• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
ZHANG Xiao-fei, LU Xin, DUAN Hui, LIAN Cong-long, XIA Xin-li, YIN Wei-lun. Cloning and functional analysis of PeNAC045 from Populus euphratica[J]. Journal of Beijing Forestry University, 2015, 37(6): 1-10. DOI: 10.13332/j.1000-1522.20150066
Citation: ZHANG Xiao-fei, LU Xin, DUAN Hui, LIAN Cong-long, XIA Xin-li, YIN Wei-lun. Cloning and functional analysis of PeNAC045 from Populus euphratica[J]. Journal of Beijing Forestry University, 2015, 37(6): 1-10. DOI: 10.13332/j.1000-1522.20150066

Cloning and functional analysis of PeNAC045 from Populus euphratica

More Information
  • Received Date: March 15, 2015
  • NAC (NAM, ATAF1/2 and CUC2) domain proteins constitute one of the largest plant-specific transcription factors (TFs) and play an important role in regulating senescence, cell division, wood formation and biotic and abiotic stresses. In present study, we successfully isolated a stress responsive gene from Populus euphratica, i.e., PeNAC045. Sequencing results indicated that the length of PeNAC045 is 915 bp encoding 304 amino acids, and PeNAC045 shares 96.05% homology in amino acid sequence with PtrNAC045. The expression of PeNAC045 in response to NaCl and drought stress was characterized. PeNAC045 mRNA expression was strongly induced by high-salinity and drought treatment. The expression vector pBI121-PeNAC045-GFP was constructed using the full-length PeNAC045 cDNA cloned into the pBI121-GFP vector. After sequencing confirmation, the construct and positive control (empty vector) were transformed into Arabidopsis. Subcellular localization experiments in Arabidopsis indicated that the PeNAC045-GFP fusion protein was localized in the nucleus. Arabidopsis was stained with the DNA dye 4,6-diamidino-2-phenylindole (DAPI) to visualize the nucleus. The expression vector pCAMBIA1301-PeNAC045 was constructed and transformed into Arabidopsis thaliana wild type (Col-0) and ataf2 mutant using floral dip method. Then, we obtained the PeNAC045 overexpression lines of Arabidopsis and ataf2/PeNAC045. To test the function of PeNAC045, each line was treated with NaCl. The germination percentage of PeNAC045 overexpression lines of Arabidopsis was reduced and the root length was shorter under 150 mmol/L NaCl stress, compared to ataf2 mutant and wild-type plants. Furthermore, the sensitivity of transgenic PeNAC045 overexpression lines to NaCl stress was increased at the seedling stage and the height of the seedlings was significantly lower than others. Our results indicated that PeNAC045, as a transcriptional regulator, negatively regulates the expression of stress responsive genes under NaCl stress.
  • [1]
    NURUZZAMAN M, SHARONI A M, KIKUCHI S. Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants[J]. Frontiers in Microbiology, 2013, 4: 248.
    [1]
    MA H S, XIA X L, YIN W L. Constructing cDNA-AFLP reaction system of abiotic stress study for Populus euphratica[J]. Journal of Beijing Forestry University, 2010, 32(5): 34-40.
    [2]
    ERNST H A, OLSEN A N, SKRIVER K, et al. Structure of the conserved domain of ANAC, a member of the NAC family of transcription factors[J]. Embo Reports, 2004, 5(3): 297-303.
    [2]
    DUAN Z X, QIN Y R, XIA X L, et al. Overexpression of Populus euphratica peu-MIR156j gene enhancing salt tolerance in Arabidopsis thaliana[J]. Journal of Beijing Forestry University, 2012, 33(6): 1-7.
    [3]
    DUVAL M, HSIEH T F, KIM S Y, et al. Molecular characterization of AtNAM: a member of the Arabidopsis NAC domain superfamily[J]. Plant Molecular Biology, 2002, 50(2): 237-248.
    [3]
    MA H S, XIA X L, YIN W L. Cloning and analysis of SCL7 gene from Populus euphratica[J]. Journal of Beijing Forestry University, 2011, 33(1): 1-10.
    [4]
    AIDA M, ISHIDA T, FUKAKI H, et al. Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant[J]. Plant Cell, 1997, 9(6): 841-857.
