• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Li Ronghui, Chen Ling, Wu Mingjing, Yu Xiaolong, Zhao Xiuhai. Application strategies for GLCM textures from very high spatial resolution optical imagery over subtropical plantations[J]. Journal of Beijing Forestry University, 2021, 43(1): 1-9. DOI: 10.12171/j.1000-1522.20200139
Citation: Li Ronghui, Chen Ling, Wu Mingjing, Yu Xiaolong, Zhao Xiuhai. Application strategies for GLCM textures from very high spatial resolution optical imagery over subtropical plantations[J]. Journal of Beijing Forestry University, 2021, 43(1): 1-9. DOI: 10.12171/j.1000-1522.20200139

Application strategies for GLCM textures from very high spatial resolution optical imagery over subtropical plantations

More Information
  • Received Date: May 10, 2020
  • Revised Date: June 15, 2020
  • Available Online: December 09, 2020
  • Published Date: February 04, 2021
  •   Objective  This paper aims to discuss textural variables and their corresponding input parameters, and clarify a specific and simple strategy for the optimal utilization of textural information from very high spatial resolution (VHR) imagery in the field of forestry.
      Method  Based on a case of Chinese fir plantation with different age classes under varied topographic conditions from Jiangle State-Owned Forest Farm of Fujian Province of eastern China, seven gray level co-occurrence matrix (GLCM) textures and four input parameters were involved to demonstrate the optimal selection of textures and the setting of input parameters.
      Result  Almost all textures had higher age class separability over shady slope than sunny slope, and both the measurement index and the correlation between different textures should be used to select the optimal textures. Among the four input parameters, moving window size was the most important for textures in statistic and orderliness groups. Optimal window sizes should be jointly determined by the spatial resolution of images and spatial scale of research objects. Textures in contrast group were independent of window size, which means that any window size can be set for those textures. No attention need to be paid to the setting of displacement for textures in statistic and orderliness groups, but the situation was different for textures in contrast group. Moreover, orientation setting should be more concerned with the increase of displacement for textures in statistic group, but not for textures in the other two groups. As for the most neglected parameter, the grayscale quantization level can be set to 32 or 64.
      Conclusion  The textural information of VHR imagery can be used to distinguish objects with high spectral overlaps, which can “make up” the spectral information loss caused by shadows. However, textural variables and their input parameters should be optimized. The specific strategy and all the general rules from this study can provide practical suggestions for the optimal utilization of textural information from VHR imagery.
  • [1]
    Aguilar M A, Agüera F, Aguilar F J, et al. Geometric accuracy assessment of the orthorectification process from very high resolution satellite imagery for Common Agricultural Policy purposes[J]. International Journal of Remote Sensing, 2008, 29(24): 7181−7197. doi: 10.1080/01431160802238393.
    [2]
    朱仁璋, 丛云天, 王鸿芳, 等. 全球高分光学星概述(一): 美国和加拿大[J]. 航天器工程, 2015, 24(6):85−106. doi: 10.3969/j.issn.1673-8748.2015.06.0.15.

    Zhu R Z, Cong Y T, Wang H F, et al. Global high-resolution optical satellite overview (1): USA and Canada[J]. Spacecraft Engineering, 2015, 24(6): 85−106. doi: 10.3969/j.issn.1673-8748.2015.06.0.15.
    [3]
    朱仁璋, 丛云天, 王鸿芳, 等. 全球高分光学星概述(二): 欧洲[J]. 航天器工程, 2016, 25(1):95−118. doi: 10.3969/j.issn.1673-8748.2016.01.015.

    Zhu R Z, Cong Y T, Wang H F, et al. Global high-resolution optical satellite overview (2): Europe[J]. Spacecraft Engineering, 2016, 25(1): 95−118. doi: 10.3969/j.issn.1673-8748.2016.01.015.
    [4]
    朱仁璋, 丛云天, 王鸿芳, 等. 全球高分光学星概述(三): 亚洲与俄罗斯[J]. 航天器工程, 2016, 25:70−96. doi: 10.3969/j.issn.1673-8748.2016.02.012.

