• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Wu Yiyuan, Dong Wenyuan, Liu Pei, Zhang Mengnan, Xie Zexuan, Tian Fakun. Anatomical characteristics and adaptability plasticity of Qiongzhuea tumidinoda stalk under different soil water and nutrient conditions[J]. Journal of Beijing Forestry University, 2020, 42(4): 80-90. DOI: 10.12171/j.1000-1522.20190290
Citation: Wu Yiyuan, Dong Wenyuan, Liu Pei, Zhang Mengnan, Xie Zexuan, Tian Fakun. Anatomical characteristics and adaptability plasticity of Qiongzhuea tumidinoda stalk under different soil water and nutrient conditions[J]. Journal of Beijing Forestry University, 2020, 42(4): 80-90. DOI: 10.12171/j.1000-1522.20190290

Anatomical characteristics and adaptability plasticity of Qiongzhuea tumidinoda stalk under different soil water and nutrient conditions

More Information
  • Received Date: July 14, 2019
  • Revised Date: September 20, 2019
  • Available Online: April 09, 2020
  • Published Date: April 26, 2020
  • Objective This paper aims to explore adaptive strategies of natural Qiongzhuea tumidinoda stalk under different soil water and nutrient conditions. We studied the changes of stalk anatomical structure of Q. tumidinoda in habitats with different soil thickness to provide theoretical guidance for the cultivation of processing timber forest of Q. tumidinoda.
    Method In this paper, we used redundant analysis and Monte Carlo test methods to analyze the relationship between stalk anatomical structure characteristics of Q. tumidinoda and soil nutrients and water in three soil layers of thin soil (0−40 cm), medium soil (0−80 cm) and thick soil layer (0−120 cm).
    Result(1) With the increase of soil moisture and nutrient content, the stalk anatomy of Q. tumidinoda had a significant decreasing trend of basic tissue ratio and vascular bundle density (P < 0.05). The ratio of transmission tissue, fiber tissue, length and width of vascular bundle showed an obvious increasing trend (P < 0.05), i.e. compared with the habitats in medium and thick soil layers, the vascular bundles of bamboo stalk in thin soil layers had important adaptability characteristics of small shape and large density. (2) Among three types of soil thickness habitats, the variation coefficient and plasticity index of Q. tumidinoda stalk tissue proportions and vascular bundle size in thin soil habitats were the largest, i.e. compared with the habitats in medium and thick soil layers, the vascular bundles of bamboo stalk in the habitats with thin soil layers had stronger regulation ability to adapt to the environment with low moisture and nutrients. (3) The stalk anatomical structure of Q. tumidinoda was affected by different degrees of soil moisture and nutrients (P < 0.05). Significance of single soil factor on the stalk anatomical structure of Q. tumidinoda was sequentially followed as total potassium > hydrolyzed potassium > available potassium > available phosphorus > total phosphorus > total nitrogen > water content > organic carbon > pH.
    Conclusion The difference in soil moisture and nutrient content is the root cause of stalk anatomical plasticity of Q. tumidinoda. Stalk anatomical plasticity makes Q. tumidinoda forming adaptive differences in different soil thickness habitats. The obvious plasticity of the size and density of bamboo vascular bundles is an important adaptation characteristic of Q. tumidinoda to soil factors. Anatomical characteristics of bamboo stalks and their adaptation plasticity play an important ecological role in adapting Q. tumidinoda to soil thickness heterogeneity.
  • [1]
    史刚荣. 七种阔叶常绿植物叶片的生态解剖学研究[J]. 广西植物, 2004, 24(4):334−338. doi: 10.3969/j.issn.1000-3142.2004.04.009

    Shi G R. A study on ecological anatomy of leaves in 7 broad-leaved evergreen plants[J]. Guihaia, 2004, 24(4): 334−338. doi: 10.3969/j.issn.1000-3142.2004.04.009
    [2]
    Niu S L, Jiang G M, Wan S Q, et al. Ecophysiological acclimation to different soil moistures in plants from a semi-arid sandland[J]. Journal of Arid Environments, 2005, 63(2): 353−365.
    [3]
    钟悦鸣, 董芳宇, 王文娟, 等. 不同生境胡杨叶片解剖特征及其适应可塑性[J]. 北京林业大学学报, 2017, 39(10):53−61.

    Zhong Y M, Dong F Y, Wang W J, et al. Anatomical characteristics and adaptability plasticity of Populus euphratica in different habitats[J]. Journal of Beijing Forestry University, 2017, 39(10): 53−61.
    [4]
    木巴热克·阿尤普, 伊丽米努尔, 荆卫民. 不同水分处理下几种柽柳属植物幼株木质部栓塞及其解剖结构特征[J]. 北京林业大学学报, 2017, 39(10):42−52.

