• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Xu Chao, Long Ting, Wu Xinlei, Chen Jie, Liang Yanjun, Li Jingwen. Reintroducing effects and influencing factors of Taxus cuspidata population[J]. Journal of Beijing Forestry University, 2020, 42(8): 34-42. DOI: 10.12171/j.1000-1522.20190423
Citation: Xu Chao, Long Ting, Wu Xinlei, Chen Jie, Liang Yanjun, Li Jingwen. Reintroducing effects and influencing factors of Taxus cuspidata population[J]. Journal of Beijing Forestry University, 2020, 42(8): 34-42. DOI: 10.12171/j.1000-1522.20190423

Reintroducing effects and influencing factors of Taxus cuspidata population

More Information
  • Received Date: November 04, 2019
  • Revised Date: December 21, 2019
  • Available Online: July 14, 2020
  • Published Date: September 06, 2020
  •   Objective  Reintroduction is an important method for endangered species conservation and population restoration. Taking Taxus cuspidata, a critically endangered wild plant with extremely small population, as the research object, this study chose three different forest types and two groups of different age T. cuspidata seedlings for field reintroduction tests, studied the reintroducted forest type suitable for T. cuspidate and the main factors influencing seedling growth and survival during reintroduction process. It is hopefully to provide scientific evidence for the conservation of T. cuspidata.
      Method  Betulaplatyphylla-Populus cathayana forest, Pinus koraiensis-spruce-fir forest and P. koraiensis-Tilia amurensis forest were selected as the reintroduction experimental forest types, indexes such as soil factors and topographic factors were investigated, and indexes such as seedling livability, seedling height, basal diameter and crown breadth were investigated monthly. Difference significance analysis and multiple comparison were conducted for each growth index of seedlings, and the influencing factors of reintroducted seedling growth were studied through grey correlation analysis and other methods.
      Result  The very year survival rate of reintroducted seedlings of T. cuspidata was more than 86%. The ground diameter, seedling height and crown width all increased, except for the seedling height growth of T. cuspidata in 1−2 years, the growth indexes of T. cuspidata seedlings of all forest types showed no significant variations. The 1−2 years old T. cuspidata seedlings of P. koraiensis-T. amurensis forest were significantly higher than that of B. platyphylla-P. cathayana forest and P. koraiensis-spruce-fir forest. As it was during the overwintering period, 4−5 years old T. cuspidata seedlings were eaten by roe deer, their survival rate decreased significantly, and the growth rate was very poor; the growth of 1−2 years old seedlings was also affected to some extent by long-term low temperature stress. The survival and growth of reintroducted seedlings of T. cuspidata were affected by diversified environmental factors, among which, the most relevant was forest type, followed by slope aspect, slope degree and canopy density, while the association degree of soil chemical property index was less.
      Conclusion  The effect of reintroduction of 4−5 years old T. cuspidata seedlings is poor due to predation of animals. 1−2 years old seedlings adapt to the three habitats of B. platyphylla-P. cathayana forest, P. koraiensis-spruce-fir forest and P. koraiensis-T. amurensis forest, and the optimum forest type for the seedling reintroduction of 1−2 years old is P. koraiensis-T. amurensis forest. Forest type, slope aspect, slope degree and light are the primary environmental factors influencing the reintroduction of T. cuspidata.
  • [1]
    Wiens J J. Climate-related local extinctions are already widespread among plant and animal species[J/OL]. PLoS Biology, 2016, 14(12), e2001104 (2016−09−08) [2018−08−14]. http://doi.org/10.1371/journal.pbio.2001104.
    [2]
    Oliver T H, Marshall H H, Morecroft M D, et al. Interacting effects of climate change and habitat fragmentation on drought-sensitive butterflies[J]. Nature Climate Change, 2015, 5(10): 941−945. doi: 10.1038/nclimate2746
    [3]
    Ren H, Zhang Q M, Lu H F. Wild plant species with extremely small populations require conservation and reintroduction in China[J]. Royal Swedish Academy of Sciences, 2012, 41: 913−917.
    [4]
    臧润国, 董鸣, 李俊清, 等. 典型极小种群野生植物保护与恢复技术研究[J]. 生态学报, 2016, 36(22):7130−7135.