    Zhu R Z, Cong Y T, Wang H F, et al. Global high-resolution optical satellite overview (3): Asia and Russia[J]. Spacecraft Engineering, 2016, 25: 70−96. doi: 10.3969/j.issn.1673-8748.2016.02.012.
    [5]
    Ørka H O, Hauglin M. Use of remote sensing for mapping of non-native conifer species[R]. Olso: Norwegian University of Life Sciences (NMBU), 2016.
    [6]
    Chen L, Mei G Y, Yan K, et al. Species discrimination of plantations in subtropical China using 4-band VHR imagery and an operational image analysis framework[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(8): 2800−2813. doi: 10.1109/JSTARS.2018.2837884.
    [7]
    Haralick R M, Shanmugam K, Dinstein I H. Textural features for image classification[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1973, 3(6): 610−621.
    [8]
    Franklin S E, Wulder M A, Gerylo G R. Texture analysis of IKONOS panchromatic data for Douglas-fir forest age class separability in British Columbia[J]. International Journal of Remote Sensing, 2001, 22(13): 2627−2632. doi: 10.1080/01431160120769.
    [9]
    姜青香, 刘慧平, 孔令彦. 纹理分析方法在TM图像信息提取中的应用[J]. 遥感信息, 2003(4):24−27. doi: 10.3969/j.issn.1000-3177.2003.04.007.

    Jiang Q X, Liu H P, Kong L Y. The application of texture analysis in TM image information extraction[J]. Remote Sensing Information, 2003(4): 24−27. doi: 10.3969/j.issn.1000-3177.2003.04.007.
    [10]
    Marceau J, Howaeth J, Dubois M, et al. Evaluation of the gray-level co-occurrence matrix method for landcover classification using SPOT imagery[J]. IEEE Trans Geosci Remote Sens, 1990, 28(4): 513−518. doi: 10.1109/TGRS.1990.572937.
    [11]
    陈玲, 郝文乾, 高德亮. 光学影像纹理信息在林业领域的最新应用进展[J]. 北京林业大学学报, 2015, 37(3):1−12.

    Chen L, Hao W Q, Gao D L. Recent application progress of optical image texture information in forestry field[J]. Journal of Beijing Forestry University, 2015, 37(3): 1−12.
    [12]
    Zhou J, Guo R Y, Sun M, et al. The effects of GLCM parameters on LAI estimation using texture values from Quickbird satellite imagery[J]. Scientific Reports, 2017, 7(1): 7366. doi: 10.1038/s41598-017-07951-w.
    [13]
    孟楚, 郑小贤, 罗梅. 福建将乐林场杉木人工林主导功能研究[J]. 中南林业科技大学学报, 2016, 36(3):63−66.

    Meng C, Zheng X X, Luo M. Study on the dominant function of Chinese fir plantation in Jiangle Forest Farm, Fujian Province[J]. Journal of Central South University of Forestry & Technology, 2016, 36(3): 63−66.
    [14]
    Mei G Y, Sun Y J, Xu H, et al. A mixed-effects model with different strategies for modeling volume in Cunninghamia lanceolata plantations[J]. PLoS ONE, 2015, 10(10): 1−14.
    [15]
    Chen G S, Yang Z J, Gao R, et al. Carbon storage in a chronosequence of Chinese fir plantations in southern China[J]. Forest Ecology and Management, 2013, 300: 68−76. doi: 10.1016/j.foreco.2012.07.046.
    [16]
    Karuse K. Radiance conversion of QuickBird data:technical note[M/OL]. Longmont, Colorado: Digital Globe, 2003 [2020−02−28]. http://www.mendeley.com/research/radiometric-quickbird-imagery/.
    [17]
    Hall-Beyer M. GLCM texture: a tutorial. V. 3.0[Z/OL]. Calgary: Department of Geography, University of Calgary, 2017 [2017−04−04]. https://prism.ucalgary.ca/handle/1880/51.
    [18]
    李进. 基于灰度共生矩阵的森林纹理构造因子确定方法研究[D]. 临安: 浙江农林大学, 2010.

    Li J. Determination of forest texture construction factors based on GLCM[D]. Lin’an: Zhejiang A&F University, 2010.
    [19]
    Tuominen S, Pekkarinen A. Performance of different spectral and textural aerial photograph features in multi-source forest inventory[J]. Remote Sensing of Environment, 2005, 94(2): 256−268. doi: 10.1016/j.rse.2004.10.001.
    [20]
    Lu D S. The potential and challenge of remote sensing-based biomass estimation[J]. International Journal of Remote Sensing, 2006, 27(7): 1297−1328. doi: 10.1080/01431160500486732.
    [21]
    Ghosh A, Joshi P K. A comparison of selected classification algorithms for mapping bamboo patches in lower Gangetic Plains using very high resolution WorldView 2 imagery[J]. International Journal of Applied Earth Observation and Geoinformation, 2014, 26: 298−311. doi: 10.1016/j.jag.2013.08.011.
    [22]
    Wood E M, Pidgeon A M, Radeloff V C, et al. Image texture as a remotely sensed measure of vegetation structure[J]. Remote Sensing of Environment, 2012, 121: 516−526. doi: 10.1016/j.rse.2012.01.003.
    [23]
    Kayitakire F, Hamel C, Defourny P. Retrieving forest structure variables based on image texture analysis and IKONOS-2 imagery[J]. Remote Sensing of Environment, 2006, 102(3 –4): 390−401.
    [24]
    王政权. 地统计学及在生态学中的应用[M]. 北京: 科学出版社, 1999.