    Ayup M, Yiliminuer, Jing W M. Xlem anatomical features and native xylem embolism of several Tamarix spp. species seedlings under different water treatments[J]. Journal of Beijing Forestry University, 2017, 39(10): 42−52.
    [5]
    史刚荣, 程雪莲, 刘蕾, 等. 扁担木叶片和次生木质部解剖和水分生理特征的可塑性[J]. 应用生态学报, 2006, 17(10):1801−1806. doi: 10.3321/j.issn:1001-9332.2006.10.006

    Shi G R, Cheng X L, Liu L, et al. Response of morphological and anatomical characteristics of Kobreasia humilis to different habitats in watershed in alpine meadow in the Yellow River source zone[J]. Chinese Journal of Applied Ecology, 2006, 17(10): 1801−1806. doi: 10.3321/j.issn:1001-9332.2006.10.006
    [6]
    李积兰, 张海燕, 李希来. 黄河上游高寒草甸矮嵩草形态解剖特征对流域生境的响应[J]. 中国草地学报, 2018, 40(1):99−104.

    Li J L, Zhang H Y, Li X L. Response of morphological and anatomical characteristics of Kobreasia humilis to the different habitats in watershed in alpine meadow in the Yellow River source[J]. Chinese Journal of Grassland, 2018, 40(1): 99−104.
    [7]
    辛桂亮, 郑俊鸣, 叶志勇, 等. 秋茄次生木质部的生态解剖学研究[J]. 植物科学学报, 2015, 33(6):792−800. doi: 10.11913/PSJ.2095-0837.2015.60792

    Xin G L, Zheng J M, Ye Z Y, et al. Ecological anatomical characteristics of secondary xylem in Kandelia obovata Sheueet al[J]. Plant Science Journal, 2015, 33(6): 792−800. doi: 10.11913/PSJ.2095-0837.2015.60792
    [8]
    Choat B, Jansen S, Brodribb T J, et al. Global convergence in the vulnerability of forests to drought[J]. Nature, 2012, 491: 752−755. doi: 10.1038/nature11688
    [9]
    李荣, 姜在民, 张硕新, 等. 木本植物木质部栓塞脆弱性研究[J]. 植物生态学报, 2015, 39(8):838−848. doi: 10.17521/cjpe.2015.0080

    Li R, Jiang Z M, Zhang S X, et al. A review of new research progress on the vulnerability of xylem embolism of wood plants[J]. Chinese Journal of Plant Ecology, 2015, 39(8): 838−848. doi: 10.17521/cjpe.2015.0080
    [10]
    Cochard H, Tyree M T. Xylem dysfunction in Quercus: vessel sizes, tyloses, cavitation and seasonal changes in embolism[J]. Tree Physiology, 1990, 6(4): 393−407. doi: 10.1093/treephys/6.4.393
    [11]
    张海昕, 李姗, 张硕新, 等. 4个杨树无性系木质部导管与栓塞脆弱性的关系[J]. 林业科学, 2013, 49(5):54−61. doi: 10.11707/j.1001-7488.20130508

    Zhang H X, Li S, Zhang S X, et al. Relationships between xylem vessel structure and embolism vulnerability in four Populus clones[J]. Sci Silva Sin, 2013, 49(5): 54−61. doi: 10.11707/j.1001-7488.20130508
    [12]
    李荣, 党维, 蔡靖, 等. 6个耐旱树种木质部结构与栓塞脆弱性的关系[J]. 植物生态学报, 2016, 40(3):255−263. doi: 10.17521/cjpe.2015.0260

    Li R, Dang W, Cai J, et al. Relationships between xylem structure and embolism vulnerability in six species of drought tolerance[J]. Chinese Journal of Plant Ecology, 2016, 40(3): 255−263. doi: 10.17521/cjpe.2015.0260
    [13]
    Mcelrone A J, Pockman W T, Martínez-Vilalta J, et al. Variation in xylem structure and function in stems and roots of trees to 20 m depth[J]. New Phytologist, 2010, 163(3): 507−517.
    [14]
    Domec J C, Warren J M, Meinzer F C, et al. Safety factors for xylem failure by implosion and air-seeding within roots, trunks and branches of young and old conifer trees[J]. Iawa Journal, 2009, 30(2): 101−120. doi: 10.1163/22941932-90000207
    [15]
    施建敏, 叶学华, 陈伏生, 等. 竹类植物对异质生境的适应:表型可塑性[J]. 生态学报, 2014, 34(20):5687−5695.

