Citation: | Li Dou, Su Gongbo, Hu Xiaoqing, Song Tingting, Sun Qingbin, Xu Zhao, Wang Hongwei, Liu Xuemei. Cloning and expression analysis of BpSPL6 promoter from Betula platyphylla[J]. Journal of Beijing Forestry University, 2022, 44(2): 1-10. DOI: 10.12171/j.1000-1522.20200174 |
[1] |
Pino M T, Skinner J S, Park E J, et al. Use of a stress inducible promoter to drive ectopic AtCBF expression improves potato freezing tolerance while minimizing negative effects on tuber yield[J]. Plant Biotechnology Journal, 2007, 5(5): 591−604. doi: 10.1111/j.1467-7652.2007.00269.x
|
[2] |
Butler J E, Kadonaga J T. The RNA polymerase II core promoter: a key component in the regulation of gene expression[J]. Genes & Development, 2002, 16(20): 2583−2592.
|
[3] |
Klein J, Saedler H, Huijser P. A new family of DNA binding proteins includes putative transcriptional regulators of the Antirrhinum majus floral meristem identity gene SQUAMOSA [J]. Molecular & General Genetics, 1996, 250(1): 7−16.
|
[4] |
Yamasaki K, Kigawa T, Inoue M, et al. A novel zinc-binding motif revealed by solution structures of DNA-binding domains of Arabidopsis SBP-family transcription factors[J]. Journal of Molecular Biology, 2004, 337(1): 49−63. doi: 10.1016/j.jmb.2004.01.015
|
[5] |
Usami T, Horiguchi G, Yano S, et al. The more and smaller cells mutants of Arabidopsis thaliana identify novel roles for SQUAMOSA PROMOTER BINDING PROTEIN-LIKE genes in the control of heteroblasty[J]. Development, 2009, 136(6): 955−964. doi: 10.1242/dev.028613
|
[6] |
Cardon G H, Hohmann S, Nettesheim K, et al. Functional analysis of the Arabidopsis thaliana SBP-box gene SPL3: a novel gene involved in the floral transition[J]. Plant Journal, 1997, 12(2): 367−377. doi: 10.1046/j.1365-313X.1997.12020367.x
|
[7] |
Wu G, Poethig R S. Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3[J]. Development, 2006, 133(18): 3539−3547. doi: 10.1242/dev.02521
|
[8] |
Jung J H, Lee H J, Ryu J Y, et al. SPL3/4/5 integrate developmental aging and photoperiodic signals into the FT-FD module in Arabidopsis flowering[J]. Molecular Plant, 2016, 9(12): 1647−1659. doi: 10.1016/j.molp.2016.10.014
|
[9] |
Wang J W, Czech B, Weigel D. miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana[J]. Cell, 2009, 138(4): 738−749. doi: 10.1016/j.cell.2009.06.014
|
[10] |
Unte U S, Sorensen A M, Pesaresi P, et al. SPL8, an SBP-box gene that affects pollen sac development in Arabidopsis[J]. Plant Cell, 2003, 15(4): 1009−1019. doi: 10.1105/tpc.010678
|
[11] |
Preston J C, Jorgensen S A, Orozco R, et al. Paralogous SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes differentially regulate leaf initiation and reproductive phase change in petunia[J]. Planta, 2016, 243(2): 429−440. doi: 10.1007/s00425-015-2413-2
|
[12] |
Yu N, Niu Q W, Ng K H, et al. The role of miR156/SPLs modules in Arabidopsis lateral root development[J]. Plant Journal, 2015, 83(4): 673−685. doi: 10.1111/tpj.12919
|
[13] |
Zhang X H, Dou L H, Pang C Y, et al. Genomic organization, differential expression, and functional analysis of the SPL gene family in Gossypium hirsutum[J]. Molecular Genetics and Genomics, 2015, 290(1): 115−126. doi: 10.1007/s00438-014-0901-x
|
[14] |
Filichkin S A, Ansariola M, Fraser V N, et al. Identification of transcription factors from NF-Y, NAC, and SPL families responding to osmotic stress in multiple tomato varieties[J]. Plant Science, 2018, 274: 441−450. doi: 10.1016/j.plantsci.2018.06.021
|
[15] |
Stief A, Altmann S, Hoffmann K, et al. Arabidopsis miR156 regulates tolerance to recurring environmental stress through SPL transcription factors[J]. Plant Cell, 2014, 26(4): 1792−1807. doi: 10.1105/tpc.114.123851
|
[16] |
Wang J W, Ye Y J, Xu M, et al. Roles of the SPL gene family and miR156 in the salt stress responses of tamarisk (Tamarix chinensis)[J]. BMC Plant Biology, 2019, 19(1): 370. doi: 10.1186/s12870-019-1977-6
|
[17] |
Hou H M, Jia H, Yan Q, et al. Overexpression of a SBP-Box gene (VpSBP16) from Chinese wild Vitis species in Arabidopsis improves salinity and drought stress tolerance[J]. International Journal of Molecular Sciences, 2018, 19(4): 940.
