• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
He Pei, Xin Shidong, Jiang Lichun. Research on stem taper equation of Scots pine based on generalized additive model[J]. Journal of Beijing Forestry University, 2020, 42(12): 1-8. DOI: 10.12171/j.1000-1522.20200094
Citation: He Pei, Xin Shidong, Jiang Lichun. Research on stem taper equation of Scots pine based on generalized additive model[J]. Journal of Beijing Forestry University, 2020, 42(12): 1-8. DOI: 10.12171/j.1000-1522.20200094

Research on stem taper equation of Scots pine based on generalized additive model

More Information
  • Received Date: March 31, 2020
  • Revised Date: May 24, 2020
  • Available Online: December 03, 2020
  • Published Date: January 06, 2021
  •   Objective  Based on the theory of generalized additive model, stem taper equation was constructed for Scots pine (Pinus sylvestris). Accurate variable exponent taper equations such as Zeng et al. (1997), Bi (2000) and Kozak (2004) in forestry were used for comparison.
      Method  The generalized additive taper equation was constructed using DBH, tree height, the height at different stem parts, the diameter at different tree heights and their transformation based on taper data of Scots pine. The model was fitted using the gamm function in mgcv library of the R software. Six smooth splines were chosen for fitting process, i.e. B-spline function (BS), cubic regression spline function (CR), Duchon spline function (DS), Gaussian process smooth spline function (GP), P-spline function (PS) and thin plate regression spline function (TP). The models were validated using leave-one-out cross-validation method.
      Result  (1) The optimal generalized additive model form of taper equation was constructed by response variable relative diameter and explanation variable square of DBH, total height and the square root of relative height. (2) The fitting results showed that the generalized additive taper equations were similar and better than parametric taper equation except for CR function. (3) The cross validation results showed that the generalized additive models (BS, DS, GP, PS and TP) were basically consistent with the fitting results except for CR, i.e. they were superior to parametric taper equation of Zeng et al. (1997), Bi (2000) and Kozak (2004). The BS model had the highest prediction accuracy in the generalized additive models. Kozak (2004) had the highest prediction accuracy in the variable exponential taper equations. (4) Through the simulation of stem curves of BS and Kozak (2004) models, it was found that Kozak (2004) had a large error in predicting the upper part of the stem of a small tree. However, BS had higher accuracy in simulating small tree and large tree.
      Conclusion  The generalized additive model is a nonparametric method for constructing taper equation. The generalized additive taper equation based on BS spline has the highest prediction accuracy. It’s suitable for the prediction of the shape of Scots pine.
  • [1]
    Kozak A. My last words on taper equations[J]. The Forestry Chronicle, 2004, 80(4): 507−515. doi: 10.5558/tfc80507-4.
    [2]
    Özçelik R, Crecente-Campo F. Stem taper equations for estimating merchantable volume of Lebanon cedar trees in the Taurus Mountains, southern Turkey[J]. Forest Science, 2016, 62(1): 78−91. doi: 10.5849/forsci.14-212
    [3]
    姜立春, 刘瑞龙. 基于非线性混合模型的落叶松树干削度模型[J]. 林业科学, 2011, 47(4):101−106.

    Jiang L C, Liu R L. A stem taper model with nonlinear mixed effects for Dahurian larch[J]. Scientia Silvae Sinicae, 2011, 47(4): 101−106.
    [4]
    Schröder T, Costa E A, Valério A F, et al. Taper equations for Pinus elliottii Engelm. in southern Paraná, Brazil[J]. Forest Science, 2015, 61(2): 311−319. doi: 10.5849/forsci.14-054
    [5]
    姜立春, 李凤日, 刘瑞龙. 兴安落叶松树干削度和材积相容模型[J]. 北京林业大学学报, 2011, 33(5):1−7.

