• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Wang Yahui, Peng Zuodeng, Li Yun. Soil nutrient and structure characteristics of Robinia pseudoacacia in different generations in the shallow mountain areas of western Henan Province, central China[J]. Journal of Beijing Forestry University, 2020, 42(3): 54-64. DOI: 10.12171/j.1000-1522.20190263
Citation: Wang Yahui, Peng Zuodeng, Li Yun. Soil nutrient and structure characteristics of Robinia pseudoacacia in different generations in the shallow mountain areas of western Henan Province, central China[J]. Journal of Beijing Forestry University, 2020, 42(3): 54-64. DOI: 10.12171/j.1000-1522.20190263

Soil nutrient and structure characteristics of Robinia pseudoacacia in different generations in the shallow mountain areas of western Henan Province, central China

More Information
  • Received Date: September 18, 2019
  • Revised Date: October 17, 2019
  • Available Online: March 17, 2020
  • Published Date: March 30, 2020
  • ObjectiveExploring the impact of tree on site quality is an important research field to sustainable management of plantations. Studying the soil structure and nutrient changes of Robinia pseudoacacia plantations during the process of multi-generation replacement management can provide theoretical basis for formulating control measures on soil fertility under the multi-generation management object of Robinia pseudoacacia plantations.
    MethodIn this study, the comparison research in soil nutrients and structure characteristics was carried out on 1−3 generations of Robinia pseudoacacia forest and non-forest land of the same age in the shallow hilly area of western Henan Province, central China.
    Result(1) The content of soil nutrients in the second generation Robinia pseudoacacia woodlands was significantly higher than that in the first generation one (P < 0.05). In the topsoil layer (0−5 cm), the contents of organic matter, total nitrogen, and nitrate nitrogen in the second generation woodlands increased by 94.0%, 91.0% and 169.4%, respectively, increased by 82.77%, 61.14%, and 343.35%, respectively in the 10−20 cm deep soil layer, and increased by 53.25%, 21.60% and 556.20%, respectively in the 40−60 cm deep soil layer compared with those in the first generation woodlands. The total nitrogen content in each soil layer was 0.63, 0.39, 0.29 and 0.28 g/kg from the surface to deep layer for 1st generation Robinia pseudoacacia forestland. Totally, there was no significant difference in soil nutrient content between the second and third generation of Robinia pseudoacacia woodlands. The contents of organic matter, total nitrogen and total phosphorus in the first generation Robinia pseudoacacia woodlands was all significantly lower than that in the control land (P < 0.05), while the content of nitrate nitrogen in the control land was significantly lower than that in the first generation woodlands (P < 0.05). Nutrient content in the surface soil layer was higher than that in the deeper layer, and with generation increasing, the increment of nutrient content in the upper layer was greater than that in the deeper layer. From the perspective of stoichiometry, in each soil layer, C/P and N/P in the first generation woodlands were higher than those in the second and third generation woodlands. Compared with organic matter and total nitrogen contents, C/N value was relatively stable with generation increasing. C/P and N/P in the deeper soil layer were relatively stable. C/P showed a stronger increase compared with N/P in the topsoil layer and 10−20 cm deep soil layer from the the first generation forest to the third generation forest. (2) In terms of soil structure reflected by soil bulk density, porosity and aggregates, non-capillary porosity at the depth of 10−20 cm in the second generation and third generation woodlands increased by 11.4% and 21.4%, respectively compared with the first generation woodlands. It also showed an upward trend at the depth of 40−60 cm with generation increasing. The deeper the soil layer was, the greater the change range of soil bulk density was among intergenerational forestlands. Except for the surface layer, generally the soil density showed a decreasing trend in the other layers with generation increasing. The quantity and stability of soil surface water stable aggregates were in the order of control land > second and third generation woodlands > first generation woodlands. On the whole, in terms of soil structure, the surface layer was superior to the deeper layer, and the second and third generation woodlands were superior to the first generation woodlands. (3) Principal component analysis based on soil nutrients and structural property indicated that forest had a significant effect on the deeper soil. The soil conditions in the second and third generation woodlands were significantly better than those in the first generation woodlands. The surface soil properties in the second generation woodlands were better than those in the third generation woodlands, while the deeper soil properties in the third generation woodlands were better than those in the second generation woodlands.
    ConclusionIn the shallow mountain area of western Henan Province, the management generation replacement of Robinia pseudoacacia forest has a significant impact on soil nutrients and structure. During the management process from the first generation forest to the second generation forest, soil structure is improved significantly. In addition, the soil nutrient content increases significantly, and the increment in the surface layer is greater than that in the deeper layer, and the soil structure is improved during the process. The soil nutrients and structure in the third generation forest remain relatively stable. In the process of generation increasing, carbon accumulates faster than nitrogen, and the supply capacity of carbon and nitrogen is smaller than that of phosphorus. Besides, the problem of soil nutrient imbalance becomes serious during the process of generation replacement.
  • [1]
    联合国粮食和农业组织. 2015年全球森林资源评估报告[R]. 罗马: FAO, 2015.