|
[18] |
Gou J Q, Debnath S, Sun L, et al. From model to crop: functional characterization of SPL8 in M. truncatula led to genetic improvement of biomass yield and abiotic stress tolerance in alfalfa[J]. Plant Biotechnology Journal, 2018, 16(4): 951−962. doi: 10.1111/pbi.12841
|
[19] |
Ning K, Chen S, Huang H J, et al. Molecular characterization and expression analysis of the SPL gene family with BpSPL9 transgenic lines found to confer tolerance to abiotic stress in Betula platyphylla Suk[J]. Plant Cell, Tissue and Organ Culture (PCTOC), 2017, 130(3): 469−481. doi: 10.1007/s11240-017-1226-3
|
[20] |
Wei H, Meilan R, Brunner A M, et al. Transgenic sterility in Populus: expression properties of the poplar PTLF, Agrobacterium NOS and two minimal 35S promoters in vegetative tissues[J]. Tree Physiology, 2006, 26(4): 401−410. doi: 10.1093/treephys/26.4.401
|
[21] |
Cook M, Thilmony R. The OsGEX2
|
[22] |
Wang J Y, Wang J P, Yang H F. Identification and functional characterization of the NAC gene promoter from Populus euphratica[J]. Planta, 2016, 244(2): 417−427. doi: 10.1007/s00425-016-2511-9
|
[23] |
Chen Y, Chen S, Chen F, et al. Functional characterization of a Chrysanthemum dichrum stress-related promoter[J]. Molecular Biotechnology, 2012, 52(2): 161−169. doi: 10.1007/s12033-011-9483-6
|
[24] |
丁雪峰, 刘鸿艳, 罗利军. 水稻OsGRAS1启动子的克隆及多样性分析[J]. 上海农业学报, 2010, 26(4): 8−14. doi: 10.3969/j.issn.1000-3924.2010.04.003
Ding X F, Liu H Y, Luo L J. Cloning and diversity analysis of the OsGRAS1 promoter in rice[J]. Acta Agriculturae Shanghai, 2010, 26(4): 8−14. doi: 10.3969/j.issn.1000-3924.2010.04.003
|
[25] |
张勇, 胡晓晴, 李豆, 等. 白桦BpSPL8启动子的克隆及异源过表达BpSPL8对拟南芥耐旱性的影响[J]. 北京林业大学学报, 2019, 41(8): 67−75.
Zhang Y, Hu X Q, Li D, et al. Cloning the promoter of BpSPL8 from Betula platyphylla and overexpression of BpSPL8 gene affecting drought tolerance in Arabidopsis thaliana[J]. Journal of Beijing Forestry University, 2019, 41(8): 67−75.
|
[26] |
Higo K, Ugawa Y, Iwamoto M, et al. Plant cis-acting regulatory DNA elements (PLACE) database: 1999[J]. Nucleic Acids Research, 1999, 27(1): 297−300. doi: 10.1093/nar/27.1.297
|
[27] |
Lescot M, Dehais P, Thijs G, et al. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences[J]. Nucleic Acids Research, 2002, 30(1): 325−327. doi: 10.1093/nar/30.1.325
|
[28] |
Clough S J, Bent A F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana[J]. Plant Journal, 1998, 16(6): 735−743. doi: 10.1046/j.1365-313x.1998.00343.x
|
[29] |
Chen X, Zhang Z, Liu D, et al. SQUAMOSA promoter-binding protein-like transcription factors: star players for plant growth and development[J]. Journal of Integrative Plant Biology, 2010, 52(11): 946−951. doi: 10.1111/j.1744-7909.2010.00987.x
|
[30] |
Shikata M, Koyama T, Mitsuda N, et al. Arabidopsis SBP-box genes SPL10, SPL11 and SPL2 control morphological change in association with shoot maturation in the reproductive phase[J]. Plant & Cell Physiology, 2009, 50(12): 2133−2145.
|
[31] |
Arshad M, Feyissa B A, Amyot L, et al. MicroRNA156 improves drought stress tolerance in alfalfa (Medicago sativa) by silencing SPL13[J]. Plant Science, 2017, 258: 122−136.
|
[32] |
Xu M, Hu T, Zhao J, et al. Developmental functions of miR156-regulated SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes in Arabidopsis thaliana[J/OL]. PLoS Genetics, 2016, 12(8): e1006263 [2020−01−23]. https://doi.org/10.1371/journal.pgen.1006263.