    Wang Z Q. Geostatistics and its application in ecology[M]. Beijing: Science Press, 1999.
  • Related Articles

    [1]Cui Yanhong, Bi Huaxing, Hou Guirong, Wang Ning, Wang Shanshan, Zhao Danyang, Ma Xiaozhi, Yun Huiya. Soil infiltration characteristics and influencing factors of Robinia pseudoacacia plantation in the loess gully region of western Shanxi Province, northern China[J]. Journal of Beijing Forestry University, 2021, 43(1): 77-87. DOI: 10.12171/j.1000-1522.20200122
    [2]Li Cong, Lu Mei, Ren Yulian, Du Fan, Tao Hai, Yang Luoping, Wang Dongxu. Distribution of soil nitrogen components of Wenshan typical subtropical forests along an altitude gradient and its influencing factors in Yunnan Province of southwestern China[J]. Journal of Beijing Forestry University, 2020, 42(12): 63-73. DOI: 10.12171/j.1000-1522.20200252
    [3]Wang Fengjuan, Tong Xinyu, Xia Xiaoyu, Fu Qun, Guo Qingqi. Effects of simulated different cooking temperatures on the quality of Korean pine seed oil and principal component analysis[J]. Journal of Beijing Forestry University, 2019, 41(11): 116-124. DOI: 10.13332/j.1000-1522.20190115
    [4]Li Lianqiang, Niu Shukui, Chen Feng, Tao Changsen, Chen Ling, Zhang Peng. Analysis on surface potential fire behavior and combustion of Miaofeng Mountain Forest Farm in Beijing[J]. Journal of Beijing Forestry University, 2019, 41(3): 58-67. DOI: 10.13332/j.1000-1522.20180361
    [5]CHEN Si-yu, YANG Hui, HAN Jiao, ZHANG Da-wei, ZHAO Shan-shan, ZHANG Zhong-hui, GUO Zhong-ling, YANG Yu-chun. Provenance variation of seed traits of Juglans mandshurica in Changbai mountains, northeastern China.[J]. Journal of Beijing Forestry University, 2015, 37(12): 32-40. DOI: 10.13332/j.1000-1522.20150278
    [6]QU Chao-qi, MAN Xiu-ling, DUAN Liang-liang. Comprehensive evaluation on the effects of different biological agents on survival rate, growth, physiological and biochemical indexes of desert plant Yucca brevifolia seedlings[J]. Journal of Beijing Forestry University, 2012, 34(4): 67-72.
    [7]XU Fei, CAI Ti-jiu, JU Cun-yong, ZHAO Yu-long. Autumn habitat selection of wild boar in the Fenghuangshan Nature Reserve, Heilongjiang Province[J]. Journal of Beijing Forestry University, 2011, 33(3): 86-91.
    [8]ZHAO Hua, LIU Yong, JIN Xiao-qi. Quantitative classification of forestry development compartment of Guizhou Province[J]. Journal of Beijing Forestry University, 2011, 33(2): 7-13.
    [9]LI Ping, WANG Bing, DAI Wei, WANG Dan, DENG Zong-fu, ZHAO Chao. Evaluation of soil fertility in subtropical forests.[J]. Journal of Beijing Forestry University, 2010, 32(3): 52-58.
    [10]MO Chang-ming, MA Xiao-jun, , QI Li-wang, BAI Long-hua, SHI Lei, FENG Shi-xin. Genetic variation, correlation and path analysis of Siraitia grosvenorii germplasm characters.[J]. Journal of Beijing Forestry University, 2008, 30(4): 121-125.
  • Cited by

    Periodical cited type(1)

    1. 申立泉,高浩翔,王功,刘瑞,祁军,张学炎,王春玲,吴佳忆,孟秀祥. 甘肃兴隆山野生马麝夏季卧息生境选择. 生态学杂志. 2023(07): 1699-1704 .

    Other cited types(2)

Catalog

    Article views (1189) PDF downloads (70) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return