    [4]
    QIN Y R, XIA X L, YIN W L. Expression determination of miR169g under dehydration and high salinity stress in Populus euphratica leaves by real-time quantitative PCR[J]. Modern Instruments, 2011, 17(3): 28-30.
    [5]
    OLSEN A N, ERNST H A, LO LEGGIO L, et al. NAC transcription factors: structurally distinct, functionally diverse[J]. Trends in Plant Science, 2005, 10(2): 79-87.
    [6]
    SU H Y, ZHANG S Z, YUAN X W, et al. Genome-wide analysis and identification of stress-responsive genes of the NAM-ATAF1,2-CUC2 transcription factor family in apple[J]. Plant Physiology and Biochemistry, 2013, 71: 11-21.
    [7]
    WANG Z Y, RASHOTTE A M, MOSS A G, et al. Two NAC transcription factors from Citrullus colocynthis, CcNAC1, CcNAC2 implicated in multiple stress responses[J]. Acta Physiologiae Plantarum, 2014, 36(3): 621-634.
    [8]
    LIU G Z, LI X L, JIN S X, et al. Overexpression of rice NAC gene SNAC1 improves drought and salt tolerance by enhancing root development and reducing transpiration rate in transgenic cotton[J]. PLoS One, 2014, 9(1): e86895.
    [9]
    LI W, HUANG G Q, ZHOU W, et al. A cotton (Gossypium hirsutum) gene encoding a NAC transcription factor is involved in negative regulation of plant xylem development[J]. Plant Physiology and Biochemistry, 2014, 83: 134-141.
    [10]
    FAN K, WANG M, MIAO Y, et al. Molecular evolution and expansion analysis of the NAC transcription factor in Zea mays[J]. PLoS One, 2014, 9(11): e111837.
    [11]
    ZHOU Y, HUANG W F, LIU L, et al. Identification and functional characterization of a rice NAC gene involved in the regulation of leaf senescence[J]. BMC Plant Biology, 2013, 13(1): 132.
    [12]
    WANG J Y, WANG J P, HE Y. A Populus euphratica NAC protein regulating Na+/K+ homeostasis improves salt tolerance in Arabidopsis thaliana[J]. Gene, 2013, 521(2): 265-273.
    [13]
    RIECHMANN J L, HEARD J, MARTIN G, et al. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes[J]. Science, 2000, 290: 2105-2110.
    [14]
    NURUZZAMAN M, MANIMEKALAI R, SHARONI A M, et al. Genome-wide analysis of NAC transcription factor family in rice[J]. Gene, 2010, 465(1-2): 30-44.
    [15]
    HU R B, QI G A, KONG Y Z, et al. Comprehensive analysis of NAC domain transcription factor gene family in Populus trichocarpa[J]. Bmc Plant Biology, 2010, 10(1): 145.
    [16]
    TRAN L S P, NAKASHIMA K, SAKUMA Y, et al. Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter[J]. Plant Cell, 2004, 16(9): 2481-2498.
    [17]
    LU P L, CHEN N Z, AN R, et al. A novel drought-inducible gene, ATAF1, encodes a NAC family protein that negatively regulates the expression of stress-responsive genes in Arabidopsis[J]. Plant Molecular Biology, 2007, 63(2): 289-305.
    [18]
    JENSEN M K, LINDEMOSE S, DE MASI F, et al. ATAF1 transcription factor directly regulates abscisic acid biosynthetic gene NCED3 in Arabidopsis thaliana[J]. Febs Open Bio, 2013, 3: 321-327.
    [19]
    OH S K, LEE S, YU S, et al. Expression of a novel NAC domain-containing transcription factor (CaNAC1) is preferentially associated with incompatible interactions between chili pepper and pathogens[J]. Planta, 2005, 222(5): 876-887.
    [20]
    DELESSERT C, WILSON I W, VAN DER STRAETEN D, et al. Spatial and temporal analysis of the local response to wounding in Arabidopsis leaves[J]. Plant Molecular Biology, 2004, 55(2): 165-181.
