• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Liu Jiaming, Zhao Jian, Zhang Jianzhong, Zhao Dong. Cutting constitutive equation and its parameter measurement of oil tree peony stem[J]. Journal of Beijing Forestry University, 2020, 42(11): 138-144. DOI: 10.12171/j.1000-1522.20200229
Citation: Liu Jiaming, Zhao Jian, Zhang Jianzhong, Zhao Dong. Cutting constitutive equation and its parameter measurement of oil tree peony stem[J]. Journal of Beijing Forestry University, 2020, 42(11): 138-144. DOI: 10.12171/j.1000-1522.20200229

Cutting constitutive equation and its parameter measurement of oil tree peony stem

More Information
  • Received Date: July 25, 2020
  • Revised Date: September 04, 2020
  • Available Online: November 02, 2020
  • Published Date: December 13, 2020
  •   Objective  Oil tree peony is a unique woody oil tree species in China, which belongs to the perennial shrub. To harvesting the fruit, stem cutting can be an efficient way, but the mechanism of efficient cutting of shrub stem has been one of the difficult problems in forestry production. It is of great significance to study the dynamic mechanical properties of shrub stem under different strain rates and establish its constitutive model for stem cutting.
      Method  In this paper, a quasi-static tensile test of peony stems and a dynamic tensile test were established to investigate the characteristics of plastic deformation during stem fracture. Then, based on the experiment, Johnson-Cook model was used to be the constitutive equation of peony stem cutting, and the model parameters were obtained by experimental fitting according to the physical meaning of the model parameters. Finally, a finite simulation was carried out by ANSYS/LS-DYNA software and the result was compared with experimental result.
      Result  The results of quasi-static tensile test showed that there was obvious strain hardening phenomenon in the process of stem fracture. The results of dynamic tensile test showed that there was a significant strain rate effect on stem fracture, and the tensile strength increased with the increase of strain rate. Based on the experiment results, the material parameter values of Johnson-Cook model were obtained. According to the comparison of simulation and experiment results, there was no significant difference between the simulation and experiment result of cutting force and cutting energy, which verified the accuracy of the constitutive equation and parameter determination.
      Conclusion  In this paper, based on the Johnson-Cook model, the constitutive equation of peony stem cutting was established and its reliability was verified, which provided a basis for the numerical simulation of cutting properties of oil tree peony stem and the design of cutter of harvesting machine.
  • [1]
    周琳, 王雁. 我国油用牡丹开发利用现状及产业化发展对策[J]. 世界林业研究, 2014, 27(1):68−71.

    Zhou L, Wang Y. Development and utilization of oil seed peony and its industrial development strategy in China[J]. World Forestry Research, 2014, 27(1): 68−71.
    [2]
    修宇, 吴国栋, 陈德忠, 等. 牡丹绿化油用品种繁殖栽培技术[J]. 北京林业大学学报, 2017, 39(1):112−118.

    Xiu Y, Wu G D, Chen D Z, et al. Propagation and afforestation techniques of tree peonies for greening and seed oil production[J]. Journal of Beijing Forestry University, 2017, 39(1): 112−118.
    [3]
    李育才. 中国油用牡丹工程的战略思考[J]. 中国工程科学, 2014, 16(10):57−63.

    Li Y C. The strategy on the oil tree peony industry in China[J]. Engineering Sciences, 2014, 16(10): 57−63.
    [4]
    史国安, 焦封喜, 焦元鹏, 等. 中国油用牡丹发展前景及对策[J]. 中国粮油学报, 2014, 29(9):124−128.

    Shi G A, Jiao F X, Jiao Y P, et al. Development prospects and strategies of oil tree peony industry in China[J]. Journal of the Chinese Cereals and Oils Association, 2014, 29(9): 124−128.
    [5]
    张栋. 油用牡丹果实采摘装置的设计与实现[D]. 北京: 北京林业大学, 2016.

    Zhang D. Design and implementation of oil peony fruit picking device[D]. Beijing: Beijing Forestry University, 2016.
    [6]
    李卅. 油用牡丹果实高地隙收获机底盘结构与稳定性研究[D]. 北京: 北京林业大学, 2016.

