• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Li Lianqiang, Niu Shukui, Chen Feng, Tao Changsen, Chen Ling, Zhang Peng. Analysis on surface potential fire behavior and combustion of Miaofeng Mountain Forest Farm in Beijing[J]. Journal of Beijing Forestry University, 2019, 41(3): 58-67. DOI: 10.13332/j.1000-1522.20180361
Citation: Li Lianqiang, Niu Shukui, Chen Feng, Tao Changsen, Chen Ling, Zhang Peng. Analysis on surface potential fire behavior and combustion of Miaofeng Mountain Forest Farm in Beijing[J]. Journal of Beijing Forestry University, 2019, 41(3): 58-67. DOI: 10.13332/j.1000-1522.20180361

Analysis on surface potential fire behavior and combustion of Miaofeng Mountain Forest Farm in Beijing

More Information
  • Received Date: October 31, 2018
  • Revised Date: December 21, 2018
  • Available Online: March 27, 2019
  • Published Date: February 28, 2019
  • ObjectiveForest combustion is the difficulty degree of igniting a forest and the characteristics of fire behavior after a fire. Analysis of combustible fire behavior and combustion can provide a scientific basis for the forest fire prevention management and fire zoning under the forest of Miaofeng Mountain Forest Farm.
    MethodThrough the investigation of surface combustibles of 12 major forest types in farm, combined with the continuous forest resources, this paper selects four categories of indicators: surface fire behavior, fire environment, flammable physical properties and bed structure to calculate the combustibility of 104 small class surface fuels by principal component analysis and cluster analysis, and the surface combustibles combustion index (CI) and ranking were calculated.
    Result(1) In 104 small classes, the potential fire behavior of each dominant tree species in small classes was from large to small: coniferous forests was generally larger and the surface fire intensity reached 2 000 kW/m, the spread speed was above 3 m/min, and the flame height was over 1.5 m. The shrub was second, and its surface fire intensity was 700−2 000 kW/m, the spreading speed is 1.5−3 m/min, and the flame height is 1−1.5 m. The broadleaved was the lowest and it had a surface fire intensity of 700 kW/m or less, a propagation speed of 1.5 m/min or less, and a flame height of 1 m or less. (2) Principal component analysis showed that, the fire behavior index was directly proportional to the combustion, and the altitude factor was inversely proportional to the combustion. The water content was inversely proportional to the combustion. The effective load and the bed height were directly proportional to the combustion. (3) Cluster analysis showed that, the small class surface fuel combustion index (CI) was divided into five grades: high combustion (Ⅰ), higher combustion (Ⅱ), combustion (Ⅲ), lower combustion (Ⅳ), low combustion (Ⅴ). Small-shift dominant species of each flammability class, such as Pinus tabuliformis, Larix gmelinii and Platycladus orientalis, distributed in the southeastern and northwestern of the forest farm. Mixed forest of the Pinus tabuliformis, Platycladus orientalis and Quercus variabilis, Acer monoMaxim. mainly located in the northwestern corner of the forest farm. Broadleaved pure forest, such as cork oak, Quercus variabilis, Phellodendron amurense, Acer mono, which were concentrated in the southeastern and northwestern of the forest farm. Mountain peach and shrubs such as Vitex negundo and a few broadleaved mixed forests, such as Quercus variabilis, Juglans mandshurica, which were distributed in the northwestern forest farm. The shrubs such as Vitex negundo, Armeniaca sibiricat, Rhamnus davurica and Spiraea salicifolia, mainly located in the southwestern and central forest farm.
    ConclusionThe potential fire behavior of small-scale of Pinus tabuliformis and Larix gmelinii forests is generally large, and it is easy to form high-intensity surface fires, which are prone to canopy fires. Combustibility is affected by fire environment, fire behavior and combustibles, especially combustible payload, bed height, altitude and moisture content factors. Small classes of the higher-combustion and high-combustion are located in the north and northwest of the forest farm. It is necessary to pay attention to the small-class classification management and scientific patrol of different combustion levels.
  • [1]
    单延龙, 张敏, 于永波. 森林可燃物研究现状及发展趋势[J]. 北华大学学报(自然科学版), 2004, 5(3):264−369.