    Shi J M, Ye X H, Chen F S, et al. Adaptation of bamboo to heterogeneous habitat:phenotypic plasticity[J]. Acta Ecologica Sinica, 2014, 34(20): 5687−5695.
    [16]
    陶建平, 宋利霞. 亚高山暗针叶林不同林冠环境下华西箭竹的克隆可塑性[J]. 生态学报, 2006, 26(12):4019−4026. doi: 10.3321/j.issn:1000-0933.2006.12.013

    Tao J P, Song L X. Response of clonal plasticity of Fargesia nitida to different canopy conditions of subalpine coniferous forest[J]. Acta Ecologica Sinica, 2006, 26(12): 4019−4026. doi: 10.3321/j.issn:1000-0933.2006.12.013
    [17]
    杨佳俊, 董文渊, 唐海龙, 等. 坡向对水竹天然林形态可塑性的影响[J]. 西南林业大学学报, 2015, 35(3):20−24.

    Yang J J, Dong W Y, Tang H L, et al. The effect of slope directions morphological plasticity of Phyllostachys heteroclada natural forest[J]. Journal of Southwest Forestry College, 2015, 35(3): 20−24.
    [18]
    黄慧敏, 董蓉, 钱凤, 等. 紫耳箭竹克隆形态可塑性对典型冠层结构及光环境的响应[J]. 生态学报, 2018, 38(19):52−62.

    Huang H M, Dong R, Qian F, et al. Response of clonal morphological plasticity of Fargesia decurvata to different forest canopy structures and light conditions[J]. Acta Ecologica Sinica, 2018, 38(19): 52−62.
    [19]
    应叶青, 魏建芬, 解楠楠, 等. 自然低温胁迫对毛竹生理生化特性的影响[J]. 南京林业大学学报(自然科学版), 2011, 31(3):133−136.

    Ying Y Q, Wei J F, Xie N N, et al. Effects of natural low temperature stress on physiological and biochemical properties of Phyllostachys edulis[J]. Journal of Nanjing Forestry University: Natural Sciences Edition, 2011, 31(3): 133−136.
    [20]
    刘玉芳, 陈双林, 李迎春, 等. 竹子生理可塑性的环境胁迫效应研究进展[J]. 浙江农林大学学报, 2014, 31(3):473−480. doi: 10.11833/j.issn.2095-0756.2014.03.022

    Liu Y F, Chen S L, Li Y C, et al. Environmental stress on physiological plasticity of bamboo:a review[J]. Journal of Zhejiang A&F University, 2014, 31(3): 473−480. doi: 10.11833/j.issn.2095-0756.2014.03.022
    [21]
    王丽华, 高景, 刘尉, 等. 四川慈竹生理生化指标对SO2胁迫的响应[J]. 四川农业大学学报, 2017, 35(4):547−554.

    Wang L H, Gao J, Liu W, et al. Physio-biochemical responses of Neosinocalamus affinis to SO2 stress[J]. Journal of Sichuan Agricultural University, 2017, 35(4): 547−554.
    [22]
    张令峰, 许海峰, 汪佑宏, 等. 不同海拔高度及坡向对毛竹解剖特征影响及其与物理力学性质关系[J]. 安徽农业大学学报, 2009, 36(1):77−80.

    Zhang L F, Xu H F, Wang Y H, et al. Impact on bamboo anatomical characteristics of different altitudes and slope and the relationship between them and the main physical & mechanical properties[J]. Journal of Anhui Agricultural University, 2009, 36(1): 77−80.
    [23]
    Saha S, Holbrook N M, Montti L, et al. Water relations of Chusquea ramosissima and Merostachys claussenii in Iguazu National Park, Argentina1[J]. Plant Physiology, 2009, 149(4): 1992−1999. doi: 10.1104/pp.108.129015
    [24]
    潘少安. 三种刚竹属竹子木质部结构及光合—水分关系研究[D]. 金华: 浙江师范大学, 2016.

    Pan S A. The xylme structure and relationship between water relations and photosynthesis in three Phyllostachys bamboo[D]. Jinhua: Zhejiang Normal Uiversity, 2016.
    [25]
    董文渊, 黄宝龙, 谢泽轩, 等. 筇竹生长发育规律的研究[J]. 南京林业大学学报(自然科学版), 2002,26(3):43−47.

    Dong W Y, Huang B L, Xie Z X, et al. The study on the growth and development rhythm of Qiongzhuea tumidinoda[J]. Journal of Nanjing Forestry University: Natural Sciences Edition, 2002,26(3): 43−47.
    [26]
    董文渊, 黄宝龙, 谢泽轩, 等. 筇竹开花结实特性的研究[J]. 南京林业大学学报(自然科学版), 2001, 25(6):30−32. doi: 10.3969/j.issn.1000-2006.2001.06.008

    Dong W Y, Huang B L, Xie Z X, et al. Studies on the characters of blossoming and seed bearing of Qiongzhuea tumidinoda[J]. Journal of Nanjing Forestry University: Natural Sciences Edition, 2001, 25(6): 30−32. doi: 10.3969/j.issn.1000-2006.2001.06.008
    [27]
    杨奕, 董文渊, 邱月群, 等. 筇竹笋生长过程中营养成分的变化[J]. 东北林业大学学报, 2015, 43(1):80−82. doi: 10.3969/j.issn.1000-5382.2015.01.019