    Jiang L C, Li F R, Liu R L. Compatible stem taper and volume models for Dahurian larch[J]. Journal of Beijing Forestry University, 2011, 33(5): 1−7.
    [6]
    Özçelik R, Karatepe Y, Gürlevik N, et al. Development of ecoregion-based merchantable volume systems for Pinus brutia Ten. and Pinus nigra Arnold. in southern Turkey[J]. Journal of Forestry Research, 2016, 27(1): 101−117. doi: 10.1007/s11676-015-0147-4.
    [7]
    Gomat H Y, Deleporte P, Moukini R, et al. What factors influence the stem taper of Eucalyptus: growth, environmental conditions, or genetics?[J]. Annals of Forest Science, 2011, 68(1): 109−120. doi: 10.1007/s13595-011-0012-3.
    [8]
    Jiang L, Liu R. Segmented taper equations with crown ratio and stand density for Dahurian larch (Larix gmelinii) in northeastern China[J]. Journal of Forestry Research, 2011, 22(3): 347−352. doi: 10.1007/s11676-011-0178-4.
    [9]
    Wiklund K, Konöpka B, Nilsson L O. Stem form and growth in picea abies (L.) karst, in response to water and mineral nutrient availability[J]. Scandinavian Journal of Forest Research, 1995, 10(1−4): 326−332. doi: 10.1080/02827589509382899
    [10]
    Sharma M, Oderwald R G. Dimensionally compatible volume and taper equations[J]. Canadian Journal of Forest Research, 2001, 31(5): 797−803. doi: 10.1139/x01-005.
    [11]
    Nigh G, Smith W. Effect of climate on lodgepole pine stem taper in British Columbia, Canada[J]. Forestry, 2012, 85(5): 579−587. doi: 10.1093/forestry/cps063.
    [12]
    Lee W K, Biging G S, Son Y, et al. Geostatistical analysis of regional differences in stem taper form of Pinus densiflora in central Korea[J]. Ecological Research, 2006, 21(4): 513−525. doi: 10.1007/s11284-006-0152-3
    [13]
    Newnham R M. A variable-form taper function[M]. Chalk River: Petawawa National Forestry Institute, Forestry Canada, 1988.
    [14]
    Rojo A, Perales X, Sánchez-Rodríguez F, et al. Stem taper functions for maritime pine (Pinus pinaster Ait.) in Galicia (Northwestern Spain)[J]. European Journal of Forest Research, 2005, 124(3): 177−186. doi: 10.1007/s10342-005-0066-6.
    [15]
    Corral-Rivas J J, Diéguez-Aranda U, Corral R S, et al. A merchantable volume system for major pine species in El Salto, Durango (Mexico)[J]. Forest Ecology and Management, 2007, 238(1−3): 118−129. doi: 10.1016/j.foreco.2006.09.074.
    [16]
    Li R, Weiskittel A R. Comparison of model forms for estimating stem taper and volume in the primary conifer species of the North American Acadian Region[J]. Annals of Forest Science, 2010, 67(3): 302. doi: 10.1051/forest/2009109.
    [17]
    Gómez-García E, Crecente-Campo F, Diéguez-Aranda U. Selection of mixed-effects parameters in a variable-exponent taper equation for birch trees in northwestern Spain[J]. Annals of Forest Science, 2013, 70(7): 707−715. doi: 10.1007/s13595-013-0313-9.
    [18]
    Adamec Z, Drápela K. Generalized additive models as an alternative approach to the modelling of the tree height-diameter relationship[J]. Journal of Forest Science, 2015, 61(6): 235−243.
    [19]
    Kuželka K, Marušák R. Input point distribution for regular stem form spline modeling[J/OL]. Forest Systems, 2015, 24 (1): e008 [2019−11−01]. https://revistas.inia.es/index.php/fs/article/view/5815. DOI: 10.5424/fs/2015241-05815.
    [20]
    Schmidt M, Kiviste A, Von Gadow K. A spatially explicit height-diameter model for Scots pine in Estonia[J]. European Journal of Forest Research, 2011, 130(2): 303−315. doi: 10.1007/s10342-010-0434-8.
    [21]
    Wang Y, Raulier F, Ung C H. Evaluation of spatial predictions of site index obtained by parametric and nonparametric methods, a case study of lodgepole pine productivity[J]. Forest Ecology and Management, 2005, 214(1−3): 201−211. doi: 10.1016/j.foreco.2005.04.025.
    [22]
    Guisan A, Edwards T C, Hastie T. Generalized linear and generalized additive models in studies of species distributions: setting the scene[J]. Ecological Modelling, 2002, 157(2−3): 89−100. doi: 10.1016/S0304-3800(02)00204-1.
    [23]
    M’Hirit O, Postaire J G. A nonparametric technique for taper function estimation[J]. Canadian Journal of Forest Research, 1985, 15(5): 862−871. doi: 10.1139/x85-139.
    [24]
    余黎, 雷相东, 王雅志, 等. 基于广义可加模型的气候对单木胸径生长的影响研究[J]. 北京林业大学学报, 2014, 36(5):22−32.