    Food and Agriculture Organization of the United Nations. Global forest resources assessment 2015[R]. Rome: FAO, 2015.
    [2]
    盛炜彤. 关于我国人工林长期生产力的保持[J]. 林业科学研究, 2018, 131(1):1−14.

    Sheng W T. On the maintenance of long-term productivity of plantation in China[J]. Forest Research, 2018, 131(1): 1−14.
    [3]
    盛炜彤, 范少辉. 人工林长期生产力保持机制研究的背景、现状和趋势[J]. 林业科学研究, 2004, 17(1):106−115. doi: 10.3321/j.issn:1001-1498.2004.01.018

    Sheng W T, Fan S H. Study on the mechanism of maintaining long-term productivity of lantation: background, present condition and trends[J]. Forest Research, 2004, 17(1): 106−115. doi: 10.3321/j.issn:1001-1498.2004.01.018
    [4]
    杨玉盛, 杨伦增, 俞新妥. 杉木林取代杂木林后土壤腐殖质组成及特性变化的研究[J]. 福建林学院学报, 1996, 16(2):97−100.

    Yang Y S, Yang L Z, Yu X T. Study on the change of soil fertility after replacement of miscellaneous woods in Nanping Creek[J]. Journal of Fujian College of Forestry, 1996, 16(2): 97−100.
    [5]
    叶绍明, 温远光, 杨梅, 等. 连栽桉树人工林植物多样性与土壤理化性质的关联分析[J]. 水土保持学报, 2010, 24(4):246−250.

    Ye S M, Wen Y G, Yang M, et al. Correlation analysis on biodiversity and soil physical & chemical properties of Eucalyptus spp. plantations under successive rotation[J]. Journal of Soil and Water Conservation, 2010, 24(4): 246−250.
    [6]
    Kirschbaum M U F, Guo L B, Gifford R M. Observed and modelled soil carbon and nitrogen changes after planting a Pinus radiata stand onto former pasture[J]. Soil Biology & Biochemistry, 2008, 40(1): 247−257.
    [7]
    张社奇, 王国栋, 张蕾. 黄土高原刺槐林对土壤养分时空分布的影响[J]. 水土保持学报, 2008, 22(5):91−95. doi: 10.3321/j.issn:1009-2242.2008.05.021

    Zhang S Q, Wang G D, Zhang L. Time-space distributive feature of soil nutrient and chemical characteristics ofRobinia pseudoacia L. plantation forestland in Loess Plateau[J]. Journal of Soil and Water Conservation, 2008, 22(5): 91−95. doi: 10.3321/j.issn:1009-2242.2008.05.021
    [8]
    吴平, 薛建辉. 典型喀斯特地区3种人工林对土壤理化和微生物特性的影响[J]. 南京林业大学学报(自然科学版), 2015, 39(5):67−72.

