Citation: | He Pei, Xin Shidong, Jiang Lichun. Research on stem taper equation of Scots pine based on generalized additive model[J]. Journal of Beijing Forestry University, 2020, 42(12): 1-8. DOI: 10.12171/j.1000-1522.20200094 |
[1] |
Kozak A. My last words on taper equations[J]. The Forestry Chronicle, 2004, 80(4): 507−515. doi: 10.5558/tfc80507-4.
|
[2] |
Özçelik R, Crecente-Campo F. Stem taper equations for estimating merchantable volume of Lebanon cedar trees in the Taurus Mountains, southern Turkey[J]. Forest Science, 2016, 62(1): 78−91. doi: 10.5849/forsci.14-212
|
[3] |
姜立春, 刘瑞龙. 基于非线性混合模型的落叶松树干削度模型[J]. 林业科学, 2011, 47(4):101−106.
Jiang L C, Liu R L. A stem taper model with nonlinear mixed effects for Dahurian larch[J]. Scientia Silvae Sinicae, 2011, 47(4): 101−106.
|
[4] |
Schröder T, Costa E A, Valério A F, et al. Taper equations for Pinus elliottii Engelm. in southern Paraná, Brazil[J]. Forest Science, 2015, 61(2): 311−319. doi: 10.5849/forsci.14-054
|
[5] |
姜立春, 李凤日, 刘瑞龙. 兴安落叶松树干削度和材积相容模型[J]. 北京林业大学学报, 2011, 33(5):1−7.
Jiang L C, Li F R, Liu R L. Compatible stem taper and volume models for Dahurian larch[J]. Journal of Beijing Forestry University, 2011, 33(5): 1−7.
|
[6] |
Özçelik R, Karatepe Y, Gürlevik N, et al. Development of ecoregion-based merchantable volume systems for Pinus brutia Ten. and Pinus nigra Arnold. in southern Turkey[J]. Journal of Forestry Research, 2016, 27(1): 101−117. doi: 10.1007/s11676-015-0147-4.
|
[7] |
Gomat H Y, Deleporte P, Moukini R, et al. What factors influence the stem taper of Eucalyptus: growth, environmental conditions, or genetics?[J]. Annals of Forest Science, 2011, 68(1): 109−120. doi: 10.1007/s13595-011-0012-3.
|
[8] |
Jiang L, Liu R. Segmented taper equations with crown ratio and stand density for Dahurian larch (Larix gmelinii) in northeastern China[J]. Journal of Forestry Research, 2011, 22(3): 347−352. doi: 10.1007/s11676-011-0178-4.
|
[9] |
Wiklund K, Konöpka B, Nilsson L O. Stem form and growth in picea abies (L.) karst, in response to water and mineral nutrient availability[J]. Scandinavian Journal of Forest Research, 1995, 10(1−4): 326−332. doi: 10.1080/02827589509382899
|
[10] |
Sharma M, Oderwald R G. Dimensionally compatible volume and taper equations[J]. Canadian Journal of Forest Research, 2001, 31(5): 797−803. doi: 10.1139/x01-005.
|
[11] |
Nigh G, Smith W. Effect of climate on lodgepole pine stem taper in British Columbia, Canada[J]. Forestry, 2012, 85(5): 579−587. doi: 10.1093/forestry/cps063.
|
[12] |
Lee W K, Biging G S, Son Y, et al. Geostatistical analysis of regional differences in stem taper form of Pinus densiflora in central Korea[J]. Ecological Research, 2006, 21(4): 513−525. doi: 10.1007/s11284-006-0152-3
|
[13] |
Newnham R M. A variable-form taper function[M]. Chalk River: Petawawa National Forestry Institute, Forestry Canada, 1988.
|
[14] |
Rojo A, Perales X, Sánchez-Rodríguez F, et al. Stem taper functions for maritime pine (Pinus pinaster Ait.) in Galicia (Northwestern Spain)[J]. European Journal of Forest Research, 2005, 124(3): 177−186. doi: 10.1007/s10342-005-0066-6.