    Zang R G, Dong M, Li J Q, et al. Conservation and restoration for typical critically endangered wild plants with extremely small population[J]. Acta Ecologica Sinica, 2016, 36(22): 7130−7135.
    [5]
    Ren H, Jian S G, Liu H X, et al. Advances in the reintroduction of rare and endangered wild plant species[J]. Science China Life Sciences, 2014, 57(6): 603−609. doi: 10.1007/s11427-014-4658-6
    [6]
    周翔, 高江云. 珍稀濒危植物的回归:理论和实践[J]. 生物多样性, 2011, 19(1):97−105. doi: 10.3724/SP.J.1003.2011.09101

    Zhou X, Gao J Y. The reintroduction of rare and endangered plants: theory and practice[J]. Biodiversity Science, 2011, 19(1): 97−105. doi: 10.3724/SP.J.1003.2011.09101
    [7]
    Godefroid S, Piazza C, Rossi G, et al. How successful are plant species reintroductions?[J]. Biological Conservation, 2011, 144(2): 672−682. doi: 10.1016/j.biocon.2010.10.003
    [8]
    Albrecht M A, Long Q G. Habitat suitability and herbivores determine reintroduction success of an endangered legume[J]. Plant Diversity, 2019, 41(2): 109−117. doi: 10.1016/j.pld.2018.09.004
    [9]
    Erin J Q, James R K, Kealoha K, et al. Mapping habitat suitability for at-risk plant species and its implications for restoration and reintroduction[J]. Ecological Applications: A Publication of the Ecological Society of America, 2014, 24(2): 385−395. doi: 10.1890/13-0775.1
    [10]
    汪越, 易慧琳, 邵玲, 等. 紫背天葵(<italic>Begonia fimbristipula</italic> Hance)回归植株存活及叶片生物学特性研究[J]. 生态科学, 2017, 36(2):32−41.

    Wang Y, Li H L, Shao L, et al. Survival and eco-biological characteristics of <italic>Begonia fimbristipula</italic> Hance in the process of reintroduction[J]. Ecological Science, 2017, 36(2): 32−41.
    [11]
    李景秀, 崔卫华, 胡枭剑, 等. 濒危植物古林箐秋海棠的扦插繁殖及回归引种初探[J]. 广西植物, 2018, 38(7):851−858. doi: 10.11931/guihaia.gxzw201705019

    Li J X, Cui W H, Hu X J, et al. Cutting propagation and regression planting of endangered plant <italic>Begonia gulinqingensis</italic>[J]. Guihaia, 2018, 38(7): 851−858. doi: 10.11931/guihaia.gxzw201705019
    [12]
    谭美, 杨志玲, 杨旭, 等. 厚朴野生资源的野外回归植株苗期适应性评价[J]. 林业科学研究, 2019, 32(1):125−132.

    Tan M, Yang Z L, Yang X, et al. Adaptability evaluation of wild <italic>Houpoëa officinalis</italic> seedling in the process of reintroduction[J]. Forest Research, 2019, 32(1): 125−132.
    [13]
    冯欣欣, 余金昌, 袁志永, 等. 国家Ⅱ级保护植物竹叶兰的迁地保护与野外回归研究[J]. 中国园艺文摘, 2017, 33(3):12−14. doi: 10.3969/j.issn.1672-0873.2017.03.005

    Feng X X, Yu J C, Yuan Z Y, et al. The ex-situ conservation and reintroduction of the national second-class protection plant <italic>Arundina graminifolia</italic>[J]. Chinese Horticulture Abstracts, 2017, 33(3): 12−14. doi: 10.3969/j.issn.1672-0873.2017.03.005
    [14]
    陈芳清, 谢宗强, 熊高明, 等. 三峡濒危植物疏花水柏枝的回归引种和种群重建[J]. 生态学报, 2005, 25(7):1813−1817.

    Chen F Q, Xie Z Q, Xiong G M, et al. Reintroduction and population reconstruction of an endangered plant <italic>Myricaria laxiflora</italic> in the Three Gorges Reservoir Area, China[J]. Acta Ecologica Sinica, 2005, 25(7): 1813−1817.
    [15]
    简尊吉, 马凡强, 郭泉水, 等. 回归崖柏苗木存活和生长对海拔梯度的响应[J]. 林业科学, 2017, 53(11):1−11. doi: 10.11707/j.1001-7488.20171101

    Jian Z J, Ma F Q, Guo Q S, et al. Responses of survival and growth of <italic>Thuja sutchuenensis</italic> reintroduction seedlings to altitude gradient[J]. Scientia Silave Sinicae, 2017, 53(11): 1−11. doi: 10.11707/j.1001-7488.20171101
    [16]
    周志强, 刘彤, 胡林林, 等. 穆棱东北红豆杉年轮—气候关系及其濒危机制[J]. 生态学报, 2010, 30(9):2304−2310.

