• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Huang Quanfei, Huang Yanhui, Zhang Wei, Lin Xinyu, Wang Xuecong. Film properties of waterborne paint based on Fraxinus mandshurica substrate[J]. Journal of Beijing Forestry University, 2020, 42(7): 140-146. DOI: 10.12171/j.1000-1522.20200088
Citation: Huang Quanfei, Huang Yanhui, Zhang Wei, Lin Xinyu, Wang Xuecong. Film properties of waterborne paint based on Fraxinus mandshurica substrate[J]. Journal of Beijing Forestry University, 2020, 42(7): 140-146. DOI: 10.12171/j.1000-1522.20200088

Film properties of waterborne paint based on Fraxinus mandshurica substrate

More Information
  • Received Date: March 30, 2020
  • Revised Date: May 28, 2020
  • Available Online: July 17, 2020
  • Published Date: August 13, 2020
  •   Objective  Fraxinus mandshurica, as a kind of excellent hard wood, is often used to make medium and high grade furniture. The waterborne paint is a very environmentally friendly paint, and it is of great practical significance to study the coating properties of Fraxinus mandshurica for improving the performance of waterborne paint and optimizing the coating process. In this paper, the film properties and adhesion mechanism of waterborne paint on the surface of Fraxinus mandshurica were systematically studied, which can provide theoretical support and scientific basis for the application and research of waterborne paint on wood.
      Method  In this paper, commercial waterborne paint was used to paint Fraxinus mandshurica and the film properties were measured according to the corresponding standards. SEM and FTIR were used to explore the adhesion mechanism of waterborne paint on the substrate.
      Result  The film thickness of cured waterborne paint on substrate was 96.63 μm, the hardness was H, the adhesion was up to level 0, the water resistance was up to grade 1, the color difference value ΔE before and after coating was 9.86, which could keep the wood color of the substrate. Because the priming paint evenly covered the surface of the substrate, sealed the hydrophilic hydroxyl in the substrate, and improved the hydrophobic property of the substrate surface, the contact angle of the substrate surface increased by about 10°. The surface glossiness of the coated substrate was significantly improved, and the glossiness in parallel texture direction was 40.4% higher than that in the vertical direction. This is mainly due to the fact that most of the cells making up the wood are arranged in an axial direction, and the waterborne paint is mainly filled in the large cell cavities arranged longitudinally, but it is difficult to penetrate into the cell walls with nano level pores. The combination of waterborne paint and substrate was mainly in the physical form of mechanical interlocking, and chemical reactions also occurred. The increase of the intensity of the peak of1 148 cm− 1 indicated that the carboxyl group in the waterborne paint had esterified with the hydroxyl group in the substrate; the appearance of the peak 1 063 cm− 1 showed that the cellulose in the substrate had etherified with the hydroxyl group in the waterborne primer.
      Conclusion  The waterborne paint has good adhesion on the surface of Fraxinus mandshurica, has a good protective performance and can effectively improve the visual effect of the substrate, so as to improve its commercial value.
  • [1]
    Lan S. Progeny test on the natural populations and selection of excellent populations from Fraxinus mandshurica[J]. Agricultural Biotechnology, 2018, 7(5): 162−170.
    [2]
    Cataldi A, Corcione C E, Frigione M, et al. Photocurable resin/nanocellulose composite coatings for wood protection[J]. Progress in Organic Coatings, 2017, 106(6): 128−136.
    [3]
    Chang C W, Chang J P, Lu K T. Synthesis of linseed oil-based waterborne urethane oil wood coatings[J]. Polymers, 2018, 10(11): 1235−1250. doi: 10.3390/polym10111235
    [4]
    黄艳辉, 赵畅, 冯启明, 等. 丙烯酸水性漆的涂饰工艺及其对漆膜性能的影响[J]. 林产工业, 2018, 45(1):24−26, 34.

    Huang Y H, Zhao C, Feng Q M, et al. Coating process of acrylic acid water-based paint and its effect on film properties[J]. China Forest Products Industry, 2018, 45(1): 24−26, 34.
    [5]
    Özgenç Ö, Durmaz S, Şahin S, et al. Evaluation of the weathering resistance of waterborne acrylic-and alkyd-based coatings containing HALS, UV absorber, and bark extracts on wood surfaces[J]. Journal of Coatings Technology and Research, 2020, 17(2): 461−475. doi: 10.1007/s11998-019-00293-4
    [6]
    Cui J, Xu J, Li J, et al. A crosslinkable graphene oxide in waterborne polyurethane anticorrosive coatings: experiments and simulation[J/OL]. Composites Part B: Engineering.[2020−05−01]. http://kns.cnki.net/kns/detail/detail.aspx?FileName=SJES2692FE6DEA0587EE08821A248417CD13&DbName=SJES2020.
    [7]
    Ma H, Liu Y, Guo J, et al. Synthesis of a novel silica modified environmentally friendly waterborne polyurethane matting coating[J/OL]. Progress in Organic Coatings.[2020−02−07]. http://kns.cnki.net/kns/detail/detail.aspx?FileName=SJESECC01BE74F33BD2D61A89038D84D5A06&DbName=SJES2020.
    [8]
    周铭. 涂膜附着机理与附着力促进剂的选择[J]. 现代涂料与涂装, 2007, 10(8):1−3. doi: 10.3969/j.issn.1007-9548.2007.08.001

    Zhou M. Adhesion mechanism of the coatings and selection of the adhesion accelerants[J]. Modern Paint and Finishing, 2007, 10(8): 1−3. doi: 10.3969/j.issn.1007-9548.2007.08.001
    [9]
    姚路路, 吴翠明. 硅氧烷改性水性聚氨酯乳液的附着性能[J]. 高分子材料科学与工程, 2011, 27(8):91−94.