    [21]
    DELESSERT C, KAZAN K, WILSON I W, et al. The transcription factor ATAF2 represses the expression of pathogenesis-related genes in Arabidopsis[J]. Plant Journal, 2005, 43(5): 745-757.
    [22]
    WANG X, CULVER J N. DNA binding specificity of ATAF2, a NAC domain transcription factor targeted for degradation by tobacco mosaic virus[J]. Bmc Plant Biology, 2012, 12(1): 157.
    [23]
    HUH S U, LEE S B, KIM H H, et al. ATAF2, a NAC transcription factor, binds to the promoter and regulates NIT2 gene expression involved in auxin biosynthesis[J]. Molecules and Cells, 2012, 34(3): 305-313.
    [24]
    ZHONG R Q, LEE C H, YE Z H. Functional characterization of poplar wood-associated NAC domain transcription factors[J]. Plant Physiology, 2010, 152(2): 1044-1055.
    [25]
    ZHAO Y J, SUN J Y, XU P, et al. Intron-mediated alternative splicing of WOOD-ASSOCIATED NAC TRANSCRIPTION FACTOR1B regulates cell wall thickening during fiber development in Populus species[J]. Plant Physiology, 2014, 164(2): 765-776.
    [26]
    GU R S, LIU Q L, PEI D, et al. Understanding saline and osmotic tolerance of Populus euphratica suspended cells[J]. Plant Cell Tissue and Organ Culture, 2004, 78(3): 261-265.
    [27]
    LI B S, YIN W L, XIA X L. Identification of microRNAs and their targets from Populus euphratica[J]. Biochemical and Biophysical Research Communications, 2009, 388(2): 272-277.
    [28]
    马洪双, 夏新莉, 尹伟伦. 建立胡杨抗逆研究的cDNA-AFLP反应体系[J]. 北京林业大学学报, 2010, 32(5): 34-40.
    [29]
    段中鑫, 覃玉蓉, 夏新莉, 等. 超量表达胡杨peu-MIR156j 基因增强拟南芥耐盐性[J]. 北京林业大学学报, 2012, 33(6): 1-7.
    [30]
    马洪双, 夏新莉, 尹伟伦. 胡杨SCL7基因及其启动子片段的克隆与分析[J]. 北京林业大学报, 2011, 33(1): 1-10.
    [31]
    覃玉蓉, 夏新莉, 尹伟伦. 实时荧光定量PCR检测miR169g在脱水与高盐胁迫下胡杨叶中的表达[J]. 现代仪器, 2011, 17(3): 28-30.
    [32]
    OHTANI M, NISHIKUBO N, XU B, et al. A NAC domain protein family contributing to the regulation of wood formation in poplar[J]. Plant Journal, 2011, 67(3): 499-512.
    [33]
    GOODSTEIN D M, SHU S Q, HOWSON R, et al. Phytozome: a comparative platform for green plant genomics[J]. Nucleic Acids Research, 2012, 40(D1): 1178-1186.
    [34]
    SAITOU N, NEI M. The neighbor-joining method: a new method for reconstructing phylogenetic trees[J]. Molecular Biology and Evolution, 1987, 4(4): 406-425.
    [35]
    WANG H L, CHEN J H, TIAN Q Q, et al. Identification and validation of reference genes for Populus euphratica gene expression analysis during abiotic stresses by quantitative real-time PCR[J]. Physiologia Plantarum, 2014, 152(3): 529-545.
    [36]
    ZHANG X R, HENRIQUES R, LIN S S, et al. Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method[J]. Nature Protocols, 2006, 1(2): 641-646.
    [37]
    JEONG J S, KIM Y S, BAEK K H, et al. Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions[J]. Plant Physiology, 2010, 153(1): 185-197.
    [38]
    SONG S Y, CHEN Y, CHEN J, et al. Physiological mechanisms underlying OsNAC5-dependent tolerance of rice plants to abiotic stress[J]. Planta, 2011, 234(2): 331-345.
    [39]
    LU M, YING S, ZHANG D F, et al. A maize stress-responsive NAC transcription factor, ZmSNAC1, confers enhanced tolerance to dehydration in transgenic Arabidopsis[J]. Plant Cell Reports, 2012, 31(9): 1701-1711.