    Zhou Z Q, Liu T, Hu L L, et al. Tree ring-climate response and endangered mechanism deliberation of Japanese yew (<italic>Taxus cuspidata</italic>) in Muling Nature Reserve[J]. Acta Ecologica Sinica, 2010, 30(9): 2304−2310.
    [17]
    刘彤. 天然东北红豆杉种群生态学研究[D]. 哈尔滨: 东北林业大学, 2007.

    Liu T. Population ecology of natural Japanese yew[D]. Harbin: Northeast Forestry University, 2007.
    [18]
    李云灵.东北红豆杉种间关系研究[D].哈尔滨: 东北林业大学, 2008.

    Li Y L. Interspecific relationship of the Taxus cuspidata[D]. Harbin: Northeast Forestry University, 2008.
    [19]
    周志强, 刘彤, 袁继连. 黑龙江穆棱天然东北红豆杉种群资源特征研究[J]. 植物生态学报, 2004, 28(4):476−482. doi: 10.3321/j.issn:1005-264X.2004.04.005

    Zhou Z Q, Liu T, Yuan J L. Population characteristics of yew(<italic>Taxus cuspidata</italic>) in the Muling Yew Nature Reserve, Heilongjiang Province[J]. Acta Phytoecologica Sinica, 2004, 28(4): 476−482. doi: 10.3321/j.issn:1005-264X.2004.04.005
    [20]
    陈杰, 龙婷, 杨蓝, 等. 东北红豆杉生境适宜性评价[J]. 北京林业大学学报, 2019, 41(4):51−59.

    Chen J, Long T, Yang L, et al. Habitat suitability assessment of <italic>Taxus cuspidate</italic>[J]. Journal of Beijing Forestry University, 2019, 41(4): 51−59.
    [21]
    杨占, 张强, 卢元, 等. 辽宁省东北红豆杉天然种群特征研究[J]. 防护林科技, 2017(3):16−17.

    Yang Z, Zhang Q, Lu Y, et al. Distribution and characteristics of wild natural <italic>Taxus cuspidata</italic> in Liaoning Province[J]. Protection Forest Science and Technology, 2017(3): 16−17.
    [22]
    刁云飞. 东北红豆杉−红松林群落结构与空间关联性研究[D].哈尔滨: 东北林业大学, 2015.

    Diao Y F. Community structure and spatial correlation of a Taxus cuspidata-Pinus koraiehsis forest[D]. Harbin: Northeast Forestry University, 2015.
    [23]
    王兆东, 孙习华, 张荣哲. 东北红豆杉扦插繁殖技术研究[J]. 现代园林, 2007(12):82−83.

    Wang Z D, Sun X H, Zhang R Z. Research on cottage propagation techniques of <italic>Taxus cuspidata</italic>[J]. Modern Landscape Architecture, 2007(12): 82−83.
    [24]
    马盈, 丰庆义, 杨凯. 东北红豆杉繁殖技术研究进展评述[J]. 林业勘查设计, 2013(1):62−64. doi: 10.3969/j.issn.1673-4505.2013.01.030

    Ma Y, Feng Q Y, Yang K. Review on the research on propagation technique of <italic>Taxus cuspidata</italic>[J]. Forest Investigation Design, 2013(1): 62−64. doi: 10.3969/j.issn.1673-4505.2013.01.030
    [25]
    吴杰, 汤欢, 黄林芳, 等. 红豆杉属植物全球生态适宜性分析研究[J]. 药学学报, 2017, 52(7):1186−1195.

    Wu J, Tang H, Huang L F, et al. Global ecological suitability analysis of <italic>Taxus</italic>[J]. Acta Pharmaceutica Sinica, 2017, 52(7): 1186−1195.
    [26]
    孔维尧, 孙权, 刘鑫鑫, 等. 基于红外相机监测的汪清自然保护区东北豹种群动态[J]. 林业科学, 2019, 55(5):188−196. doi: 10.11707/j.1001-7488.20190521

    Sun W Y, Sun Q, Liu X X, et al. Population dynamic of dar eastern leopard (<italic>Panthera pardus orientalis</italic>) in Wangqing Nature Reserve based on infrared camera monitoring[J]. Scientia Silave Sinicae, 2019, 55(5): 188−196. doi: 10.11707/j.1001-7488.20190521
    [27]
    国家林业局. 中华人民共和国林业行业标准: 森林土壤分析方法[S]. 北京: 中国标准出版社, 1999.