    Yao L L, Wu C M. Adhesive property of waterborne polyurethane emulsion modified by silicane[J]. Polymer Materials Science & Engineering, 2011, 27(8): 91−94.
    [10]
    路则光, 申利明, 黄河浪, 等. 提高家具用水性涂料漆膜附着力的工艺技术[J]. 林产工业, 2007, 34(1):43−44. doi: 10.3969/j.issn.1001-5299.2007.01.013

    Lu Z G, Shen L M, Huang H L, et al. Technology for improving adhesive power of water-borne coatings for furniture[J]. China Forest Products Industry, 2007, 34(1): 43−44. doi: 10.3969/j.issn.1001-5299.2007.01.013
    [11]
    Wang J, Wu H G, Liu R, et al. Preparation of a fast water-based UV cured polyurethane-acrylate wood coating and the effect of coating amount on the surface properties of oak (Quercus alba L.)[J]. Polymers, 2019, 11(9): 1414−1427. doi: 10.3390/polym11091414
    [12]
    彭锋. 水性丙烯酸改性醇酸面漆的制备[J]. 上海涂料, 2019, 57(4):19−22. doi: 10.3969/j.issn.1009-1696.2019.04.007

    Peng F. Preparation of waterborne acrylic modified alkyd topcoat[J]. Shanghai Coatings, 2019, 57(4): 19−22. doi: 10.3969/j.issn.1009-1696.2019.04.007
    [13]
    何拓, 罗建举. 20种红木类木材颜色和光泽度研究[J]. 林业工程学报, 2016, 1(2):44−48.

    He T, Luo J J. Study on the color and luster of twenty species of rosewood[J]. Journal of Forestry Engineering, 2016, 1(2): 44−48.
    [14]
    Xu J, Liu R, Wu H G, et al. Coating performance of water-based polyurethane-acrylate coating on bamboo/bamboo scrimber substrates[J]. Advances in Polymer Technology, 2019(Spec.): 1−8.
    [15]
    Ma H, Liu Y, Guo J, et al. Synthesis of a novel silica modified environmentally friendly waterborne polyurethane matting coating[J]. Progress in Organic Coatings, 2019, 139(2): 105441−105450.
    [16]
    Murillo E A, Percino J, López B L. Colloidal, morphological, thermal, rheological, and film properties of waterborne hyperbranched alkyd–acrylic resins[J]. Journal of Coatings Technology and Research, 2019, 16(5): 1223−1232. doi: 10.1007/s11998-019-00205-6
    [17]
    Oh S Y, Yoo D I, Shin Y, et al. Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy[J]. Carbohydrate Research, 2005, 340(15): 2376−2391. doi: 10.1016/j.carres.2005.08.007
    [18]
    Liu C, Lei W, Cai Z, et al. Use of tung oil as a reactive toughening agent in dicyclopentadiene-terminated unsaturated polyester resins[J]. Industrial Crops and Products, 2013, 49(4): 412−418.
    [19]
    Che W, Xiao Z, Wang Z, et al. Enhanced weathering resistance of radiata pine wood by treatment with an aqueous styrene/acrylic acid copolymer dispersion[J]. Journal of Wood Chemistry and Technology, 2019, 39(6): 421−435. doi: 10.1080/02773813.2019.1636824
    [20]
    Rosu D, Bodîrlău R, Teacă C A, et al. Epoxy and succinic anhydride functionalized soybean oil for wood protection against UV light action[J]. Journal of Cleaner Production, 2016, 112(12): 1175−1183.
    [21]
    Lu H B, Hu Y, Gu M H, et al. Synthesis and characterization of silica-acrylic-epoxy hybrid coatings on 430 stainless steel[J]. Surface and Coatings Technology, 2009, 204(1−2): 91−98. doi: 10.1016/j.surfcoat.2009.06.035
  • Cited by

    Periodical cited type(7)

    1. 朱继康,董家莹,姚鹏,李涛,张远群. 基于2种松木的水性漆漆膜性能研究. 林产工业. 2023(03): 29-33+55 .
    2. 刘琰,马强. 高性能的乐器修复材料水性硝化纤维素乳液的制备及应用性能. 粘接. 2023(07): 77-80 .
    3. 陶鑫,田东雪,梁善庆,李善明,彭立民,傅峰. 微波膨化木基金属复合材料的涂饰性能及耐光老化研究. 北京林业大学学报. 2023(10): 140-148 . 本站查看
    4. 李帅帅,皇权飞,黄艳辉,李晓岳,花婷婷. 湿热处理对水曲柳木材水性漆涂膜性能的影响. 北京林业大学学报. 2023(12): 127-133 . 本站查看
    5. 林欣雨,张秋昊,黄艳辉,皇权飞,杨欣. 竹集成材水性漆涂饰工艺及附着机理研究. 北京林业大学学报. 2022(09): 158-164 . 本站查看
    6. 阚相成,李耀翔,王立海,解光强,孟永斌,李春旭,谢军明,李怡娜. 基于光谱预处理的低温水曲柳原木含水率检测. 中南林业科技大学学报. 2022(11): 154-163 .
    7. 青龙,邢东,王喜明,李哲锋. 木材切削表面粗糙度研究进展及测定方法探讨. 林产工业. 2021(02): 27-30 .

    Other cited types(4)

Catalog

    Article views (1214) PDF downloads (46) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return