    Yang Y, Dong W Y, Qiu Y Q, et al. Transformation of nutritional compositions in Chimonobambusa tumidissinoda shoots during growth process[J]. Journal of Northeast Forestry University, 2015, 43(1): 80−82. doi: 10.3969/j.issn.1000-5382.2015.01.019
    [28]
    董文渊, 邱月群, 王逸之, 等. 天然筇竹居群形态遗传多样性[J]. 东北林业大学学报, 2016, 44(5):101−103. doi: 10.3969/j.issn.1000-5382.2016.05.023

    Dong W Y, Qiu Y Q, Wang Y Z, et al. Morphological genetic diversity of natural Qiongzhuea tumidinoda populations[J]. Journal of Northeast Forestry University, 2016, 44(5): 101−103. doi: 10.3969/j.issn.1000-5382.2016.05.023
    [29]
    毛闻君, 董文渊. 筇竹生长立地类型划分及立地质量评价研究[D]. 昆明: 西南林学院, 2009.

    Mao W J, Dong W Y. Qiongzhuea tumidinoda site type classification and site quality evaluation study[D]. Kunming: Southwest Forestry College, 2009.
    [30]
    董文渊, 黄宝龙, 谢泽轩, 等. 不同水分条件下筇竹无性系的生态适应性研究[J]. 南京林业大学学报(自然科学版), 2002, 26(6):21−24.

    Dong W Y, Hung B L, Xie Z X, et al. The ecological strategy of clonal growth of Qiongzhuea tumidinoda under different levels of water resource supply[J]. Journal of Nanjing Forestry University: Natural Sciences Edition, 2002, 26(6): 21−24.
    [31]
    唐海龙, 董文渊, 王林昊, 等. 容器材质规格和缓释肥量对筇竹容器育苗生长的影响[J]. 西南林业大学学报, 2016, 36(3):38−43.

    Tang H L, Dong W Y, Wang L H, et al. Effect of different container material, container size andslow release fertilizer on the growth of container seedlings of Qiongzhuea tumidinoda[J]. Journal of Southwest Forestry College, 2016, 36(3): 38−43.
    [32]
    中国科学院南京土壤所. 土壤理化性质分析[M]. 上海: 上海科技出版社, 1987.

    Nanjing Institute of Soil Science, Chinese Academy of Sciences. Analysis of soil physical and chemical properties[M]. Shanghai: Shanghai Science and Technology Press, 1987.
    [33]
    国家林业局. 森林土壤有机质的测定及碳氮比的计算: LY/T1237—1999[S]. 北京: 中国标准出版社, 1999.

    State Forestry Administration. Determination of organic matter in forest soil and calculation carbon-nitrogen ratio: LY/T1237−1999[S]. Beijing: China Standard Press, 1999.
    [34]
    Ashton P M S, Olander L P, Berlyn G P, et al. Changes in leaf structure in relation to crown position and tree size[J]. Canadian Journal of Botany, 2011, 76(7): 1180−1187.
    [35]
    云雷, 毕华兴, 马雯静, 等. 晋西黄土区林草复合系统土壤养分分布特征及边界效应[J]. 北京林业大学学报, 2011, 33(2):37−42.

    Yun L, Bi H X, Ma W J, et al. Distribution characteristics and boundary effects of soil nutrient in silvopastoral system in the loess region of western Shanxi Province, northern China[J]. Journal of Beijing Forestry University, 2011, 33(2): 37−42.
    [36]
    刘冠宏, 李炳怡, 宫大鹏, 等. 林火对北京平谷区油松林土壤化学性质的影响[J]. 北京林业大学学报, 2019, 41(2):33−44.

    Liu G H, Li B Y, Gong D P, et al. Effects of forest fire on soil chemical properties of Pinus tabuliformis forest in Pinggu District of Beijing[J]. Journal of Beijing Forestry University, 2019, 41(2): 33−44.
    [37]
    李晓莎, 许中旗, 赵娱, 等. 冀北山地干旱阳坡土壤厚度及土壤养分的空间异质性[J]. 河北农业大学学报, 2018, 41(1):24−30, 48.