|
[33] |
Barrera-Rojas C H, Rocha G H B, Polverari L, et al. miR156-targeted SPL10 controls Arabidopsis root meristem activity and root-derived de novo shoot regeneration via cytokinin responses[J]. Journal of Experimental Botany, 2020, 71(3): 934−950. doi: 10.1093/jxb/erz475
|
[34] |
Ye B B, Shang G D, Pan Y, et al. AP2/ERF transcription factors integrate age and wound signals for root regeneration[J]. Plant Cell, 2020, 32(1): 226−241. doi: 10.1105/tpc.19.00378
|
[35] |
Zhang Y, Schwarz S, Saedler H, et al. SPL8, a local regulator in a subset of gibberellin-mediated developmental processes in Arabidopsis[J]. Plant Molecular Biology, 2007, 63(3): 429−439. doi: 10.1007/s11103-006-9099-6
|
[36] |
Galvao V C, Horrer D, Kuttner F, et al. Spatial control of flowering by DELLA proteins in Arabidopsis thaliana[J]. Development, 2012, 139(21): 4072−4082. doi: 10.1242/dev.080879
|
[37] |
Li J, Hou H M, Li X Q, et al. Genome-wide identification and analysis of the SBP-box family genes in apple (Malus × domestica Borkh.)[J]. Plant Physiology and Biochemistry, 2013, 70: 100−114.
|
[38] |
Mao H D, Yu L J, Li Z J, et al. Genome-wide analysis of the SPL family transcription factors and their responses to abiotic stresses in maize[J]. Plant Gene, 2016, 6: 1−12.
|
[39] |
Cui L G, Shan J X, Shi M, et al. The miR156-SPL9-DFR pathway coordinates the relationship between development and abiotic stress tolerance in plants[J]. Plant Journal, 2014, 80(6): 1108−1117. doi: 10.1111/tpj.12712
|
[1] | Zhang Luyue, Liu Yanhong, Han Dongqing. Differences in growth and adaptive strategies between male and female plants of Cercidiphyllum japonicum[J]. Journal of Beijing Forestry University, 2024, 46(12): 71-81. DOI: 10.12171/j.1000-1522.20230263 |
[2] | Liu Xiao, Yu Zhiming, Zhang Yang, Guo Jin, Zeng Guangchen. Evaluation of heat transfer performance of engineered wood flooring with built-in electric heating semi-conductive layer[J]. Journal of Beijing Forestry University, 2023, 45(5): 155-162. DOI: 10.12171/j.1000-1522.20220503 |
[3] | Liu Di, Sun Caowen, Wang Lixian, Jia Liming. Evaluation on field heat resistance of Sorbus pohuashanensis clonal seedlings introduced from different regions[J]. Journal of Beijing Forestry University, 2020, 42(4): 21-31. DOI: 10.12171/j.1000-1522.20190266 |
[4] | Liu Jingjing, Ma Lan, Li Junyou, Chen Peiyan, Zhang Jinge, Sun Zhanwei, Yan Lin, Zhang Dong. Experimental study on hydrodynamic characteristics of overland flow under different resistance conditions[J]. Journal of Beijing Forestry University, 2019, 41(8): 115-123. DOI: 10.13332/j.1000-1522.20190070 |
[5] | XU Kang, L Jian-xiong, LI Xian-jun, WU Yi-qiang. Effect of heat treatment on dimensional stability of phenolic resin impregnated poplar wood.[J]. Journal of Beijing Forestry University, 2015, 37(9): 70-77. DOI: 10.13332/j.1000-1522.20150019 |
[6] | WANG Yan-ping, LIU Mei-qin, SHI Jing, LIU Sheng-li, CHEN Yu-zhen, LU Cun-fu. Enhanced tolerance against heat stress of Escherichia coli cells by overexpressing an Ammopiptanthus mongolicus heat stress associated protein gene AmHsa32.[J]. Journal of Beijing Forestry University, 2012, 34(5): 37-43. |
[7] | LI Yan-jun, TANG Rong-qiang, BAO Bin-fu, SUN Hui. Mechanical properties and dimensional stability of heat-treated Chinese fir[J]. Journal of Beijing Forestry University, 2010, 32(4): 232-236. |
[8] | HUANG Rong-feng, Lv Jian-xiong, CAO Yong-jian, ZHAO Xiu, ZHAO You-ke, ZHOU Yong-dong, WU Yu-zhang. Impact of heat treatment on chemical composition of Chinese white poplar wood.[J]. Journal of Beijing Forestry University, 2010, 32(3): 155-160. |
[9] | WANG Guo-xia, CAO Fu-liang, FANG Yan-ming. Genetic diversity of ancient male ginkgo trees by ISSR analysis[J]. Journal of Beijing Forestry University, 2010, 32(2): 39-45. |
[10] | SUN Xiao-xia, XIE Xiang-ming, WU Yu-ying, LIU Ya-jie, HE Xiao-qing. Induction of xylanase from Strepotmyces albus and analysis of thermostability and alkali-tolerance[J]. Journal of Beijing Forestry University, 2005, 27(3): 72-75. |
1. |
陈铭,郭琳,郑笑,姜明云,王茹,丁雨龙,高志民,魏强. 中国15个主产区毛竹纤维形态比较. 南京林业大学学报(自然科学版). 2018(06): 7-12 .
![]() |