Citation: | Zhang Luyue, Liu Yanhong, Han Dongqing. Differences in growth and adaptive strategies between male and female plants of Cercidiphyllum japonicum[J]. Journal of Beijing Forestry University, 2024, 46(12): 71-81. DOI: 10.12171/j.1000-1522.20230263 |
The differences of reproductive compensation mechanism, resource allocation and adaptive strategy between male and female plants of relict plant Cercidiphyllum japonicum under the influence of reproductive pressure were discussed in order to provide some references for the study of physiological ecology of dioecious tree species in Tertiary relict plants under the background of global climate change.
In this study, C. japonicum, a tertiary relict dioecious plant originated from the Cretaceous in Beijing National Botanical Garden, was used as the research object. The morphology, photosynthetic parameters, chlorophyll content, chlorophyll fluorescence parameters, stoichiometric characteristics and defensive substance content of male and female plants at different developmental stages in the growing season were dynamically monitored and correlation analysis was performed.
(1) Under the influence of high temperature period in summer, the photosynthetic capacity of male and female plants of C. japonicum decreased to a certain extent, which was manifested by the decrease of net photosynthetic rate and the decrease of stomatal conductance and transpiration rate to reduce water loss. The photoprotection strategy was used to protect itself from heat and photoinhibition, reduce the maximum photochemical quantum yield and photochemical quenching coefficient, increase non-photochemical quantum yield, increase antioxidant enzyme activity to enhance tissue antioxidant activity, and increase flavonoid secondary metabolites to enhance stress resistance. (2) The single leaf area, specific leaf mass, annual twig length and leaf expansion efficiency of female plants were significantly higher than those of male plants. The photosynthetic rate, water use efficiency, chlorophyll a, total chlorophyll content, maximum photochemical yield and anthocyanin content of female plants were significantly higher than those of male plants from July to August.
Female plants have a reproductive cost compensation mechanism, which uses higher photosynthetic capacity for reproductive compensation, and increases resource input for growth and reproduction at the expense of chemical defense, and adopts a ‘radical’ adaptive strategy, while male plants invest more resources for defense and adopt a ‘conservative’ adaptive strategy.
[1] |
Renner S S. The relative and absolute frequencies of angiosperm sexual systems: dioecy, monoecy, gynodioecy, and an updated online database[J]. American Journal of Botany, 2014, 101(10): 1588−1596. doi: 10.3732/ajb.1400196
|
[2] |
Hultine K R, Grady K C, Wood T E, et al. Climate change perils for dioecious plant species[J]. Nature Plants. 2016, 2(8) :16109.
|
[3] |
彭丹,武志强. 植物雌雄异株性别决定研究进展[J]. 生物多样性, 2022, 30(3): 132−143.
Peng D, Wu Z Q. Progress on sex determination of dioecious plants[J]. Biodiversity Science, 2022, 30(3): 132−143.
|
[4] |
朱栗琼, 邓冬丽, 招礼军, 等. 罗汉松雌雄株叶形态结构的比较研究[J]. 西北植物学报, 2019, 39(12): 2179−2186.
Zhu L Q, Deng D L, Zhao L J, et al. Comparison on leaf morphological structure of the dioecious Podocarpus macrophyllus[J]. Acta Botanica Boreali-Occidentalia Sinica, 2019, 39(12): 2179−2186.
|
[5] |
韩丽冬, 沃晓棠, 张苏, 等. 环境胁迫下雌雄异株植物的生理差异响应特征[J]. 中国林副特产, 2021(5): 75−77.
Han L D, Wo X T, Zhang S, et al. Physiological differential response characteristics of dioecious plants under environmental stress[J]. Forest by-Product and Speciality in China, 2021(5): 75−77.
|
[6] |
Kader A, Sinha S N. Sex-related differences of Excoecaria agallocha L. with a view to defence and growth[J]. Tropical Life Sciences Research, 2022, 33(2): 55−74. doi: 10.21315/tlsr2022.33.2.4
|
[7] |
Stevens M T, Esser S M. Growth-defense tradeoffs differ by gender in dioecious trembling aspen (Populus tremuloides)[J]. Biochemical Systematics and Ecology, 2009, 37(5): 567−573. doi: 10.1016/j.bse.2009.09.005
|
[8] |
Yang G, Xu Q, Li W, et al. Sex-related differences in growth, herbivory, and defense of two Salix species[J]. Forests, 2020, 11(4): 450. doi: 10.3390/f11040450
|
[9] |
Zhu S, Chen J, Zhao J, et al. Genomic insights on the contribution of balancing selection and local adaptation to the long-term survival of a widespread living fossil tree, Cercidiphyllum japonicum[J]. New Phytologist, 2020, 228(5): 1674−1689. doi: 10.1111/nph.16798
|
[10] |
Monson R K, Trowbridge A M, Lindroth R L, et al. Coordinated resource allocation to plant growth-defense tradeoffs[J]. New Phytologist, 2022, 233(3): 1051−1066. doi: 10.1111/nph.17773
|
[11] |
Jiang H, Zhang S, Lei Y, et al. Alternative growth and defensive strategies reveal potential and gender specific trade-offs in dioecious plants Salix paraplesia to nutrient availability[J]. Frontiers in Plant Science, 2016, 7: 1064.