    Li X S, Xu Z Q, Zhao Y, et al. Spatial heterogeneity of surface soil nutrient and soil depth in dry south-slope of North Mountain of Heibei[J]. Journal of Hebei Agricultural University, 2018, 41(1): 24−30, 48.
    [38]
    Willigen C V, sherwin H W, Pammenter N W. Xylem hydraulic characteristics of subtropical trees from constrasting habitats grown under identical environmental conditions[J]. New Physiologist, 2000, 145(1): 51−59. doi: 10.1046/j.1469-8137.2000.00549.x
    [39]
    林鹏, 林益明, 林建辉. 桐花树和海桑次生木质部的生态解剖[J]. 林业科学, 2000, 36(2):125−128. doi: 10.3321/j.issn:1001-7488.2000.02.021

    Lin P, Lin Y M, Lin J H, et al. Ecological anatomical characterstics of secondary xylem in Aegiceras corniculatum and Sonneratia caseolaris[J]. Scientia Silvae Sinicae, 2000, 36(2): 125−128. doi: 10.3321/j.issn:1001-7488.2000.02.021
    [40]
    解丽娜, 贡路, 朱美玲, 等. 塔里木盆地南缘绿洲土壤酶活性与理化因子相关性[J]. 环境科学研究, 2014, 27(11):1306−1313.

    Xie L N, Gong L, Zhu M L, et al. Soil enzyme activities and their correlation with physicochemical factors in the oasis of southern margin of Tarim Basin[J]. Research of Environmental Sciences, 2014, 27(11): 1306−1313.
    [41]
    孙刚, 邓文鑫, 王陆军, 等. 安徽肖坑天然毛竹林生产力及其土壤养分特点[J]. 经济林研究, 2009, 27(3):28−32. doi: 10.3969/j.issn.1003-8981.2009.03.006

    Sun G, Deng W X, Wang L J, et al. Productivity and soil nutrient characteristics of natural bamboo forest in Xiaokeng, Anhui Province[J]. Economic Forest Rresearch, 2009, 27(3): 28−32. doi: 10.3969/j.issn.1003-8981.2009.03.006
    [42]
    李卉, 李宝珍, 邹冬生, 等. 水稻秸秆不同处理方式对亚热带农田土壤微生物生物量碳、氮及氮素矿化的影响[J]. 农业现代化研究, 2015, 36(2):303−308.

    Li H, Li B Z, Zou D S, et al. Effects of different treatments of rice straw on soil microbial biomass carbon, nitrogen and nitrogen mineralization in subtropical farmland[J]. Agricultural Modernization Research, 2015, 36(2): 303−308.
    [43]
    闫国永, 王晓春, 邢亚娟, 等. 兴安落叶松林细根解剖结构和化学组分对N沉降的响应[J][J]. 北京林业大学学报, 2016, 38(4):36−43.

    Yan G Y, Wang X C, Xing Y J, et al. Response of root anatomy and tissue chemistry to nitrogen deposition in larch forest in the Great Xing’an Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2016, 38(4): 36−43.
    [44]
    王力, 邵明安, 侯庆春. 水、氮、磷对杨树生物量的耦合效应[J]. 北京林业大学学报, 2000, 22(3):19−22. doi: 10.3321/j.issn:1000-1522.2000.03.005

    Wang L, Shao M A, Hou Q C. Coupling effect of water, N and P to poplar biomass[J]. Journal of Beijing Forestry University, 2000, 22(3): 19−22. doi: 10.3321/j.issn:1000-1522.2000.03.005
    [45]
    Kering M K, Butler T J, Biermacher J T, et al. Effect of potassium and nitrogen fertilizer on switchgrass productivity and nutrient removal rates under two harvest systems on a low potassium soil[J]. Bioenergy Research, 2013, 6(1): 329−335. doi: 10.1007/s12155-012-9261-8
    [46]
    杜彩艳, 杜建磊, 包立, 等. 不同施钾水平对土壤速效钾含量和三七养分吸收及产量的影响[J]. 中国土壤与肥料, 2017(6):105−112. doi: 10.11838/sfsc.20170616

    Du C Y, Du J L, Bao L, et al. Effect of different potassium application levels on available potassium content in soi, nutrient absorption and yield of Panax notoginseng[J]. China Soil and Fertilizer, 2017(6): 105−112. doi: 10.11838/sfsc.20170616
    [47]
    邱莉萍, 刘军, 王益权, 等. 土壤酶活性与土壤肥力的关系研究[J]. 植物营养与肥料学报, 2004, 10(3):277−280. doi: 10.3321/j.issn:1008-505X.2004.03.011

    Qiu L P, Liu J, Wang Y Q, et al. Relationship between soil enzyme activity and soil fertility[J]. Chinese Journal of Plant Nutrition and Fertilizer, 2004, 10(3): 277−280. doi: 10.3321/j.issn:1008-505X.2004.03.011
    [48]
    Valladares F, Wright S J, Lasso E, et al. Plastic phenotypic response to light of 16 congeneric shrubs from a Panamanian rainforest[J]. Ecology, 2000, 81(7): 1925−1936. doi: 10.1890/0012-9658(2000)081[1925:PPRTLO]2.0.CO;2
    [49]
    Abrams M D, Kubiske M E, Mostoller S A. Relating wet and dry year ecophysiology to leaf structure in contrasting temperate tree species[J]. Ecology, 1994, 75(1): 123−133. doi: 10.2307/1939389
    [50]
    耿宇鹏, 张文驹, 李博, 等. 表型可塑性与外来植物的入侵能力[J]. 生物多样性, 2004, 12(4):447−455. doi: 10.3321/j.issn:1005-0094.2004.04.009