|
[15] |
Corral-Rivas J J, Diéguez-Aranda U, Corral R S, et al. A merchantable volume system for major pine species in El Salto, Durango (Mexico)[J]. Forest Ecology and Management, 2007, 238(1−3): 118−129. doi: 10.1016/j.foreco.2006.09.074.
|
[16] |
Li R, Weiskittel A R. Comparison of model forms for estimating stem taper and volume in the primary conifer species of the North American Acadian Region[J]. Annals of Forest Science, 2010, 67(3): 302. doi: 10.1051/forest/2009109.
|
[17] |
Gómez-García E, Crecente-Campo F, Diéguez-Aranda U. Selection of mixed-effects parameters in a variable-exponent taper equation for birch trees in northwestern Spain[J]. Annals of Forest Science, 2013, 70(7): 707−715. doi: 10.1007/s13595-013-0313-9.
|
[18] |
Adamec Z, Drápela K. Generalized additive models as an alternative approach to the modelling of the tree height-diameter relationship[J]. Journal of Forest Science, 2015, 61(6): 235−243.
|
[19] |
Kuželka K, Marušák R. Input point distribution for regular stem form spline modeling[J/OL]. Forest Systems, 2015, 24 (1): e008 [2019−11−01]. https://revistas.inia.es/index.php/fs/article/view/5815. DOI: 10.5424/fs/2015241-05815.
|
[20] |
Schmidt M, Kiviste A, Von Gadow K. A spatially explicit height-diameter model for Scots pine in Estonia[J]. European Journal of Forest Research, 2011, 130(2): 303−315. doi: 10.1007/s10342-010-0434-8.
|
[21] |
Wang Y, Raulier F, Ung C H. Evaluation of spatial predictions of site index obtained by parametric and nonparametric methods, a case study of lodgepole pine productivity[J]. Forest Ecology and Management, 2005, 214(1−3): 201−211. doi: 10.1016/j.foreco.2005.04.025.
|
[22] |
Guisan A, Edwards T C, Hastie T. Generalized linear and generalized additive models in studies of species distributions: setting the scene[J]. Ecological Modelling, 2002, 157(2−3): 89−100. doi: 10.1016/S0304-3800(02)00204-1.
|
[23] |
M’Hirit O, Postaire J G. A nonparametric technique for taper function estimation[J]. Canadian Journal of Forest Research, 1985, 15(5): 862−871. doi: 10.1139/x85-139.
|
[24] |
余黎, 雷相东, 王雅志, 等. 基于广义可加模型的气候对单木胸径生长的影响研究[J]. 北京林业大学学报, 2014, 36(5):22−32.
Yu L, Lei X D, Wang Z Y, et al. Impact of climate on individual tree radial growth based on generalized additive model[J]. Journal of Beijing Forestry University, 2014, 36(5): 22−32.
|
[25] |
曾伟生, 廖志云. 削度方程的研究[J]. 林业科学, 1997, 33(2):32−37.
Zeng W S, Liao Z Y. Research on taper equation[J]. Scientia Silvae Sinicae, 1997, 33(2): 32−37.
|
[26] |
Bi H. Trigonometric variable-form taper equations for Australian eucalypts[J]. Forest Science, 2000, 46(3): 397−409.
|
[27] |
Wood S N. Generalized additive models: an introduction with R[M]. 2 ed. Boca Raton: CRC Press, 2017.
|
[28] |
Wood S N. P-splines with derivative based penalties and tensor product smoothing of unevenly distributed data[J]. Statistics and Computing, 2017, 27(4): 985−989. doi: 10.1007/s11222-016-9666-x.
|
[29] |
Rodríguez F, Lizarralde I, Bravo F. Comparison of stem taper equations for eight major tree species in the Spanish Plateau [J/OL]. Forest Systems, 2015, 24(3): e034 [2019−12−02]. http://dx.doi.org/10.5424/fs/2015243-06229.
|
[30] |
Lane S E, Robinson A P, Baker T G. The functional regression tree method for diameter distribution modelling[J]. Canadian Journal of Forest Research, 2010, 40(9): 1870−1877. doi: 10.1139/X10-119.
|