|
[12] |
叶威, 李强, 陈颖, 等. 雌、雄株和金叶银杏光合生理及黄酮成分年动态变化研究[J]. 南京林业大学学报(自然科学版), 2022, 46(4): 77−86.
Ye W, Li Q, Chen Y, et al. Annual dynamic changes in photosynthetic physiology and flavonoid components in female, male and golden-leaf Ginkgo biloba trees[J]. Journal of Nanjing Forestry University, 2022, 46(4): 77−86.
|
[13] |
翟飞飞, 毛金梅, 李海栋, 等. 蒿柳1年生雌雄株幼苗的生长与防御差异研究[J]. 西北农林科技大学学报(自然科学版), 2022, 50(8): 46−54.
Zhai F F, Mao J M, Li H D, et al. Gender-specific differences in growth and defense of one-year-old Salix viminalis seedlings[J]. Journal of Northwest A & F University(Natural Science Edition), 2022, 50(8): 46−54.
|
[14] |
Bai Q, Ma Z, Zhang Y, et al. The sex expression and sex determining mechanism in Pistacia species[J]. Breeding Science, 2019, 69(2): 205−214. doi: 10.1270/jsbbs.18167
|
[15] |
Yu L, Han Y, Jiang Y, et al. Sex-specific responses of bud burst and early development to nongrowing season warming and drought in Populus cathayana[J]. Canadian Journal of Forest Research, 2018, 48(1): 68−76. doi: 10.1139/cjfr-2017-0259
|
[16] |
Selakovic S, Stanisavljevic N, Vujic V, et al. Light and sex interplay: differential herbivore damage in sun and shade in dioecious Mercurialis perennis[J]. Archives of Biological Sciences, 2018, 70(3): 469−479. doi: 10.2298/ABS171207007S
|
[17] |
He M, Shi D, Wei X, et al. Gender-related differences in adaptability to drought stress in the dioecious tree Ginkgo biloba[J]. Acta physiologiae Plantarum, 2016, 38(5): 1.
|
[18] |
郭海燕, 段婧, 刘金平, 等. 温度对雌雄葎草生理代谢及保护酶系统影响的性别差异[J]. 草业学报, 2017, 26(10): 198−206. doi: 10.11686/cyxb2016493
Guo H Y, Duan J, Liu J P, et al. Gender differences in physiology and enzyme activity in response to temperature in Humulus scandens[J]. Acta Prataculturae Sinica, 2017, 26(10): 198−206. doi: 10.11686/cyxb2016493
|
[19] |
陈娟, 李春阳. 环境胁迫下雌雄异株植物的性别响应差异及竞争关系[J]. 应用与环境生物学报, 2014, 20(4): 743−750.
Chen J, Li C Y. Sex-specific responses to environmental stresses and sexual competition of dioecious plants[J]. Chinese Journal of Applied & Environmental Biology, 2014, 20(4): 743−750.
|
[20] |
胥晓, 杨帆, 尹春英, 等. 雌雄异株植物对环境胁迫响应的性别差异研究进展[J]. 应用生态学报, 2007, 18(11): 2626−2631.
Xu X, Yang F, Yin C Y, et al. Research advances in sex-specific responses of dioecious plants to environmental stresses[J]. Chinese Journal of Applied Ecology, 2007, 18(11): 2626−2631.