    Geng Y P, Zhang W J, Li B, et al. Phenotypic plastictiy and invasiveness of alien plants[J]. Biodiversity Science, 2004, 12(4): 447−455. doi: 10.3321/j.issn:1005-0094.2004.04.009
    [51]
    徐飞, 郭卫华, 徐伟红, 等. 刺槐幼苗形态、生物量分配和光合特性对水分胁迫的响应[J]. 北京林业大学学报, 2010, 32(1):24−30.

    Xu F, Guo W H, Xu W H, et al. Effects of water stress on morphology, biomass allocation and photosynthesis in Robinia pseudoacacia seedlings[J]. Journal of Beijing Forestry University, 2010, 32(1): 24−30.
    [52]
    Callaway R M, Richards P C L. Phenotypic plasticity and interactions among plants[J]. Ecology, 2003, 84(5): 1115−1128. doi: 10.1890/0012-9658(2003)084[1115:PPAIAP]2.0.CO;2
    [53]
    周朝彬, 辛慧慧, 宋于洋. 梭梭次生木质部解剖特征及其可塑性研究[J]. 西北林学院学报, 2014, 29(2):207−212. doi: 10.3969/j.issn.1001-7461.2014.02.37

    Zhou C B, Xin H H, Song Y Y. Secondary xylem anatomical structure and its plasticity of Halaxylon ammodendron[J]. Journal of Northwest Forestry University, 2014, 29(2): 207−212. doi: 10.3969/j.issn.1001-7461.2014.02.37
  • Related Articles

    [1]Zhang Minghui, Yin Yunzhou, Wang Ke, Wang Shuli. Effects of spatial structure characteristics of Fraxinus mandshurica plantation on soil nutrient content[J]. Journal of Beijing Forestry University, 2023, 45(9): 73-82. DOI: 10.12171/j.1000-1522.20220476
    [2]Wang Yahui, Peng Zuodeng, Li Yun. Soil nutrient and structure characteristics of Robinia pseudoacacia in different generations in the shallow mountain areas of western Henan Province, central China[J]. Journal of Beijing Forestry University, 2020, 42(3): 54-64. DOI: 10.12171/j.1000-1522.20190263
    [3]Wang Anzheng, Guan Huiyuan. Connection characteristics and parameter optimization of plastic-wood insert joint[J]. Journal of Beijing Forestry University, 2019, 41(11): 137-145. DOI: 10.13332/j.1000-1522.20190226
    [4]ZHONG Yue-ming, DONG Fang-yu, WANG Wen-juan, WANG Jian-ming, LI Jing-wen, WU Bo, JIA Xiao hong. Anatomical characteristics and adaptability plasticity of Populus euphratica in different habitats[J]. Journal of Beijing Forestry University, 2017, 39(10): 53-61. DOI: 10.13332/j.1000-1522.20170089
    [5]WANG Yi-lin, ZHOU Mei, LI Ping, SUN Guang-peng, SHI Shuang-long, XU Cheng-yang. Root morphological plasticity determing the adaptive strategies of Cotinus coggygria seedlings in barren soil environment[J]. Journal of Beijing Forestry University, 2017, 39(6): 60-69. DOI: 10.13332/j.1000-1522.20170040
    [6]WANG Zheng-chao, LIU Jun-xiang, LI Zhen-jian, QIAN Yong-qiang. Growth and morphological plasticity of Acorus calamus in response to waterlogging[J]. Journal of Beijing Forestry University, 2014, 36(6): 119-123. DOI: 10.13332/j.cnki.jbfu.2014.06.022
    [7]SUN En-hui, SUN Feng-wen. Modification of benzyl-bamboo plasticization and structural analysis.[J]. Journal of Beijing Forestry University, 2013, 35(1): 114-118.
    [8]HUANG Dong-mei, ZHOU Pei-guo, ZHANG Qi-sheng. Life cycle assessment of bamboo\|constructed house.[J]. Journal of Beijing Forestry University, 2012, 34(5): 148-152.
    [9]GAO Li, WANG Zheng, GUO Wen-jing. Effect of insoluble APP on properties of wood-plastic composites[J]. Journal of Beijing Forestry University, 2010, 32(4): 247-250.
    [10]GAO Li, WANG Zheng, ZHANG Shuang-bao, CHANG Liang, ZHANG Gui-lan. Flammability properties of wood fiber-recycled plastic composite[J]. Journal of Beijing Forestry University, 2007, 29(6): 176-180. DOI: 10.13332/j.1000-1522.2007.06.038
  • Cited by

    Periodical cited type(44)

