• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Meng Zhaoxin, Cao Jiajia, Zhu Li, Ma Jingyao, Shi Jinsong. Kinetics analysis and strategy of compensation control study for feeding platform of curve saw for wood[J]. Journal of Beijing Forestry University, 2020, 42(2): 159-166. DOI: 10.12171/j.1000-1522.20190234
Citation: Meng Zhaoxin, Cao Jiajia, Zhu Li, Ma Jingyao, Shi Jinsong. Kinetics analysis and strategy of compensation control study for feeding platform of curve saw for wood[J]. Journal of Beijing Forestry University, 2020, 42(2): 159-166. DOI: 10.12171/j.1000-1522.20190234

Kinetics analysis and strategy of compensation control study for feeding platform of curve saw for wood

More Information
  • Received Date: May 27, 2019
  • Revised Date: June 23, 2019
  • Available Online: October 18, 2019
  • Published Date: March 02, 2020
  • ObjectiveFeeding platform is a mechanism designed by imitating manual feeding when sawing wood board. The posture of platform end is the key to ensure sawing quality. A compensation control strategy was proposed in this paper to enhance the accuracy of end posture as the error of platform cannot be simply and efficiently compensated just through hardware.
    MethodFirstly, Lagrange method was used to establish the dynamic transfer function of the platform. Through dynamic analysis, the motion characteristics of the key components of the platform were analyzed. By simulation and other methods, according to mathematical solution, the error and its characteristics of the end posture were studied, thus a simple error model was established. Secondly, based on the traditional PID control and the parameter optimization function of RBF neural network, a single neuron PID controller suitable for the feeding platform was designed to compensate the driving displacement relation of each branch chain and to carry out real-time compensation control on the mechanism. Finally, the compensation control strategy was verified and analyzed by the joint method of Matlab and Adams, and the algorithm was transplanted to the controller of the feeding platform successively.
    ResultAfter compensation by the single neuron PID algorithm, the offset error of the end trajectory curve of the feeding platform in X and Y directions was reduced from 3 mm to less than 1.5 mm, and the angle error was reduced from 3.5° to 1.5°, and in most curve segments, the end trajectory curve of the platform completely coincides with the command curve.
    ConclusionThe SN-PID proposed by this paper can effectively improve the accuracy of the end posture of the woodworking saw feeding platform, and the feeding platform after compensation control can realize the precise cutting task of the wood plate.
  • [1]
    朱城伟, 朱大昌, 陈健伟, 等. 3-RPS并联机构SMC控制系统仿真[J]. 机械设计与制造, 2018(9):119−122. doi: 10.3969/j.issn.1001-3997.2018.09.033

    Zhu C W, Zhu D C, Chen J W, et al. SMC control system simulation of 3-RPS parallel mechanism[J]. Machinery Design & Manufacture, 2018(9): 119−122. doi: 10.3969/j.issn.1001-3997.2018.09.033
    [2]
    柴保明, 王远东. 3TPT并联机构的误差补偿方法[J]. 机床与液压, 2013, 41(17):85−90. doi: 10.3969/j.issn.1001-3881.2013.17.022

    Chai B M, Wang Y D. An error compensating method for 3TPT parallel mechanism[J]. Machine Tool & Hydraulics, 2013, 41(17): 85−90. doi: 10.3969/j.issn.1001-3881.2013.17.022
    [3]
    Ni Y B, Wu N, Zhong X Y, et al. Dimensional synthesis of a 3-DOF parallel manipulator with full circle rotation[J]. Chinese Journal of Mechanical Engineering, 2015, 28(4): 830−840. doi: 10.3901/CJME.2015.0122.051
    [4]
    秦海宁, 姚单, 杜渝. 3-PRR并联机器人空间位置分析及误差研究[J]. 激光杂志, 2017, 38(12):92−95.