    State Forestry Administration. Forestry industry standard of the People ’s Republic of China: forest soil analysis method[S]. Beijing: China Standard Press, 1999.
    [28]
    余敏, 周志勇, 康峰峰, 等. 山西灵空山小蛇沟林下草本层植物群落梯度分析及环境解释[J]. 植物生态学报, 2013, 37(5):373−383. doi: 10.3724/SP.J.1258.2013.00373

    Yu M, Zhou Z Y, Kang F F, et al. Gradient analysis and environmental interpretation of understory herb-layer communities in Xiaoshegou of Lingkong Mountain, Shanxi, China[J]. Chinese Journal of Plant Ecology, 2013, 37(5): 373−383. doi: 10.3724/SP.J.1258.2013.00373
    [29]
    周绍春, 张明海, 尹远新, 等. 黑龙江完达山地区狍子冬季生境选择[J]. 北京林业大学学报, 2010, 32(3):122−127.

    Zhou S C, Zhang M H, Yin Y X, et al. Habitat selection of roe deer (<italic>Capreolus capreolus</italic>) in winter in the eastern Wandashan Mountains, Heilongjiang Province[J]. Journal of Beijing Forestry University, 2010, 32(3): 122−127.
    [30]
    刘彤, 祝佳媛, 李鹏, 等. 秋冬季自然降温过程中东北红豆杉幼苗的生理生化特性[J]. 北京林业大学学报, 2013, 35(2):51−56.

    Liu T, Zhu J Y, Li P, et al. Physiological and biochemical characteristics of Japanese yew seedlings as natural temperature falling in autumn and winter[J]. Journal of Beijing Forestry University, 2013, 35(2): 51−56.
    [31]
    张继武. 东北红豆杉幼苗越冬过程中理化特性研究[J]. 黑龙江科技信息, 2013(12):261.

    Zhang J W. Physical and chemical characteristics of <italic>Taxus cuspidata</italic> seedlings during overwintering[J]. Heilongjiang Scientific and Technological Information, 2013(12): 261.
    [32]
    李俊清. 森林生态学[M]. 北京: 高等教育出版社, 2010.

    Li J Q. Forest ecology[M]. Beijing: Higher Education Press, 2010.
    [33]
    徐博超, 周志强, 李威, 等. 东北红豆杉幼苗对不同水分条件的光合和生理响应[J]. 北京林业大学学, 2012, 34(4):73−78.

    Xu B C, Zhou Z Q, Li W, et al. Physiological and photosynthetic response to different water conditions of <italic>Taxus cuspidate</italic> seedings[J]. Journal of Beijing Forestry University, 2012, 34(4): 73−78.
    [34]
    刘彤, 崔海娇, 吴淑杰, 等. 东北红豆杉幼苗光合和荧光特性对不同光照条件的响应[J]. 北京林业大学学报, 2013, 35(3):65−70.

    Liu T, Cui H J, Wu S J, et al. Response of photosynthetic and fluorescence characteristics of Japanese yew seedlings to different light conditions[J]. Journal of Beijing Forestry University, 2013, 35(3): 65−70.
    [35]
    张雨鉴, 王克勤, 宋娅丽, 等. 滇中亚高山5种林型土壤碳氮磷生态化学计量特征[J]. 生态环境学报, 2019, 28(1):73−82.

    Zhang Y J, Wang K Q, Song Y L, et al. Ecological stoichiometry of soil carbon, nitrogen and phosphorus in five forest types in subalpine of middle Yunnan Province[J]. Ecology and Environmental Sciences, 2019, 28(1): 73−82.
    [36]
    干怀新. 一种新型造林地幼苗保护装置: CN209435912U[P]. 2019−09−27.

    Gan H X. The utility model relates to a new seedling protection device in constructed woodland: CN209435912U[P]. 2019−09−27.
  • Related Articles