    1. 韩彦隆,魏亚娟,左小锋,左轶璆,康帅,童国利,李建媛,王永平. 吉兰泰荒漠绿洲过渡带土壤生态化学计量特征及养分恢复状况研究. 水土保持研究. 2025(02): 207-214+223 .
    2. 罗婷,黄甫昭,李健星,陆芳,文淑均,阮枰臻,李先琨. 广西漓江流域喀斯特地区植被不同恢复阶段植物优势种叶片和土壤的生态化学计量特征. 植物资源与环境学报. 2024(02): 80-90 .
    3. 任泽文,陈昕,陈玥,钟曲颖,余泽平,刘骏,杨清培,宋庆妮. 亚热带森林演替中优势种茎干-土壤碳氮磷生态化学计量的变化特征. 江西农业大学学报. 2024(02): 401-410 .
    4. 侯贻菊,姚雾清,杨光能,崔迎春,周华. 黔竹笋期生长特性及配方施肥效应研究. 贵州林业科技. 2024(02): 19-24 .
    5. 刘亚博,冯天骄,王平,卫伟. 黄土丘陵区典型小流域不同植被恢复方式土壤理化性质差异及其影响因素. 生态学报. 2024(15): 6652-6666 .
    6. 史丽娟,吕海涛,张树梓,李联地,任启文,冯广. 白洋淀上游典型林分类型土壤理化性质及其化学计量特征. 土壤通报. 2024(04): 960-967 .
    7. 武仁杰,邢玮,葛之葳,毛岭峰,彭思利. 4种林分凋落叶不同分解阶段化学计量特征. 浙江农林大学学报. 2023(01): 155-163 .
    8. 孙阔,袁兴中,王晓锋,袁嘉,候春丽,魏丽景. 三峡水库消落带土壤养分含量及生态化学计量特征. 长江流域资源与环境. 2023(02): 403-414 .
    9. 刘根,岳翰林,陈雨志,汪富资,李先宝,代智蓝,李德欢,李思雨,卫万荣. 3种修复措施对高原高速公路边坡土壤化学计量特征的影响. 草业科学. 2023(01): 71-78 .
    10. 王艺伟,仇模升,孙彩丽. 植物反馈作用对火棘群落土壤养分、酶活性及化学计量特征的影响. 中南林业科技大学学报. 2023(03): 127-134 .
    11. 梁楚欣,范弢,陈培云. 滇东石漠化坡地不同恢复模式下云南松林土壤碳氮磷化学计量特征及其影响因子. 浙江农林大学学报. 2023(03): 511-519 .
    12. 白金珂,李笑雨,王力. 1980s与2020s青藏高原南部土壤质量变化. 应用生态学报. 2023(05): 1367-1374 .
    13. 徐子涵,王磊,崔明,刘玉国,赵紫晴,李嘉豪. 南水北调水源区不同植被恢复模式的土壤化学计量特征. 南京林业大学学报(自然科学版). 2023(03): 173-181 .
    14. 何芳远,苏权,陈坤铨,陈善栋,姜勇,罗明,梁士楚. 基于功能性状及系统发育的桂林喀斯特石山群落构建. 广西师范大学学报(自然科学版). 2023(03): 171-181 .
    15. 吴丹,温晨,卫伟,张钦弟. 黄土高原小流域不同植物群落土壤生态化学计量的垂直变化特征. 广西植物. 2023(05): 923-935 .
    16. 宁静,杨磊,曹建华,李亮. 基于文献计量分析的岩溶区植被恢复研究现状与热点. 中国岩溶. 2023(02): 321-336 .
    17. 李雪梅,舒英格. 不同土地利用类型下土壤养分变化及生态化学计量特征分析. 中国农学通报. 2023(28): 62-69 .
    18. 周士锋,魏亚娟,何磊,王项飞,刘美萍,刘澜波. 包头市南海湿地不同季节土壤养分分布特征. 北方园艺. 2023(20): 69-76 .
    19. 侯贻菊,姚雾清,杨光能,崔迎春,周华,张喜. 黔竹秆形结构和地上生物量分配格局研究. 竹子学报. 2023(04): 51-57 .
    20. 胡林安,邱江梅,李强. 云南岩溶断陷盆地植被演替土壤碳氮磷化学计量学特征. 中国岩溶. 2023(06): 1213-1223 .
    21. 袁在翔,关庆伟,李俊杰,韩梦豪,金雪梅,陈霞. 不同植被恢复模式对紫金山森林土壤理化性质的影响. 东北林业大学学报. 2022(01): 52-57 .
    22. 曹全恒 ,胡健 ,陈雪玲 ,孙梅玲 ,刘小龙 ,杨丽雪 ,周青平 . 川西北沙地植被恢复对土壤碳氮磷及生态化学计量特征的影响. 草地学报. 2022(03): 523-531 .
    23. 蔡雅梅,冯民权,肖瑜. 人类活动对河岸带植被氮磷生态化学计量特征的影响——以汾河临汾段为例. 水土保持通报. 2022(01): 17-25 .