    Shan Y L, Zhang M, Yu Y B. Current situation and developing trend of the study on forest fuel[J]. Journal of Beihua University (Natural Science), 2004, 5(3): 264−369.
    [2]
    Gill A M, Zylstra P. Flammability of Australian forests[J]. Australian Forestry, 2005, 68(2): 87−93. doi: 10.1080/00049158.2005.10674951
    [3]
    胡乙山, 张立, 唐贺统. 森林可燃物及其燃烧特性研究[J]. 防护林科技, 2005(3):26−27. doi: 10.3969/j.issn.1005-5215.2005.03.011

    Hu Y S, Zhang L, Tang H T. Study on forest fuel and its combustibility[J]. Protection Forest Science & Technology, 2005(3): 26−27. doi: 10.3969/j.issn.1005-5215.2005.03.011
    [4]
    王秋华, 肖慧娟, 徐盛基, 等. 滇中安宁“3•29”重大森林火灾火烧迹地灌木林的燃烧性研究[J]. 安全与环境学报, 2016, 16(1):138−141.

    Wang Q H, Xiao H J, Xu S J, et al. Retrogressive study and analysis of the burning features of the shrubs in the fire taking place on 29 March, 2006, in Anning, Yunnan[J]. Journal of Safety & Environment, 2016, 16(1): 138−141.
    [5]
    解国磊, 丁新景, 马风云, 等. 鲁中山区主要森林类型易燃可燃物垂直分布及其燃烧性[J]. 西北林学院学报, 2016, 31(1):158−163. doi: 10.3969/j.issn.1001-7461.2016.01.28

    Xie G L, Ding X J, Ma F Y, et al. Vertical distribution of the forest flammable fuel loads and combustion of the main forest types in mountainous area of Shandong[J]. Journal of Northwest Forestry University, 2016, 31(1): 158−163. doi: 10.3969/j.issn.1001-7461.2016.01.28
    [6]
    Zylstra P J. Flammability dynamics in the Australian Alps[J]. Austral Ecology, 2018, 43(5): 579−591.
    [7]
    舒立福, 张小罗, 戴兴安, 等. 林火研究综述(Ⅱ): 林火预测预报[J]. 世界林业研究, 2003, 16(4):34−37. doi: 10.3969/j.issn.1001-4241.2003.04.007

    Shu L F, Zhang X L, Dai X A, et al. Forest fire research(Ⅱ) : fire forecast[J]. World Forestry Research, 2003, 16(4): 34−37. doi: 10.3969/j.issn.1001-4241.2003.04.007
    [8]
    杨璐嘉, 王成武, 唐章英, 等. 基于GIS的普达措国家森林公园火险区划分析[J]. 企业技术开发, 2015, 34(28):25−28.

    Yang L J, Wang C W, Tang Z Y, et al. Analysis of Pudacuo National Forest Park fire zoning based on GIS[J]. Technological Development of Enterprise, 2015, 34(28): 25−28.
    [9]
    黄宝华, 张华, 孙治军. 基于层次分析(AHP)的山东林火风险区划研究[J]. 火灾科学, 2014, 23(4):225−232. doi: 10.3969/j.issn.1004-5309.2014.04.06

    Huang B H, Zhang H, Sun Z J. Shandong forest fire danger division research based on analytic hierarchy process(AHP)[J]. Fire Safety Science, 2014, 23(4): 225−232. doi: 10.3969/j.issn.1004-5309.2014.04.06
    [10]
    李小川, 李兴伟, 王振师, 等. 广东森林火灾的火源特点分析[J]. 中南林业科技大学学报, 2008, 28(1):89−92. doi: 10.3969/j.issn.1673-923X.2008.01.025

    Li X C, Li X W, Wang Z S, et al. Analysis of fire source characteristics of Guangdong forest fires[J]. Journal of Central South University of Forestry & Technology, 2008, 28(1): 89−92. doi: 10.3969/j.issn.1673-923X.2008.01.025
    [11]
    张尚印, 祝昌汉, 陈正洪. 森林火灾气象环境要素和重大林火研究[J]. 自然灾害学报, 2000, 9(2):111−117. doi: 10.3969/j.issn.1004-4574.2000.02.018

    Zhang S Y, Zhu C H, Chen Z H. Research on forest fire meteorological environmental elements and large forest fires[J]. Journal of Natural Disasters, 2000, 9(2): 111−117. doi: 10.3969/j.issn.1004-4574.2000.02.018
    [12]
    覃先林, 张子辉, 易浩若, 等. 一种预测森林可燃物含水率的方法[J]. 火灾科学, 2001, 10(3):159−162. doi: 10.3969/j.issn.1004-5309.2001.03.007

