿,蒋志林,柳婧如. 图像处理技术在竹木复合材料性能评估中的应用展望. 西北林学院学报. 2019(02): 246-249+256 .
    7. 王明谦,王昆,许清风. 木结构无损检测技术研究进展. 施工技术. 2019(21): 85-90 .
    8. 杜丽娟. 舰船导航系统超分辨率图像智能提取技术研究. 舰船科学技术. 2018(16): 82-84 .
    9. 何波. 篮球投射过程中的角度智能视觉图像分解判断方法. 现代电子技术. 2018(10): 175-178 .
    10. 马玉芳. 基于智能视觉的微型高精度图像采集系统设计. 现代电子技术. 2018(19): 67-70 .
    11. 魏晓慧,马晓珍,刘亚秋. 基于蜂群单阈值分割的SRC板材缺陷分类方法. 沈阳工业大学学报. 2017(03): 292-298 .
    12. 陈熔,刘杰. 基于智能视觉的特定人员检索平台设计与实现. 现代电子技术. 2017(14): 102-105 .
    13. 李晓东. 视觉传达设计认识探讨. 鸭绿江(下半月版). 2016(12): 175 .

    Other cited types(9)

Catalog

    Article views (2605) PDF downloads (83) Cited by(22)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return