    [40]
    HU H H, YOU J, FANG Y J, et al. Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice[J]. Plant Molecular Biology, 2008, 67(1-2): 169-181.
    [41]
    CHEN S L, LI J K, WANG S S, et al. Effects of NaCl on shoot growth, transpiration, ion compartmentation, and transport in regenerated plants of Populus euphratica and Populus tomentosa[J]. Canadian Journal of Forest Research, 2003, 33(6): 967-975.
    [42]
    OTTOW E A, BRINKER M, TEICHMANN T, et al. Populus euphratica displays apoplastic sodium accumulation, osmotic adjustment by decreases in calcium and soluble carbohydrates, and develops leaf succulence under salt stress[J]. Plant Physiology, 2005, 139(4): 1762-1772.
    [43]
    HAN X, TANG S, AN Y, et al. Overexpression of the poplar NF-YB7 transcription factor confers drought tolerance and improves water-use efficiency in Arabidopsis[J]. Journal of Experimental Botany, 2013, 64(14): 4589-4601.
  • Related Articles

    [1]Hu Zhenhong, Zhao Zhuqi, He Xian, Yuan Mengfan, Cheng Lei. Research progress of impacts of tree species diversity on microbial decomposition of forest deadwood and carbon cycling[J]. Journal of Beijing Forestry University, 2024, 46(11): 1-9. DOI: 10.12171/j.1000-1522.20240233
    [2]Zhou Cheng, Liu Tong, Wang Qinggui, Han Shijie. Effects of long-term nitrogen addition on fine root morphological, anatomical structure and stoichiometry of broadleaved Korean pine forest[J]. Journal of Beijing Forestry University, 2022, 44(11): 31-40. DOI: 10.12171/j.1000-1522.20210212
    [3]Zhang Yichi, Guo Sujuan, Sun Chuanhao. Effects of growth retardants on anatomy and non-structural carbohydrates of chestnut leaves[J]. Journal of Beijing Forestry University, 2020, 42(1): 46-53. DOI: 10.12171/j.1000-1522.20180437
    [4]He Jingwen, Liu Ying, Yu Hang, Wu Jianzhao, Cui Yu, Lin Yongming, Wang Daojie, Li Jian. Nutrient reabsorption efficiency of dominant shrubs in dry-hot valley and its C∶N∶P stoichiometry[J]. Journal of Beijing Forestry University, 2020, 42(1): 18-26. DOI: 10.12171/j.1000-1522.20190185
    [5]Tong Long, Zhang Lei, Li Bin, Geng Yanghui, Xie Jinzhong, Zhang Wei, Chen Lijie. Effects of different truncation treatments on the stoichiometry of C, N and P in leaves of Dendrocalamus latiflorus[J]. Journal of Beijing Forestry University, 2018, 40(11): 69-75. DOI: 10.13332/j.1000--1522.20180216
    [6]ZHONG Yue-ming, DONG Fang-yu, WANG Wen-juan, WANG Jian-ming, LI Jing-wen, WU Bo, JIA Xiao hong. Anatomical characteristics and adaptability plasticity of Populus euphratica in different habitats[J]. Journal of Beijing Forestry University, 2017, 39(10): 53-61. DOI: 10.13332/j.1000-1522.20170089
    [7]ZHANG Min, ZHANG Wei, GONG Zai-xin, ZHENG Cai-xia. Morphologic and anatomical observations in the process of ovulate strobilus generation and development in Pinus tabuliformis[J]. Journal of Beijing Forestry University, 2017, 39(6): 1-12. DOI: 10.13332/j.1000-1522.20160411
    [8]ZHAO Yan-xia, LUO You-qing, ZONG Shi-xiang, WANG Rong1, LUO Hong-mei. Comparison in leaf anatomical structure and drought resistance of different sex and varieties of sea buckthorn[J]. Journal of Beijing Forestry University, 2012, 34(6): 34-41.
    [9]XIAO Yang, CHEN Li-hua, YU Xin-xiao, WANG Xiao-ping, QIN Yong-sheng, CHEN Jun-qi. Nutrient cycling of N, P and K in a plantation ecosystem of Pinus tabulaeformis in Miyun District, Beijing.[J]. Journal of Beijing Forestry University, 2008, 30(supp.2): 72-75.