    Wu P, Xue J H. Effects of three different plantations on soil physicochemical and microbial characteristics in kast region[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2015, 39(5): 67−72.
    [9]
    王春梅, 刘艳红, 邵彬, 等. 量化退耕还林后土壤碳变化[J]. 北京林业大学学报, 2007, 29(3):112−119. doi: 10.3321/j.issn:1000-1522.2007.03.018

    Wang C M, Liu Y H, Shao B, et al. Quantifying the soil carbon changes following the afforestation of former arable land[J]. Journal of Beijing Forestry University, 2007, 29(3): 112−119. doi: 10.3321/j.issn:1000-1522.2007.03.018
    [10]
    王艳芳, 刘领, 李志超, 等. 豫西黄土丘陵区不同林龄栎类和侧柏人工林碳、氮储量[J]. 应用生态学报, 2018, 29(1):25−32.

    Wang Y F, Liu L, Li Z C, et al. Storage of carbon and nitrogen in Quercus and Platycladus orientalis plantations at different ages in the hilly area of western Henan Province, China[J]. Chinese Journal of Applied Ecology, 2018, 29(1): 25−32.
    [11]
    杨芳绒. 河南洛宁浅山区刺槐能源林生物量与热值研究[D]. 北京: 北京林业大学, 2013.

    Yang F R. The study on biomass and caloric value of locust energy forests in Luoning Hilly Region, Henan[D]. Beijing: Beijing Forestry University, 2013.
    [12]
    Zhang B, Horn R. Mechanisms of aggregate stabilization in Ultisols from subtropical China[J]. Geoderma, 2001, 99(1/2): 123−145.
    [13]
    吕春娟, 路琼. 矿区复垦植被土壤涵养水源功能的研究[J]. 水土保持学报, 2009, 23(3):184−188. doi: 10.3321/j.issn:1009-2242.2009.03.040

    Lü C J, Lu Q. Water-source conservation function of vegetation soil in reclamation mine[J]. Journal of Soil and Water Conservation, 2009, 23(3): 184−188. doi: 10.3321/j.issn:1009-2242.2009.03.040
    [14]
    赵娜, 孟平, 张劲松, 等. 华北低丘山地不同退耕年限刺槐人工林土壤质量评价[J]. 应用生态学报, 2014, 25(2):351−358.

    Zhao N, Meng P, Zhang J S, et al. Soil quality assessment of Robinia psedudoacia plantations with various ages in the Grain-for-Green Program in hilly area of North China[J]. Chinese Journal of Applied Ecology, 2014, 25(2): 351−358.
    [15]
    孙娇, 赵发珠, 韩新辉, 等. 不同林龄刺槐林土壤团聚体化学计量特征及其与土壤养分的关系[J]. 生态学报, 2016, 36(21):6879−6888.

    Sun J, Zhao F Z, Han X H, et al. Ecological stoichiometry of soil aggregates and relationship with soil nutrients of different-aged Robinia pseudoacacia forests[J]. Acta Ecologica Sinica, 2016, 36(21): 6879−6888.
    [16]
    何淑勤, 宫渊波, 郑子成, 等. 不同植被类型条件下土壤抗蚀性变化特征及其影响因素[J]. 水土保持学报, 2013, 27(5):17−22. doi: 10.3969/j.issn.1009-2242.2013.05.004

    He S Q, Gong Y B, Zheng Z C, et al. Changes and influences of soil anti-erodibility under different vegetation types[J]. Journal of Soil and Water Conservation, 2013, 27(5): 17−22. doi: 10.3969/j.issn.1009-2242.2013.05.004
    [17]
    洛宁县人民政府. 洛宁县特色农业[EB/OL]. (2017−07−25) [2020−03−04]. http://www.luoning.gov.cn/2017/0725/199.html.