    24. 孟海,王海燕,侯文宁,赵晗,宁一泓. 重庆笋溪河流域河岸带水体-土壤-植物的氮磷特征及影响因素. 水土保持学报. 2022(02): 275-282+291 .
    25. 章润阳,钱前,刘坤平,梁月明,张伟,靳振江,潘复静. 喀斯特不同土地利用方式和恢复模式对土壤酶活性C∶N∶P比值的影响. 广西植物. 2022(06): 970-982 .
    26. 王杰. 河岸带土壤氮磷时空分布及影响因素分析. 水土保持应用技术. 2022(04): 13-16 .
    27. 孙渝雯,马赞文,陶贞,张乾柱,唐文魁,吴迪,钟庆祥,王振刚,丁健. 海南岛西南部土壤生物硅分布的时空差异及其驱动机制. 生态学报. 2022(17): 7092-7104 .
    28. 张萌,沈雅飞,陈天,王丽君,曾立雄,孙鹏飞,肖文发,田耀武,程瑞梅. 宜阳县不同森林类型土壤化学计量特征. 陆地生态系统与保护学报. 2022(02): 1-8 .
    29. 陈培云,范弢,何停,户红红. 滇东岩溶高原不同恢复阶段云南松林叶片-枯落物-土壤碳氮磷化学计量特征. 应用与环境生物学报. 2022(06): 1549-1556 .
    30. 刘翔,张连凯,黄超,徐灿,马一奇,杨慧. 广西岩溶区芒果园土壤碳氮磷化学计量特征. 南方农业学报. 2022(12): 3346-3356 .
    31. 李强. 土地利用方式对岩溶断陷盆地土壤细菌和真核生物群落结构的影响. 地球学报. 2021(03): 417-425 .
    32. 陈云,李玉强,王旭洋,牛亚毅. 中国典型生态脆弱区生态化学计量学研究进展. 生态学报. 2021(10): 4213-4225 .
    33. 蔡雅梅,冯民权. 汾河河岸带土壤氮、磷的时空分布规律及其影响因素研究. 水土保持学报. 2021(04): 222-229+236 .
    34. 蔡国俊,锁盆春,张丽敏,符裕红,李安定. 黔南喀斯特峰丛洼地3种建群树种不同器官C、N、P化学计量特征. 贵州师范大学学报(自然科学版). 2021(05): 36-44 .
    35. 魏亚娟,汪季,党晓宏,韩彦隆,高岩,李鹏,金山. 白刺灌丛沙堆演化过程中叶片C、N、P、K含量及其生态化学计量的变化特征. 中南林业科技大学学报. 2021(10): 102-110+139 .
    36. 杨洪炳,肖以华,李明,许涵,史欣,郭晓敏. 典型城市森林旱季土壤团聚体稳定性与微生物胞外酶活性耦合关系. 生态环境学报. 2021(10): 1976-1989 .
    37. 陈剑,王四海,杨卫,吴超. 外来入侵植物肿柄菊群落动态变化特征. 生态学杂志. 2020(02): 469-477 .
    38. 郑鸾,龙翠玲. 茂兰喀斯特森林不同地形土壤生态化学计量特征. 南方农业学报. 2020(03): 545-551 .
    39. 夏光辉,郭青霞,卢庆民,杜轶,康庆. 黄土丘陵区不同土地利用方式下土壤养分及生态化学计量特征. 水土保持通报. 2020(02): 140-147+153 .
    40. 吴鹏,崔迎春,赵文君,侯贻菊,朱军,丁访军,杨文斌. 茂兰喀斯特区68种典型植物叶片化学计量特征. 生态学报. 2020(14): 5063-5080 .
    41. 朱平宗,张光辉,杨文利,赵建民. 红壤区林地浅沟不同植被类型土壤生态化学计量特征. 水土保持研究. 2020(06): 60-65 .
    42. 余杭,罗清虎,李松阳,林勇明,王道杰. 灾害干扰受损森林土壤的碳、氮、磷初期恢复特征与变异性. 山地学报. 2020(04): 532-541 .
    43. 郭汝凤,刘鑫铭,李冠军,黄婷,吴承祯,林勇明,李键. 武夷山人工湿地系统植物生长期内土壤-植物碳氮磷变化特点. 应用与环境生物学报. 2020(02): 433-441 .
    44. 闫丽娟,王海燕,李广,吴江琪. 黄土丘陵区4种典型植被对土壤养分及酶活性的影响. 水土保持学报. 2019(05): 190-196+204 .

    Other cited types(42)

Catalog

    Article views (2609) PDF downloads (62) Cited by(86)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return