    [1]Liu Xiaojing, Wen Xin, Zhao Rui, Chen Shaoliang, Zhao Nan, Li Jinke, Zhou Xiaoyang, Yao Jun. Overexpression of Populus euphratica PeCSP1 negatively regulating salt tolerance in Arabidopsis thaliana[J]. Journal of Beijing Forestry University, 2023, 45(7): 9-17. DOI: 10.12171/j.1000-1522.20220020
    [2]Wu Xia, Zhang Yinan, Zhao Nan, Zhang Ying, Zhao Rui, Li Jinke, Zhou Xiaoyang, Chen Shaoliang. Overexpression of PeAnn1 from Populus euphratica negatively regulates drought resistance in transgenic Arabidopsis thaliana[J]. Journal of Beijing Forestry University, 2020, 42(6): 14-25. DOI: 10.12171/j.1000-1522.20200031
    [3]Li Pingping, Zeng Ming, Li Wenhai, Zhao Yuanyuan, Zheng Caixia. Comparative study on antioxidant capacity of heteromorphic leaves of Populus euphratica[J]. Journal of Beijing Forestry University, 2019, 41(8): 76-83. DOI: 10.13332/j.1000-1522.20190134
    [4]DENG Jia-yin, ZHANG Yan-li, ZHANG Yi-nan, ZHAO Rui, LI Jin-ke, ZHOU Xiao-yang, LIU Xiang-fen, CHEN Shao-liang. PeAPY1 and PeAPY2 of Populus euphratica regulating salt tolerance in Arabidopsis thaliana[J]. Journal of Beijing Forestry University, 2017, 39(6): 13-21. DOI: 10.13332/j.1000-1522.20170034
    [5]WANG Shao-jie, ZHAO Nan, SHEN Ze-dan, SA Gang, SUN Hui-min, ZHAO Rui, SHEN Xin, CHEN Shao-liang. Mediation of NO on Cd2+ uptake in Populus euphratica cells under cadmium stress[J]. Journal of Beijing Forestry University, 2015, 37(6): 11-16. DOI: 10.13332/j.1000-1522.20150023
    [6]ZHANG Xiao-fei, LU Xin, DUAN Hui, LIAN Cong-long, XIA Xin-li, YIN Wei-lun. Cloning and functional analysis of PeNAC045 from Populus euphratica[J]. Journal of Beijing Forestry University, 2015, 37(6): 1-10. DOI: 10.13332/j.1000-1522.20150066
    [7]BAI Xue, ZHANG Shu-jing, ZHENG Cai-xia, HAO Jian-qing, LI Wen-hai, YANG Yang. Comparative study on photosynthesis and water physiology of polymorphic leaves of Populus euphratica[J]. Journal of Beijing Forestry University, 2011, 33(6): 47-52.
    [8]MA Hong-shuang, XIA Xin-li, YIN Wei-lun. Cloning and analysis of SCL7 gene from Populus euphratica[J]. Journal of Beijing Forestry University, 2011, 33(1): 1-10.
    [9]ZHANG Zheng-hai, , KANG Xiang-yang, LIU Ming-hu, DUAN Wu-la. Organization of microtubule during microsporogenesis in Populus simonii × P. euphratica.[J]. Journal of Beijing Forestry University, 2008, 30(6): 36-40.
    [10]LI Li, ZHOU Yan, GAO Shu-min, WANG Ying, LIU Yan. Protein vacuoles in the egg cells of Pinus tabulaeformis Carr.and specific proteins relating to the development of egg cells[J]. Journal of Beijing Forestry University, 2007, 29(5): 57-61. DOI: 10.13332/j.1000-1522.2007.05.011
  • Cited by

    Periodical cited type(7)

    1. 钟思琪,宁金魁,黄锦程,陈鼎泸,欧阳勋志,臧颢. 基于混合效应的杉木人工林冠幅模型. 森林与环境学报. 2024(02): 127-135 .
    2. 张晓姗,高嘉,王洪永,王霞,庞薇,陈寅,杜振宇,马风云,马丙尧. 我国栎树引种及其营养生长研究进展. 江苏林业科技. 2024(02): 48-52 .
    3. 邓坦,李文博,张向阳,王新建. 河南省栎类经营技术研究与建议. 河南林业科技. 2023(01): 1-5+30 .
    4. 廖科,刘振华,童方平,陈瑞,吴敏,蒋龙,龚发武,李贵. 不同混交比例对栎类混交林生长和土壤养分的影响. 中南林业科技大学学报. 2023(09): 80-88 .
    5. 娄明华,杨同辉,王卫兵,毛建方,徐婧,章建红. 四明山黄山松针阔混交林的树高—胸径模型. 林业与环境科学. 2023(05): 7-14 .
    6. 娄明华,白超,杨同辉. 宁波石栎-木荷天然常绿阔叶混交林的树高-胸径模型. 林业与环境科学. 2021(04): 46-54 .
    7. 娄明华,杨同辉,陈文伟,许俊. 宁波天然甜槠阔叶混交林树高—胸径模型研究. 防护林科技. 2021(05): 1-5 .

    Other cited types(4)

Catalog

    Article views (1498) PDF downloads (79) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return