|
[21] |
Alsterberg C, Eklöf J S, Gamfeldt L, et al. Consumers mediate the effects of experimental ocean acidification and warming on primary producers[J]. Proceedings of the National Academy of Sciences, 2013, 110(21): 8603−8608. doi: 10.1073/pnas.1303797110
|
[22] |
Sakio H, Kubo M. Flowering and fruiting of the dioecious canopy tree Cercidiphyllum japonicum over an 8-year period in central Japan[J]. Journal of Forest Research, 2022, 27(1): 45−52. doi: 10.1080/13416979.2021.1991551
|
[23] |
Qin H, Duan N, Wang M, et al. Complete chloroplast genome of Cercidiphyllum japonicum (Cercidiphyllaceae), a tertiary relic endangered tree[J]. Conservation Genetics Resources, 2019, 11(2): 113−115. doi: 10.1007/s12686-017-0973-0
|
[24] |
Marini R P, Barden J A. Seasonal correlations of specific leaf weight to net photosynthesis and dark respiration of apple leaves[J]. Photosynth Res, 1981, 2(4): 251−258. doi: 10.1007/BF00056262
|
[25] |
黄雪梅, 马永红, 董廷发. 连香树雌雄植株叶片碳氮磷化学计量特征[J]. 西华师范大学学报(自然科学版), 2019, 40(4): 332−338.
Huang X M, Ma Y H, Dong T F. Stoichiometric characteristics of C, N and P in the leaf of dioecious plant Cercidiphyllum japonicum[J]. Journal of China West Normal University (Natural Science), 2019, 40(4): 332−338.
|
[26] |
马文宝, 廖成云, 姬慧娟, 等. 濒危连香树种群性比和雌雄株功能性状的差异[J]. 生态学杂志, 2019, 38(8): 2414−2419.
Ma W B, Liao C Y, Ji H J, et al. Sex ratio and sexual difference of functional traits in the endangered plant Cercidiphyllum japonicum[J]. Chinese Journal of Ecology, 2019, 38(8): 2414−2419.
|
[27] |
孟秋实, 秦倩倩, 刘艳红. 氮添加对东北红豆杉幼苗生长发育及生理特征的影响[J]. 生态学杂志, 2022, 41(12): 2325−2334.
Meng Q S, Qin Q Q, Liu Y H. Effects of nitrogen addition on growth, development, and physiological characteristics of Taxus cuspidlata seedlings[J]. Chinese Journal of Ecology, 2022, 41(12): 2325−2334.
|
[28] |
张诗行, 刘艳红. 东北红豆杉幼苗黄酮类化合物含量变化及其对气候因子的响应[J]. 生态学杂志, 2020, 39(1): 73−81.
Zhang S H, Liu Y H. Variation of flavonoid content in Taxus cuspidata seedlings and its responses to climate factors[J]. Chinese Journal of Ecology, 2020, 39(1): 73−81.
|
[29] |
Manea A, Tabassum S, Leishman M R. Eucalyptus species maintain secondary metabolite production under water stress conditions at the expense of growth[J]. Austral Ecology, 2021, 46(7): 1030−1038. doi: 10.1111/aec.13035
|
[30] |
Kazemi O B, Bandehagh A, Farajzadeh D, et al. Morphological, biochemical, and physiological responses of canola cultivars to drought stress[J]. International Journal of Environmental Science and Technology, 2023(20): 13551–13560.
|
[31] |
张娅, 施树倩, 李亚萍, 等. 不同盐胁迫下小麦叶片渗透性调节和叶绿素荧光特性[J]. 应用生态学报, 2021, 32(12): 4381−4390.
Zhang Y, Shi S Q, Li Y P, et al. Osmotic regulation and chlorophyll fluorescence characteristics in leaves of wheat seedlings under different salt stresses[J]. Chinese Journal of Applied Ecology, 2021, 32(12): 4381−4390.
|
[32] |
Ding L, Lu Z, Gao L, et al. Is nitrogen a key determinant of water transport and photosynthesis in higher plants upon drought stress?[J]. Frontiers in Plant Science, 2018, 9: 1143. doi: 10.3389/fpls.2018.01143
|
[33] |
Rezai S, Etemadi N, Nikbakht A, et al. Effect of light intensity on leaf morphology, photosynthetic capacity, and chlorophyll content in sage (Salvia officinalis L.)[J]. Weon’ye Gwahag Gi’sulji, 2018, 36(1): 46−57.
|
[34] |
Lauriks F, Salomon R L, de Roo L, et al. Leaf and tree responses of young European aspen trees to elevated atmospheric CO2 concentration vary over the season[J]. Tree Physiology, 2021, 41(10): 1877−1892. doi: 10.1093/treephys/tpab048
|
[35] |
Fang X, Wang K, Sun X, et al. Characteristics of chlorophyll fluorescence in ten garden shrub species under flooding stress[J]. Biológia, 2022, 77(2): 339−350.
|
[36] |
李豪, 马如玉, 强波, 等. 胡杨当年生小枝茎构型对展叶效率的影响[J]. 植物生态学报, 2021, 45(11): 1251−1262. doi: 10.17521/cjpe.2020.0425
Li H, Ma R Y , Qiang B, et al. Effect of current-year twig stem configuration on the leaf display efficiency of Populus eu-phratica[J]. Chinese Journal of Plant Ecology, 2021, 45(11): 1251−1262. doi: 10.17521/cjpe.2020.0425
|
[37] |
白文玉, 铁烈华, 冯茂松, 等. 不同种源桤木嫁接幼苗光合和叶绿素荧光特征[J]. 四川农业大学学报, 2020, 38(6): 670−676, 692.