    Qin X L, Zhang Z H, Yi H R, et al. A methodology to predict the moisture of forest fuels[J]. Fire Safety Science, 2001, 10(3): 159−162. doi: 10.3969/j.issn.1004-5309.2001.03.007
    [13]
    李旭, 王秋华, 张雨瑶. 滇中火灾高发区15种木本植物燃烧性研究[J]. 林业调查规划, 2016, 41(2):62−68. doi: 10.3969/j.issn.1671-3168.2016.02.013

    Li X, Wang Q H, Zhang Y Y. Studies on combustibility of 15 woody plants in the high fire risk area of central Yunnan[J]. Forest Inventory & Planning, 2016, 41(2): 62−68. doi: 10.3969/j.issn.1671-3168.2016.02.013
    [14]
    王月, 高国平, 周绍砚, 等. 辽宁西北部地区森林地被可燃物及其燃烧性的研究[J]. 沈阳农业大学学报, 2006, 37(5):716−719. doi: 10.3969/j.issn.1000-1700.2006.05.010

    Wang Y, Gao G P, Zhou S Y, et al. Combustible ground cover and combustibility of forest in Northwest Liaoning Province[J]. Journal of Shenyang Agricultural University, 2006, 37(5): 716−719. doi: 10.3969/j.issn.1000-1700.2006.05.010
    [15]
    李艳芹, 胡海清. 帽儿山主要树种燃烧性分析与排序[J]. 东北林业大学学报, 2010, 38(5):34−36. doi: 10.3969/j.issn.1000-5382.2010.05.009

    Li Y Q, Hu H Q. Sequence of combustibility of principal tree species in Maoershan Mountain Area, Heilongjiang Province[J]. Journal of Northeast Forestry University, 2010, 38(5): 34−36. doi: 10.3969/j.issn.1000-5382.2010.05.009
    [16]
    Fréjaville T, Curt T, Carcaillet C. Tree cover and seasonal precipitation drive understorey flammability in alpine mountain forests[J]. Journal of Biogeography, 2016, 43(9): 1869−1880. doi: 10.1111/jbi.12745
    [17]
    苏文静, 张思玉, 何诚, 等. 昆明地区9种藤本植物活叶片的燃烧性[J]. 林业资源管理, 2017(6):120−123.

    Su W J, Zhang S Y, He C, et al. Combustion characteristics of live leaves of 9 lianas species in Kunming, Yunnan Province[J]. Forest Resources Management, 2017(6): 120−123.
    [18]
    梁瀛, 李吉玫, 赵凤君, 等. 天山中部天山云杉林地表可燃物载量及其影响因素[J]. 林业科学, 2017, 53(12):153−160. doi: 10.11707/j.1001-7488.20171218

    Liang Y, Li J M, Zhao F J, et al. Surface fuel loads of Tianshan Spruce forests in the central Tianshan Mountains and the impact factors[J]. Scientia Silvae Sinicae, 2017, 53(12): 153−160. doi: 10.11707/j.1001-7488.20171218
    [19]
    牛树奎. 北京山区主要森林类型火行为与可燃物空间连续性研究[D]. 北京: 北京林业大学, 2012.

    Niu S K, Fire behavior and fuel spatial continuity of major forest types in the Mountainous Area, Beijing[M]. Beijing: Beijing Forestry University, 2012.
    [20]
    牛树奎, 贺庆棠, 陈锋, 等. 北京山区主要针叶林可燃物空间连续性研究: 可燃物水平连续性与树冠火蔓延[J]. 北京林业大学学报, 2012, 34(3):1−7.

    Niu S K, He Q T, Chen F, et al. Spatial continuity of fuels in major coniferous forests in Beijing mountainous area: fuel vertical continuity and crown fire occurrence[J]. Journal of Beijing Forestry University, 2012, 34(3): 1−7.
    [21]
    Wagner C E V. Conditions for the start and spread of crown fire[J]. Revue Canadienne De Recherche Forestière, 1977, 7(1): 23−34. doi: 10.1139/x77-004
    [22]
    Rothermel R C. A mathematical model for predicting fire spread in wildland fuels.[M]. Ogden: Usda Forest Service General Technical Report, 1972.
    [23]
    单延龙, 舒立福, 王洪伟, 等. Rothermel火蔓延模型特征参数的解析[J]. 森林防火, 2003(1):22−25. doi: 10.3969/j.issn.1002-2511.2003.01.012

    Shan Y L, Shu L F, Wang H W, et al. Analysis of characteristic parameters of Rothermel ’s fire spread model[J]. Forest Fire Prevention, 2003(1): 22−25. doi: 10.3969/j.issn.1002-2511.2003.01.012
    [24]
    Byram G M.Combustion of forest fuels [C]//Davis K P. Forest fire: control and use. New York: McGraw-Hill Book Company, 1959: 77−84.
    [25]
    夏智武. 森林地表可燃物燃烧性评价研究[D]. 北京: 中国林业科学研究院, 2016.