    Luoning County People’s Government. Characteristic agriculture in Luoning County. [EB/OL]. (2017−07−25) [2020−03−04]. http://www.luoning.gov.cn/2017/0725/199.html.
    [18]
    张晋爱, 张兴昌, 邱丽萍, 等. 黄土丘陵区不同年限柠条林地土壤质量变化[J]. 农业环境科学学报, 2007, 26(增刊1):136−140. doi: 10.3321/j.issn:1672-2043.2007.z1.030

    Zhang J A, Zhang X C, Qiu L P, et al. Dynamics of soil quality in a loess hilly area grown with Caragana korshinskii[J]. Journal of Agro-environment Science, 2007, 26(Suppl.1): 136−140. doi: 10.3321/j.issn:1672-2043.2007.z1.030
    [19]
    许明祥, 刘国彬, 赵允格. 黄土丘陵区土地利用及环境因子对土壤质量指标变异性的影响[J]. 应用生态学报, 2011, 22(2):409−417.

    Xu M X, Liu G B, Zhao Y G. Effeets of land use and environmental factors on the variability of soil quality indicators in hilly Loess Plateau region of China[J]. Chinese Journal of Applied Ecology, 2011, 22(2): 409−417.
    [20]
    Tyler S W, Wheatcraft S W. Fractal scaling of soil particle-size distributions: analysis and limitations[J]. Soil Science Society of America Journal, 1992, 56(2): 362−369. doi: 10.2136/sssaj1992.03615995005600020005x
    [21]
    Brye K R, Slaton N A, Norman R J. Soil physical and biological properties as affected by land leveling in a clayey aquert[J]. Soil Science Society of America Journal, 2006, 70(2): 631−642. doi: 10.2136/sssaj2005.0185
    [22]
    Yüksek T, Yüksek F. The effects of restoration on soil properties in degraded land in the semi-arid region of Turkey[J]. Catena, 2010, 84(1/2): 47−53.
    [23]
    李桂林, 陈杰, 孙志英, 等. 基于土壤特征和土地利用变化的土壤质量评价最小数据集确定[J]. 生态学报, 2007, 27(7):2715−2724. doi: 10.3321/j.issn:1000-0933.2007.07.007

    Li G L, Chen J, Sun Z Y, et al. Establishing a minimum dataset for Soil quality assessment based on soil properties and land use change[J]. Acta Ecologica Sinica, 2007, 27(7): 2715−2724. doi: 10.3321/j.issn:1000-0933.2007.07.007
    [24]
    盛炜彤. 关于我国人工林长期生产力的保持[J]. 林业科学研究, 2018, 31(1):1−14.

    Sheng W T. On the maintenance of long-term productivity of plantation in China[J]. Forest Research, 2018, 31(1): 1−14.
    [25]
    韦景树, 李宗善, 冯晓玙, 等. 黄土高原人工刺槐林生长衰退的生态生理机制[J]. 应用生态学报, 2018, 29(7):2433−2444.

    Wei J S, Li Z S, Feng X Y, et al. Ecological and physiological mechanisms of growth decline of Robinia pseudoacacia plantations in the Loess Plateau of China: a review[J]. Chinese Journal of Applied Ecology, 2018, 29(7): 2433−2444.
    [26]
    许明祥, 刘国彬. 黄土丘陵区刺槐人工林土壤养分特征及演变[J]. 植物营养与肥料学报, 2004, 10(1):40−46. doi: 10.3321/j.issn:1008-505X.2004.01.008

    Xu M X, Liu G B. The characteristics and evolution of soil nutrient in artificial black locust (Robinia pseudoacacia) forest land in the hilly Loess Plateau[J]. Plant Nutrition and Fertilizer Science, 2004, 10(1): 40−46. doi: 10.3321/j.issn:1008-505X.2004.01.008
    [27]
    Zuber S M, Behnke G D, Nafziger E D, et al. Crop rotation and tillage effects on soil physical and chemical properties in Illinois[J]. Agronomy Journal, 2015, 107(3): 971−978. doi: 10.2134/agronj14.0465
    [28]
    朱秋莲, 邢肖毅, 张宏, 等. 黄土丘陵沟壑区不同植被区土壤生态化学计量特征[J]. 生态学报, 2013, 33(15):4674−4682. doi: 10.5846/stxb201212101772