    Qing H N, Yao D, Du Y. The analysis and error research of 3-PRR parallel robot space position[J]. Laser Journal, 2017, 38(12): 92−95.
    [5]
    Vinoth V, Singh Y, Santhakumar M. Indirect disturbance compensation control of a planar parallel (2-PRP and 1-PPR) robotic manipulator[J]. Robotics and Computer-Integrated Manufacturing, 2014, 30(5): 556−564. doi: 10.1016/j.rcim.2014.03.010
    [6]
    Castillo-Castaneda E, Takeda Y. Improving path accuracy of a crank-type 6-dof parallel mechanism by stiction compensation[J]. Mechanism and Machine Theory, 2008, 43(1): 104−114. doi: 10.1016/j.mechmachtheory.2006.12.002
    [7]
    夏筱筠, 林浒. 基于双模糊控制算法的数控机床过象限误差补偿方法研究[J]. 小型微型计算机系统, 2018, 39(5):241−245.

    Xia X J, Lin H. Study on the compensation for the over quadrant error of CNC based on the dual fuzzy control algorithm[J]. Journal of Chinese Computer Systems, 2018, 39(5): 241−245.
    [8]
    彭志文, 高宏力, 梁超, 等. RBF神经网络补偿的并联机器人控制研究[J]. 机械设计与制造, 2018(3):252−259. doi: 10.3969/j.issn.1001-3997.2018.03.074

    Peng Z W, Gao H L, Liang C, et al. Research on parallel robot control based on RBF neural network compensation[J]. Machinery Design & Manufacture, 2018(3): 252−259. doi: 10.3969/j.issn.1001-3997.2018.03.074
    [9]
    Behrad D, Sasan T, Brian S, et al. A novel adaptive neural network compensator as applied to position control of a pneumatic system[J]. Intelligent Control & Automation, 2011, 2(4): 388−395.
    [10]
    Niu K, Wang J, Ting K L, et al. Output error analysis of planar 2-dof five-bar mechanism[J]. IOP Conference Series: Materials Science and Engineering, 2018, 324(1): 1−5.
    [11]
    Si H, Wang L. Error compensation in the five-axis flank milling of thin-walled workpieces[J]. Proceedings of the Institution of Mechanical Engineers, 2019, 233(4): 1224−1234. doi: 10.1177/0954405418780163
    [12]
    Schneider H, Drust M, Puzik A, et al. Compensation of errors in robot machining with a parallel 3D-piezo compensation mechanism[J]. Procedia Cirp, 2013, 7(12): 305−310.
    [13]
    丁建文, 郝宁仲, 徐兆军, 等. 数控木工曲线带锯机的研制[J]. 木材加工机械, 2005(3):16−19. doi: 10.3969/j.issn.1001-036X.2005.03.004

    Ding J W, Hao N Z, Xu Z J, et al. Development of the numerical control woodworking curve band saw[J]. Wood Processing Machinery, 2005(3): 16−19. doi: 10.3969/j.issn.1001-036X.2005.03.004
    [14]
    Niu K J, Wang J, Kwun-Lon T, et al. Output error analysis of planar 2-DOF five-bar mechanism[J]. Applied Mechanics and Materials, 2013, 324(1): 1−5.
  • Related Articles