    Yu L, Lei X D, Wang Z Y, et al. Impact of climate on individual tree radial growth based on generalized additive model[J]. Journal of Beijing Forestry University, 2014, 36(5): 22−32.
    [25]
    曾伟生, 廖志云. 削度方程的研究[J]. 林业科学, 1997, 33(2):32−37.

    Zeng W S, Liao Z Y. Research on taper equation[J]. Scientia Silvae Sinicae, 1997, 33(2): 32−37.
    [26]
    Bi H. Trigonometric variable-form taper equations for Australian eucalypts[J]. Forest Science, 2000, 46(3): 397−409.
    [27]
    Wood S N. Generalized additive models: an introduction with R[M]. 2 ed. Boca Raton: CRC Press, 2017.
    [28]
    Wood S N. P-splines with derivative based penalties and tensor product smoothing of unevenly distributed data[J]. Statistics and Computing, 2017, 27(4): 985−989. doi: 10.1007/s11222-016-9666-x.
    [29]
    Rodríguez F, Lizarralde I, Bravo F. Comparison of stem taper equations for eight major tree species in the Spanish Plateau [J/OL]. Forest Systems, 2015, 24(3): e034 [2019−12−02]. http://dx.doi.org/10.5424/fs/2015243-06229.
    [30]
    Lane S E, Robinson A P, Baker T G. The functional regression tree method for diameter distribution modelling[J]. Canadian Journal of Forest Research, 2010, 40(9): 1870−1877. doi: 10.1139/X10-119.
  • Related Articles

    [1]Wang Bo, He Zhengbin, Wang Zhenyu, Yi Songlin. Effects of zinc chloride impregnation treatment on dimensional stability and energy consumption of heat-treated Mongolian scots pine[J]. Journal of Beijing Forestry University, 2024, 46(2): 123-131. DOI: 10.12171/j.1000-1522.20230244
    [2]Chen Jun, Sun Yuan, Liu Chenxi, Yao Ruihan, Yu Jiahui, Cao Fuliang, Yu Pengfei. Volume modeling and yield for Liriodendron tulipifera based on terrestrial laser scan data[J]. Journal of Beijing Forestry University, 2023, 45(6): 33-42. DOI: 10.12171/j.1000-1522.20210296
    [3]Liang Ruiting, Sun Yujun, Zhou Lai. Modeling variable exponential taper function for Cunninghamia lanceolata based on quantile regression[J]. Journal of Beijing Forestry University, 2021, 43(7): 70-78. DOI: 10.12171/j.1000-1522.20200253
    [4]Jin Xiaodong, Jiang Lichun. Equation construction on standing tree volume of Pinus sylvestris var. mongolica based on different form quotients of trunk[J]. Journal of Beijing Forestry University, 2020, 42(3): 78-86. DOI: 10.12171/j.1000-1522.20190047
    [5]Xin Shidong, Jiang Lichun. Modeling stem taper profile for Pinus sylvestris plantations using nonlinear quantile regression[J]. Journal of Beijing Forestry University, 2020, 42(2): 1-8. DOI: 10.12171/j.1000-1522.20190014
    [6]Li Xiang, Dong Lihu, Li Fengri. Building height to crown base models for Mongolian pine plantation based on simultaneous equations in Heilongjiang Province of northeastern China[J]. Journal of Beijing Forestry University, 2018, 40(6): 9-18. DOI: 10.13332/j.1000-1522.20170428
    [7]JIANG Li-chun, LIU Ming-yu, LIU Yin-bang. Variation of wood basic density and early selection of dahurian larch and Mongolian pine.[J]. Journal of Beijing Forestry University, 2013, 35(1): 1-6.
    [8]NIE Xiu-qin, LI Yun, CHEN Ming-teng, NIE Ying, LIU Feng-yuan. Comparing trigonometric variableform taper function with generalized Brink stem profile function[J]. Journal of Beijing Forestry University, 2012, 34(5): 120-127.
    [9]JIANG Li-chun, LI Feng-ri, LIU Rui-long. Compatible stem taper and volume models for dahurian larch[J]. Journal of Beijing Forestry University, 2011, 33(5): 1-7.
    [10]LI Chong-gui, ZHAO Xian-wen. Determining the optimum sample plots for establishing canopy density estimating equation in monitoring area[J]. Journal of Beijing Forestry University, 2005, 27(6): 24-28.

Catalog

    Article views PDF downloads Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return