    Zhu Q L, Xing X Y, Zhang H, et al. Soil ecological stoichiometry under different vegetation area on loess hilly gully region[J]. Acta Ecologica Sinica, 2013, 33(15): 4674−4682. doi: 10.5846/stxb201212101772
    [29]
    Tian H, Chen G, Zhang C, et al. Pattern and variation of C: N: P ratios in China’s soils: a synthesis of observational data[J]. Biogeochemistry, 2010, 98(1-3): 139−151. doi: 10.1007/s10533-009-9382-0
    [30]
    Cleveland C C, Liptzin D. C: N: P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass?[J]. Biochemistry, 2007, 85(3): 235−252.
    [31]
    焦梦妍, 从怀军, 姚静, 等. 自然恢复序列梯度上退耕地土壤容重变化及其蓄水性能效应[J]. 水土保持学报, 2018, 32(5):128−133.

    Jiao M Y, Cong H J, Yao J, et al. Soil bulk density changes and its water-storage capacity of abandoned farmland in natural restoration series gradient of loess hilly-gully region[J]. Journal of Soil and Water Conservation, 2018, 32(5): 128−133.
    [32]
    李法虎. 土壤物理化学[M]. 北京: 化学工业出版社, 2006.

    Li F H. Physical chemistry of soil[M]. Beijing: Chemical Industry Press, 2006.
    [33]
    Pirmoradian N, Sepaskhah A R, Hajabbasi M A. Application of fractal theory to quantify soil aggregate stability as influenced by tillage treatments[J]. Biosystems Engineering, 2005, 90(2): 227−234. doi: 10.1016/j.biosystemseng.2004.11.002
    [34]
    庄正, 张芸, 张颖, 等. 不同发育阶段杉木人工林土壤团聚体分布特征及其稳定性研究[J]. 水土保持学报, 2017, 31(6):183−188.

    Zhuang Z, Zhang Y, Zhang Y, et al. Study on distribution characteristics and stability of soil aggregate in Chinese fir plantation at different developmental stages[J]. Journal of Soil and Water Conservation, 2017, 31(6): 183−188.
    [35]
    张参参, 吴小刚, 刘斌, 等. 江西九连山不同海拔梯度土壤有机碳的变异规律[J]. 北京林业大学学报, 2019, 41(2):19−28.

    Zhang C C, Wu X G, Liu B, et al. Variations in soil organic carbon along an altitudinal gradient of Jiulian Mountain in Jiangxi Province of eastern China[J]. Journal of Beijing Forestry University, 2019, 41(2): 19−28.
    [36]
    傅伯杰, 陈利顶, 邱扬, 等. 黄土丘陵小流域土壤物理性质的空间变异[J]. 地理学报, 2002, 57(5):587−594. doi: 10.3321/j.issn:0375-5444.2002.05.011

    Fu B J, Chen L D, Qiu Y, et al. Variability of the soil physical properties on the Loess Plateau[J]. Acta Grographica Sinica, 2002, 57(5): 587−594. doi: 10.3321/j.issn:0375-5444.2002.05.011
  • Related Articles