Bai W Y, Tie L H, Feng M S, et al. Photosynthesis and chlorophyll fluorescence characteristics of grafted Alnus cremastogyne seedlings from different provenances[J]. Journal of Sichuan Agricultural University, 2020, 38(6): 670−676, 692.
|
[38] |
魏晓东, 陈国祥, 施大伟, 等. 干旱胁迫对银杏叶片光合系统Ⅱ荧光特性的影响[J]. 生态学报, 2022, 32(23): 7492−7500.
Wei X D, Chen G X, Shi D W, et al. Effects of drought on fluorescence characteristics of photosystem Ⅱ in leaves of Ginkgo biloba[J]. Acta Ecologica Sinica, 2022, 32(23): 7492−7500.
|
[39] |
Ma S, He F, Tian D, et al. Variations and determinants of carbon content in plants: a global synthesis[J]. Biogeosciences, 2018, 15(3): 693−702. doi: 10.5194/bg-15-693-2018
|
[40] |
熊星烁, 蔡宏宇, 李耀琪, 等. 内蒙古典型草原植物叶片碳氮磷化学计量特征的季节动态[J]. 植物生态学报, 2020, 44(11): 1138−1153. doi: 10.17521/cjpe.2020.0105
Xiong X S, Cai H Y, Li Y Q, et al. Seasonal dynamics of leaf C, N and P stoichiometry in plants of typical steppe in Nei Mongol, China[J]. Chinese Journal of Plant Ecology, 2020, 44(11): 1138−1153. doi: 10.17521/cjpe.2020.0105
|
[41] |
吴统贵, 陈步峰, 肖以华, 等. 珠江三角洲3种典型森林类型乔木叶片生态化学计量学[J]. 植物生态学报, 2010, 34(1): 58−63.
Wu T G , Chen B F , Xiao Y H , et al. Leaf stoichiometry of trees in three forest types in Pearl River Delta, South China[J]. Chinese Journal of Plant Ecology, 2010, 34(1): 58−63.
|
[42] |
Vallicrosa H, Sardans J, Maspons J, et al. Global distribution and drivers of forest biome foliar nitrogen to phosphorus ratios (N∶P)[J]. Global Ecology and Biogeography, 2022, 31(5): 861−871. doi: 10.1111/geb.13457
|
[43] |
邓斌, 曾德慧. 植物防卫的碳–养分平衡假说[J]. 生态学杂志, 2006, 25(4): 449−455.
Deng B, Zeng D H. Carbon-nutrient balance hypothesis on plant defense[J]. Chinese Journal of Ecology, 2006, 25(4): 449−455.
|
[44] |
周瑞莲, 逄金强, 宋玉. 海岸抗风植物黑松对净风和风沙流的生理响应[J]. 生态学报, 2021, 41(5): 2033−2044.
Zhou R L, Pang J Q, Song Y. Physiologial response of Pinus thunbergii Parl in wind resistant to coastal wind blowing and win-drift blowing[J]. Acta Ecologica Sinica, 2021, 41(5): 2033−2044.
|
[45] |
肖珍. 黄酮醇和花青素在植物抗逆中的功能差异研究[D]. 济南: 山东大学, 2018.
Xiao Z. Study on the functional difference of flavnol and anthocyanins in the abioc torance in plants[D]. Jinan: Shandong University, 2018.
|
[46] |
陶应时, 廖咏梅, 黎云祥, 等. 连香树雌雄株叶片形态及生理生化指标比较[J]. 东北林业大学学报, 2013, 41(3): 18−19, 39. doi: 10.3969/j.issn.1000-5382.2013.03.005
Tao Y S, Liao Y M, Li Y X, et al. Morphological characteristics and physiological-biochemical indexes of male and female Cercidiphyllum japonicum[J]. Journal of Northeast Forestry University, 2013, 41(3): 18−19, 39. doi: 10.3969/j.issn.1000-5382.2013.03.005
|
[47] |
黄云浩, 辛本花, 王娟. 雌雄异株植物鼠李生殖分配与生殖耗费补偿机制[J]. 北京林业大学学报, 2019, 41(11): 31−36.