    [10]YU Zhan-yuan, CENG De-hui, JIANG Feng-qi, FAN Zhi-ping, CHEN Fu-sheng, ZHAO Qiong. Responses of key carbon cycling processes to the addition of water and fertilizers to sandy grassland in semi-arid region[J]. Journal of Beijing Forestry University, 2006, 28(4): 45-50.
  • Cited by

    Periodical cited type(35)

    1. 沈汉,郑成忠,张能军,邱勇斌,徐金良,成向荣. 间伐对杉木大径材培育林分的生长和乔木碳储量的影响. 东北林业大学学报. 2025(04): 47-54+60 .
    2. 高彤,宋鑫彧,任允泽,毛亮亮,高然,董希斌. 抚育间伐强度对针阔混交林碳动态变化的影响. 中南林业科技大学学报. 2024(02): 118-128 .
    3. 牛鉴祺,吕彦飞,王树力. 抚育间伐对杨桦次生林非结构性碳水化合物质量分数和碳氮磷生态化学计量特征的影响. 东北林业大学学报. 2024(06): 51-57 .
    4. 赵鹏,刘子玺,李得禄,张俊年,张万科,肖东,杨斌元. 祁连山国家公园典型生态系统固碳功能研究综述. 陕西林业科技. 2024(02): 127-131+134 .
    5. 吴章明,唐思莹,宋思宇,李聪,刘丽鸽,朱鹏,徐红伟,张学强,张健,刘洋. 带状采伐初期对华西雨屏区杉木人工林土壤碳组分及稳定性的影响. 四川农业大学学报. 2024(04): 847-860+878 .
    6. 吕彦飞,牛鉴祺,王树力. 抚育间伐对小黑杨人工林非结构性碳和氮磷钾生态化学计量特征的影响. 森林工程. 2024(05): 62-73 .
    7. 邹丰虎,柴宗政. 近自然经营对马尾松人工林生态系统碳储量的影响. 广西科学. 2024(03): 405-415 .
    8. 赵吉平. 不同结构落叶松天然林生物量及生产力特征. 南方农业. 2023(04): 101-104 .
    9. 高谢雨,董利虎,郝元朔. 基于TLS的抚育间伐对长白落叶松干形的影响. 南京林业大学学报(自然科学版). 2023(06): 85-94 .
    10. 杜雪,王海燕,邹佳何,孟海,赵晗,崔雪,董齐琪. 长白山北坡云冷杉阔叶混交林土壤有机碳分布特征及其影响因素. 生态环境学报. 2022(04): 663-669 .
    11. 肖军,雷蕾,曾立雄,李肇晨,马成功,肖文发. 不同经营模式对华北油松人工林碳储量的影响. 生态环境学报. 2022(11): 2134-2142 .
    12. 张乃暄,王韵頔,许中旗,付立华,张菲,程顺. 抚育间伐对塞罕坝地区云杉人工林碳储量及固碳速率的影响. 河北农业大学学报. 2022(06): 81-87 .
    13. 王亚辉,牟长城,杨智慧,刘珽,李轩男. 透光抚育强度对小兴安岭“栽针保阔”红松林碳储量的影响. 北京林业大学学报. 2021(10): 54-64 . 本站查看
    14. 赵状,董希斌,曲杭峰,宋鑫彧,刘慧,毛亮亮. 可拓评判法在红皮云杉碳质量分数评价中的应用. 东北林业大学学报. 2021(10): 71-76 .
    15. 陈俊华,张鑫,谢天资,龚固堂,王琛,慕长龙. 川中丘陵区人工柏木林不同间伐强度效果评价. 四川林业科技. 2021(06): 11-20 .
    16. 南维波. 不同抚育强度对兴安落叶松人工林的影响. 农村实用技术. 2020(06): 121-122 .
    17. 徐清乾,黄帆,张勰,王湘莹,梁贵明. 雪峰山区杉木大径材培育立地及密度控制研究. 湖南林业科技. 2020(03): 32-38 .