    [1]Chen Ling, Chen Feng, Niu Shukui, Li Lianqiang, Tao Changsen. Correlation analysis between the spatial characteristics of landscape pattern and risk of forest fire in Jiufeng Forest Park of Beijing[J]. Journal of Beijing Forestry University, 2021, 43(6): 41-49. DOI: 10.12171/j.1000-1522.20180431
    [2]Li Lianqiang, Yang Huixia, Ding Guoquan, Li Chun. Precipitation redistribution characteristics and its correlation analysis of Pinus densiflora and Quercus mongolica forests in the Liaodong Peninsula of northeastern China[J]. Journal of Beijing Forestry University, 2020, 42(11): 47-55. DOI: 10.12171/j.1000-1522.20200009
    [3]Luo Guisheng, Ma Lüyi, Jia Zhongkui, Wu Danni, Chi Mingfeng, Zhang Shumin, Zhao Guijuan. Correlation analysis between natural regeneration and environment in canopy gap of Chinese pine (Pinus tabuliformis) plantation[J]. Journal of Beijing Forestry University, 2019, 41(9): 59-68. DOI: 10.13332/j.1000-1522.20180416
    [4]Li Lianqiang, Niu Shukui, Tao Changsen, Chen Ling, Chen Feng. Correlations between stand structure and surface potential fire behavior of Pinus tabuliformis forests in Miaofeng Mountain of Beijing[J]. Journal of Beijing Forestry University, 2019, 41(1): 73-81. DOI: 10.13332/j.1000-1522.20180304
    [5]WANG Xin, LIU Qin, HUANG Qin, ZHANG Hua-yu, LI Zong-feng, ZHANG Shi-qiang, DENG Hong-ping. Niche characteristics and CCA ordination of dominant species of Thuja sutchuenensis community[J]. Journal of Beijing Forestry University, 2017, 39(8): 60-67. DOI: 10.13332/j.1000-1522.20160172
    [6]CHEN Wu, KONG De-cang, CUI Yan-hong, CAO Ming, PANG Xiao-ming, LI Ying-yue. Phenotypic genetic diversity of a core collection of Ziziphus jujuba and correlation analysis of dehiscent characters[J]. Journal of Beijing Forestry University, 2017, 39(6): 78-84. DOI: 10.13332/j.1000-1522.20170024
    [7]MA Feng-feng, PAN Gao, LI Xi-quan, HAN Yun-juan. Interspecific relationship and canonical correspondence analysis within woody plant communities in the karst mountains of Southwest Guangxi, southern China[J]. Journal of Beijing Forestry University, 2017, 39(6): 32-44. DOI: 10.13332/j.1000-1522.20160379
    [8]WANG Dan, WANG Bing, DAI Wei, LI Ping. Sensitivity analysis of variables correlated to soil organic matter in Chinese fir plantations[J]. Journal of Beijing Forestry University, 2011, 33(1): 78-83.
    [9]LIU Chun-yan, , GU Jian-cai, LI Ji-yue, CHEN Ping, LU Gu i-qiao, TIAN Guo-heng. Correlated analysis between the growth of Larix principisrupprechtii and climatic factors in Saihanba Nature Reserve, northern Hebei Province.[J]. Journal of Beijing Forestry University, 2009, 31(4): 102-105.
    [10]ZHANG Qiu-hui, ZHAO Guang-jie, ZHONG Jie.. Liquefaction of waste CCA-treated wood in phenol and the technology of metal removing processing.[J]. Journal of Beijing Forestry University, 2009, 31(3): 111-115.
  • Cited by

    Periodical cited type(13)

    1. 熊海贝,龙有为,陈琳,丁叶蔚. 木结构无损检测技术研究与应用综述. 结构工程师. 2023(01): 191-201 .
    2. 王祺,冯鑫浩,史诗琪,杨兆哲,詹先旭,吴智慧. 机器视觉在木制品制造中的应用. 木材科学与技术. 2022(05): 17-24 .
    3. 王锦亚,李振业,倪超. 基于机器视觉的实木地板在线分色识别算法. 林业工程学报. 2021(05): 135-139 .
    4. 庄子龙,刘英,沈鹭翔,丁奉龙,王争光. 基于多层感知机的木材颜色分类. 林业机械与木工设备. 2020(06): 8-14 .
    5. 陈威,刘艳,雷庆. 基于智能视觉的小差异行为特征分类. 计算机科学. 2019(03): 298-302 .
    6. 孙建平,梁懿,蒋志林,柳婧如. 图像处理技术在竹木复合材料性能评估中的应用展望. 西北林学院学报. 2019(02): 246-249+256 .
    7. 王明谦,王昆,许清风. 木结构无损检测技术研究进展. 施工技术. 2019(21): 85-90 .
    8. 杜丽娟. 舰船导航系统超分辨率图像智能提取技术研究. 舰船科学技术. 2018(16): 82-84 .
    9. 何波. 篮球投射过程中的角度智能视觉图像分解判断方法. 现代电子技术. 2018(10): 175-178 .
    10. 马玉芳. 基于智能视觉的微型高精度图像采集系统设计. 现代电子技术. 2018(19): 67-70 .
    11. 魏晓慧,马晓珍,刘亚秋. 基于蜂群单阈值分割的SRC板材缺陷分类方法. 沈阳工业大学学报. 2017(03): 292-298 .
    12. 陈熔,刘杰. 基于智能视觉的特定人员检索平台设计与实现. 现代电子技术. 2017(14): 102-105 .
    13. 李晓东. 视觉传达设计认识探讨. 鸭绿江(下半月版). 2016(12): 175 .

    Other cited types(9)

Catalog

    Article views (2661) PDF downloads (51) Cited by(22)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return