    [1]Zhang Minghui, Yin Yunzhou, Wang Ke, Wang Shuli. Effects of spatial structure characteristics of Fraxinus mandshurica plantation on soil nutrient content[J]. Journal of Beijing Forestry University, 2023, 45(9): 73-82. DOI: 10.12171/j.1000-1522.20220476
    [2]Wang Shanshan, Bi Huaxing, Cui Yanhong, Yun Huiya, Ma Xiaozhi, Zhao Danyang, Hou Guirong. Key indexes and characteristics of soil anti-erodibility of Robinia pseudoacacia with different densities in loess region of western Shanxi Province, northern China[J]. Journal of Beijing Forestry University, 2022, 44(5): 94-104. DOI: 10.12171/j.1000-1522.20200226
    [3]Liu Ruosha, Wang Dongmei. Soil nutrients and ecostoichiometric characteristics of different plantations in the alpine region of the Loess Plateau[J]. Journal of Beijing Forestry University, 2021, 43(1): 88-95. DOI: 10.12171/j.1000-1522.20200149
    [4]Li Wannian, Huang Zeyue, Zhao Chunmei, Yang Mei. Characteristics of soil microbial biomass C, N and nutrients in young plantations of Parashorea chinensis[J]. Journal of Beijing Forestry University, 2020, 42(12): 51-62. DOI: 10.12171/j.1000-1522.20200191
    [5]Wang Yansong, Ma Baoming, Gao Haiping, Wang Baitian, Li Sha, Dong Xiuqun. Response of soil nutrients and their stoichiometric ratios to stand density in Pinus tabuliformis and Robinia pseudoacacia plantations in the loess region of western Shanxi Province, northern China[J]. Journal of Beijing Forestry University, 2020, 42(8): 81-93. DOI: 10.12171/j.1000-1522.20190287
    [6]Wu Yiyuan, Dong Wenyuan, Liu Pei, Zhang Mengnan, Xie Zexuan, Tian Fakun. Anatomical characteristics and adaptability plasticity of Qiongzhuea tumidinoda stalk under different soil water and nutrient conditions[J]. Journal of Beijing Forestry University, 2020, 42(4): 80-90. DOI: 10.12171/j.1000-1522.20190290
    [7]Zhou Lei, Wang Shuli. Improvement of broadleaved tree species to soil nutrient conditions of Picea koraiensis plantations[J]. Journal of Beijing Forestry University, 2020, 42(3): 46-53. DOI: 10.12171/j.1000-1522.20190113
    [8]Zhang Jianfei, Wang Chun, Xu Wenwen, Huang Xuanrui, Zhang Zhidong. Changes in soil nutrients and bacterial communities of Larix principis-rupprechtii plantations of different generations[J]. Journal of Beijing Forestry University, 2020, 42(3): 36-45. DOI: 10.12171/j.1000-1522.20190256
    [9]LIU Hai-yan, WEI Tian-xing, WANG Xian. Soil microbial community structure and functional diversity in typical plantations marked by PLFA in hilly loess region[J]. Journal of Beijing Forestry University, 2016, 38(1): 28-35. DOI: 10.13332/j.1000--1522.20150262
    [10]JIANG Pei-kun, XU Qiu-fang, ZHOU Guo-mo, WU Qi-feng, WU Jia-sen. Effects of green manure on soil nutrients and bio-properties of Castanea mollissima Blume plantations[J]. Journal of Beijing Forestry University, 2007, 29(3): 120-123. DOI: 10.13332/j.1000-1522.2007.03.019
  • Cited by

    Periodical cited type(6)

    1. 李玉萌,贾炜玮,郭昊天. 人工红松松籽和松仁的产量模型. 应用生态学报. 2025(01): 95-103 .
    2. 贾炜玮,范敏,陈东升,孙丽娟,王鹤智,晁碧霄. 日本落叶松枝条属性特征对气候变量的响应. 应用生态学报. 2024(06): 1509-1517 .
    3. 卢腾飞,秦燕,徐婷婷,郎晓雪,袁启慧,孙玲琳,施凯泽. 基于混合效应模型的滇中地区云南松林地上生物量遥感模型研究. 西北林学院学报. 2024(04): 138-146 .
    4. 王建军,陈科屹,何友均,吕延杰,许单云,何亚婷,谢和生,卢佶. 兴安落叶松天然林3个主要树种单木断面积生长模型. 中南林业科技大学学报. 2024(09): 1-10 .
    5. 郑玉,张化永,邹恒超,黄头生,白卓青,甄欣欣. 应用非线性混合模型建立白桦枝长与枝径关系. 东北林业大学学报. 2023(09): 53-58+119 .
    6. 韩东阳,张加龙,杨健,王书贤,冯亚飞. 考虑地形效应的高山松地上生物量遥感估测模型构建. 中南林业科技大学学报. 2022(04): 12-21+67 .

    Other cited types(4)

Catalog

    Article views (1552) PDF downloads (58) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return