    Xia Z W. Study on evaluation of forest surface fuel flammability [D]. Beijing: Chinese Academy of Forestry, 2016.
    [26]
    宋叙言, 沈江. 基于主成分分析和集对分析的生态工业园区生态绩效评价研究: 以山东省生态工业园区为例[J]. 资源科学, 2015, 37(3):546−554.

    Song X Y, Shen J. The ecological performance of eco-industrial parks in Shandong based on principal component analysis and set pair analysis[J]. Resources Science, 2015, 37(3): 546−554.
    [27]
    祝必琴, 黄淑娥, 田俊, 等. 亚热带季风区不同林型可燃物理化性质及燃烧性研究[J]. 江西农业大学学报, 2011, 33(6):1149−1154. doi: 10.3969/j.issn.1000-2286.2011.06.022

    Zhu B Q, Huang S E, Tian J, et al. A study on the physical-chemical properties and flammability of different forest types in semi-tropical monsoon area[J]. Acta Agriculturae Universitatis Jiangxiensis, 2011, 33(6): 1149−1154. doi: 10.3969/j.issn.1000-2286.2011.06.022
    [28]
    Hoffman C M, Morgan P, Mell W, et al. Surface fire intensity influences simulated crown fire behavior in lodgepole pine forests with recent mountain pine beetle caused tree mortality[J]. Forest Science, 2013, 59(4): 390−399. doi: 10.5849/forsci.11-114
    [29]
    王晓丽. 北京山区森林燃烧性研究[D]. 北京: 北京林业大学, 2010.

    Wang X L. Study on combustibility of forests in Beijing Mountain Area[D]. Beijing: Beijing Forestry University, 2010.
    [30]
    王晓丽, 牛树奎, 阚振国. 北京地区主要树种理化性质研究及易燃性初步分析[J]. 林业资源管理, 2008(4):83−88. doi: 10.3969/j.issn.1002-6622.2008.04.020

    Wang X L, Niu S K, Kan Z G. The preliminary analysis of the characteristics and flammability of main tree species in Beijing Area[J]. Forest Resources Management, 2008(4): 83−88. doi: 10.3969/j.issn.1002-6622.2008.04.020
    [31]
    刘艳红, 马炜. 长白落叶松人工林可燃物碳储量分布及燃烧性[J]. 北京林业大学学报, 2013, 35(3):32−38.

    Liu Y H, Ma W. Carbon distribution and combustibility of fuels in Larix olgensis plantations[J]. Journal of Beijing Forestry University, 2013, 35(3): 32−38.
  • Related Articles