Huang Y H, Xin B H, Wang J. Reproductive allocation and compensation mechanism for reproductive costs of dioecious shrub Rhamnus davurica[J]. Journal of Beijing Forestry University, 2019, 41(11): 31−36.
|
[48] |
朱燕艳, 王娟, 赵秀海, 等. 雄全异株植物白牛槭功能性状与碳素含量关联性研究[J]. 西北植物学报, 2015, 35(10): 2089−2095. doi: 10.7606/j.issn.1000-4025.2015.10.2089
Zhu Y Y, Wang J, Zhao X H, et al. Correlation of functional traits and carbon contents in androdioecy plant Acer mandshuricum[J]. Acta Botanica Boreali-Occidentalia Sinica, 2015, 35(10): 2089−2095. doi: 10.7606/j.issn.1000-4025.2015.10.2089
|
[49] |
Laporte M M, Delph L F. Sex-specific physiology and source-sink relations in the dioecious plant Silene latifolia[J]. Oecologia, 1996, 106: 63−72. doi: 10.1007/BF00334408
|
[1] | Wang Chu, Wang Yang, Zou Jianjun, Peng Rusheng, Liu Guifeng, Jiang Jing. Growth adaptability analysis of BpCCR1 transgenic Betula platyphylla and selection of elite lines[J]. Journal of Beijing Forestry University, 2022, 44(7): 52-62. DOI: 10.12171/j.1000-1522.20200264 |
[2] | Yan Hong, Sun Yingjie, Liu Binhui. Effects of competition on drought adaptability and growth decline of Pinus koraiensis trees[J]. Journal of Beijing Forestry University, 2022, 44(6): 1-9. DOI: 10.12171/j.1000-1522.20210198 |
[3] | Li Jinhang, Zhou Mei, Zhu Jiyou, Xu Chengyang. Adaptability response of root architecture of Cotinus coggygria seedlings to soil nutrient stress[J]. Journal of Beijing Forestry University, 2020, 42(3): 65-77. DOI: 10.12171/j.1000-1522.20190218 |
[4] | Kang Xiangyang. Thoughts on tree breeding strategies[J]. Journal of Beijing Forestry University, 2019, 41(12): 15-22. DOI: 10.12171/j.1000-1522.20190412 |
[5] | SONG Jin-feng, LI Jin-bo, CAO Kai, SANG Ying, CUI CUI Xiao-yang. Oxalic and citric acids enhancing adaptation of Changbai Larix olgensis to soil Pb stress[J]. Journal of Beijing Forestry University, 2017, 39(11): 18-27. DOI: 10.13332/j.1000-1522.20170146 |
[6] | WANG Yi-lin, ZHOU Mei, LI Ping, SUN Guang-peng, SHI Shuang-long, XU Cheng-yang. Root morphological plasticity determing the adaptive strategies of Cotinus coggygria seedlings in barren soil environment[J]. Journal of Beijing Forestry University, 2017, 39(6): 60-69. DOI: 10.13332/j.1000-1522.20170040 |
[7] | HUANG Xiao-hui, FENG Da-lan, LIU Yun, ZHU Heng-xing, CHEN Dao-jing, GENG Yang-hui. Growth and chlorophyll fluorescence characteristics of mulberry trees in simulated environment of heterogeneous habitats of a rocky desertification area.[J]. Journal of Beijing Forestry University, 2016, 38(10): 50-58. DOI: 10.13332/j.1000-1522.20150324 |
[8] | ZHAO Xi-yang, WANG Jun-hui, ZHANG Jin-feng, ZHANG Shou-gong, ZHANG Zeng-shun, MA Jian-wei, YUN Hui-ling, LI Kui-you. Variation analysis on chlorophyll fluorescence and growth traits of Catalpa bungei clones[J]. Journal of Beijing Forestry University, 2012, 34(3): 41-47. |
[9] | HAO Jian-qing, LV Na, YANG Yang, LI Wen-hai, BAI Xue, ZHENG Cai-xia. Comparative study of chlorophyll fluorescence parameters and water physiological characters of heteromorphic leaves for Populus euphratica[J]. Journal of Beijing Forestry University, 2010, 32(5): 41-44. |
[10] | HUANG Hua-hong, CHEN Fen-xue, TONG Zai-kang, ZHU Yu-qiu.. Photosynthetic properties and chlorophyll florescence parameters of dwarf Chinese fir.[J]. Journal of Beijing Forestry University, 2009, 31(2): 69-73. |