    18. 龚映匀,王瑞辉,张斌,刘凯利,董凯丽,刘俊涛,赵苏亚,周钰淮. 抚育间伐对川西柳杉人工林生长和土壤有机碳的影响. 林业资源管理. 2020(06): 96-104 .
    19. 宋重升,张利荣,王有良,游云飞,冯随起,林开敏. 抚育间伐对人工林生态系统影响的研究进展. 亚热带农业研究. 2020(04): 279-288 .
    20. 刘泰瑞,任达,董威,覃志杰,张芸香,郭晋平. 华北落叶松天然林目标树间伐释压与胸径生长关系研究. 中南林业科技大学学报. 2019(01): 20-24+44 .
    21. 廖鋆章,贲丽云. 不同间伐措施强度对杉木人工林碳储量及其分配的影响研究. 低碳世界. 2019(04): 308-309 .
    22. 周焘,王传宽,周正虎,孙志虎. 抚育间伐对长白落叶松人工林土壤碳、氮及其组分的影响. 应用生态学报. 2019(05): 1651-1658 .
    23. Zhenge HUANG,Minyang XIE,Mingbao WEI,Bin HE,Shaozhuang MO,Gang ZHOU,Ji LIANG. Carbon Storage and Distribution of the Mature Pinus massoniana Plantation in Northwest Guangxi. Agricultural Biotechnology. 2019(03): 141-144 .
    24. 管惠文,董希斌,张甜,曲杭峰,王智勇. 抚育间伐后落叶松天然次生林生境恢复效果的评价. 东北林业大学学报. 2019(07): 6-13+24 .
    25. 戎建涛,张晓红,郜爱玲,王艳英,潘凡群. 不同间伐强度经营对柳杉人工林土壤理化性质的影响. 西北林学院学报. 2019(04): 206-211 .
    26. 董莉莉,赵济川,汪成成,刘红民,高英旭,杨鹤. 抚育间伐后蒙古栎阔叶混交林径级结构及生长动态研究. 西南林业大学学报(自然科学). 2019(06): 98-104 .
    27. 董莉莉,刘红民,汪成成,赵济川,高英旭,黄夏,肖尧. 间伐对蒙古栎次生林生态系统碳储量的短期和长期影响. 沈阳农业大学学报. 2019(05): 614-620 .
    28. 韦明宝,王朝健,杨正文,黄振格,王汉敢,何斌. 桂西北马尾松人工林生态系统碳贮量与分布. 亚热带农业研究. 2019(03): 152-156 .
    29. 银彬吾,刘奇林,陆滟灵,何斌,黄振格,谢敏洋. 2种更新方式4年生尾巨桉人工林碳储量及其分布特征. 广西林业科学. 2019(04): 466-471 .
    30. 朱子卉,杨华,张恒,王全军,孙权,杨超. 择伐后落叶松云冷杉林直径结构及生长的动态变化. 北京林业大学学报. 2018(05): 55-62 . 本站查看
    31. 韦家国,周刚,刘凡胜,杨正文,莫少壮,何斌. 秃杉林和连栽杉木林生态系统C积累及其分布格局. 亚热带农业研究. 2018(01): 29-33 .
    32. Zhou Gang,He Bin,Wei Jiaguo,Liu Fansheng,Mo Shaozhuang,Yang Zhengwen. Carbon Accumulation and Distribution in Ecosystems of Taiwania flousiana Plantation and Successive Rotation Plantation of Cunninghamia lanceolata. Meteorological and Environmental Research. 2018(04): 11-14+18 .
    33. 张期奇,董希斌,张甜,曲杭峰,马晓波,管惠文,王智勇,阮加甫,陈蕾. 抚育间伐强度对兴安落叶松中龄林测树因子的影响. 森林工程. 2018(05): 1-7+55 .
    34. 段梦成,王国梁,史君怡,周昊翔. 间伐对油松人工林碳储量的长期影响. 水土保持学报. 2018(05): 190-196 .
    35. 马长明,赵辉,牟洪香,刘炳响. 燕山山地华北落叶松人工林碳密度及分配特征. 水土保持学报. 2017(05): 208-214 .

    Other cited types(35)

Catalog

    Article views (2285) PDF downloads (46) Cited by(70)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return