    [1]Chen Ling, Chen Feng, Niu Shukui, Li Lianqiang, Tao Changsen. Correlation analysis between the spatial characteristics of landscape pattern and risk of forest fire in Jiufeng Forest Park of Beijing[J]. Journal of Beijing Forestry University, 2021, 43(6): 41-49. DOI: 10.12171/j.1000-1522.20180431
    [2]Li Lianqiang, Yang Huixia, Ding Guoquan, Li Chun. Precipitation redistribution characteristics and its correlation analysis of Pinus densiflora and Quercus mongolica forests in the Liaodong Peninsula of northeastern China[J]. Journal of Beijing Forestry University, 2020, 42(11): 47-55. DOI: 10.12171/j.1000-1522.20200009
    [3]Luo Guisheng, Ma Lüyi, Jia Zhongkui, Wu Danni, Chi Mingfeng, Zhang Shumin, Zhao Guijuan. Correlation analysis between natural regeneration and environment in canopy gap of Chinese pine (Pinus tabuliformis) plantation[J]. Journal of Beijing Forestry University, 2019, 41(9): 59-68. DOI: 10.13332/j.1000-1522.20180416
    [4]Li Lianqiang, Niu Shukui, Tao Changsen, Chen Ling, Chen Feng. Correlations between stand structure and surface potential fire behavior of Pinus tabuliformis forests in Miaofeng Mountain of Beijing[J]. Journal of Beijing Forestry University, 2019, 41(1): 73-81. DOI: 10.13332/j.1000-1522.20180304
    [5]WANG Xin, LIU Qin, HUANG Qin, ZHANG Hua-yu, LI Zong-feng, ZHANG Shi-qiang, DENG Hong-ping. Niche characteristics and CCA ordination of dominant species of Thuja sutchuenensis community[J]. Journal of Beijing Forestry University, 2017, 39(8): 60-67. DOI: 10.13332/j.1000-1522.20160172
    [6]CHEN Wu, KONG De-cang, CUI Yan-hong, CAO Ming, PANG Xiao-ming, LI Ying-yue. Phenotypic genetic diversity of a core collection of Ziziphus jujuba and correlation analysis of dehiscent characters[J]. Journal of Beijing Forestry University, 2017, 39(6): 78-84. DOI: 10.13332/j.1000-1522.20170024
    [7]MA Feng-feng, PAN Gao, LI Xi-quan, HAN Yun-juan. Interspecific relationship and canonical correspondence analysis within woody plant communities in the karst mountains of Southwest Guangxi, southern China[J]. Journal of Beijing Forestry University, 2017, 39(6): 32-44. DOI: 10.13332/j.1000-1522.20160379
    [8]WANG Dan, WANG Bing, DAI Wei, LI Ping. Sensitivity analysis of variables correlated to soil organic matter in Chinese fir plantations[J]. Journal of Beijing Forestry University, 2011, 33(1): 78-83.
    [9]LIU Chun-yan, , GU Jian-cai, LI Ji-yue, CHEN Ping, LU Gu i-qiao, TIAN Guo-heng. Correlated analysis between the growth of Larix principisrupprechtii and climatic factors in Saihanba Nature Reserve, northern Hebei Province.[J]. Journal of Beijing Forestry University, 2009, 31(4): 102-105.
    [10]ZHANG Qiu-hui, ZHAO Guang-jie, ZHONG Jie.. Liquefaction of waste CCA-treated wood in phenol and the technology of metal removing processing.[J]. Journal of Beijing Forestry University, 2009, 31(3): 111-115.
  • Cited by

    Periodical cited type(13)

    1. 熊海贝,龙有为,陈琳,丁叶蔚. 木结构无损检测技术研究与应用综述. 结构工程师. 2023(01): 191-201 .
    2. 王祺,冯鑫浩,史诗琪,杨兆哲,詹先旭,吴智慧. 机器视觉在木制品制造中的应用. 木材科学与技术. 2022(05): 17-24 .
    3. 王锦亚,李振业,倪超. 基于机器视觉的实木地板在线分色识别算法. 林业工程学报. 2021(05): 135-139 .
    4. 庄子龙,刘英,沈鹭翔,丁奉龙,王争光. 基于多层感知机的木材颜色分类. 林业机械与木工设备. 2020(06): 8-14 .
    5. 陈威,刘艳,雷庆. 基于智能视觉的小差异行为特征分类. 计算机科学. 2019(03): 298-302 .
    6. 孙建平,梁懿,蒋志林,柳婧如. 图像处理技术在竹木复合材料性能评估中的应用展望. 西北林学院学报. 2019(02): 246-249+256 .
    7. 王明谦,王昆,许清风. 木结构无损检测技术研究进展. 施工技术. 2019(21): 85-90 .
    8. 杜丽娟. 舰船导航系统超分辨率图像智能提取技术研究. 舰船科学技术. 2018(16): 82-84 .
    9. 何波. 篮球投射过程中的角度智能视觉图像分解判断方法. 现代电子技术. 2018(10): 175-178 .
    10. 马玉芳. 基于智能视觉的微型高精度图像采集系统设计. 现代电子技术. 2018(19): 67-70 .
    11. 魏晓慧,马晓珍,刘亚秋. 基于蜂群单阈值分割的SRC板材缺陷分类方法. 沈阳工业大学学报. 2017(03): 292-298 .
    12. 陈熔,刘杰. 基于智能视觉的特定人员检索平台设计与实现. 现代电子技术. 2017(14): 102-105 .
    13. 李晓东. 视觉传达设计认识探讨. 鸭绿江(下半月版). 2016(12): 175 .

    Other cited types(9)

Catalog

    Article views PDF downloads Cited by(22)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return