    Li S. Study on the structure and stability of high clearance chassis for peony fruit harvester[D]. Beijing: Beijing Forestry University, 2016.
    [7]
    张宇. 自走式油用牡丹果实采摘机设计与实现[D]. 北京: 北京林业大学, 2017.

    Zhang Y. Design and implementation of self propelled oil peony fruit picking machine[D]. Beijing: Beijing Forestry University, 2017.
    [8]
    张涵, 张洪喜, 王德成, 等. 作物茎秆剪切特性研究进展[J]. 农机化研究, 2014, 36(1):247−252. doi: 10.3969/j.issn.1003-188X.2016.04.051.

    Zhang H, Zhang H X, Wang D C, et al. The research progress of the shear properties of crop stalks[J]. Journal of Agricultural Mechanization Research, 2014, 36(1): 247−252. doi: 10.3969/j.issn.1003-188X.2016.04.051.
    [9]
    陈诚, 俞国胜. 往复式灌木切割器滑切角对灌木切割的影响[J]. 北京林业大学学报, 2011, 33(2):115−119.

    Chen C, Yu G S. Effect of sliding cutting angle of bush reciprocating cutter on bush cutting[J]. Journal of Beijing Forestry University, 2011, 33(2): 115−119.
    [10]
    Johnson P C, Clementson C L, Mathanker S K, et al. Cutting energy characteristics of Miscanthus × giganteus stems with varying oblique angle and cutting speed[J/OL]. Biosystems Engineering, 2012, 112: 42−48 [2019−12−02]. http://DOI: 10.1016/j.biosystemseng.2012.02.003.
    [11]
    Gupta C P, Oduori M F. Design of the revolving knife-typesugarcane basecutter[J]. Transactions of the American Society of Agricultural Engineers, 1992, 35(6): 1747−1752. doi: 10.13031/2013.28793.
    [12]
    杨永福, 李黎, 武丽清. 毛竹物理性质对刨切表面质量的影响[J]. 北京林业大学学报, 2008, 30(1):133−136. doi: 10.3321/j.issn:1000-1522.2008.01.024.

    Yang Y F, Li L, Wu L Q. Effects of physical properties of Moso bamboo on planing surface quality[J]. Journal of Beijing Forestry University, 2008, 30(1): 133−136. doi: 10.3321/j.issn:1000-1522.2008.01.024.
    [13]
    张燕青, 崔清亮, 郭玉明, 等. 谷子茎秆切割力学特性试验与分析[J]. 农业机械学报, 2019, 50(4):146−155, 162. doi: 10.6041/j.issn.1000-1298.2019.04.016.

    Zhang Y Q, Cui Q L, Guo Y M, et al. Experiment and analysis of cutting mechanical properties of millet stem[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(4): 146−155, 162. doi: 10.6041/j.issn.1000-1298.2019.04.016.
    [14]
    钟卫洲, 邓志方, 黄西成, 等. 中应变率加载下云杉各向异性力学行为研究[J]. 工程力学, 2016, 33(5):25−32.

    Zhong W Z, Deng Z F, Huang X C, et al. Investigation on anisotropic behavior of spruce mechanical properties under medium strain rate loading conditions[J]. Engineering Mechanics, 2016, 33(5): 25−32.
    [15]
    Widehammar S. Stress-strain relationships for spruce wood: influence of strain rate, moisture content and loading direction[J]. Experimental Mechanics, 2004, 44(1): 44−48. doi: 10.1007/BF02427975.
    [16]
    赵帅, 赵建新, 韩国柱. 俄罗斯红松的应变率效应及吸能特性[J]. 高压物理学报, 2017, 31(3):271−279. doi: 10.11858/gywlxb.2017.03.008.

    Zhao S, Zhao J X, Han G Z. Strain rate and energy absorption characteristics of Russian pine[J]. Chinese Journal of High Pressure Physics, 2017, 31(3): 271−279. doi: 10.11858/gywlxb.2017.03.008.
    [17]
    Johnson G R, Cook W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[J]. Engineering Fracture Mechanics, 1983, 21: 541−547.
    [18]
    Johnson G R, Cook W H. Fracture characteristics of three metals subjected to various strains, strains rates, temperatures and pressure[J]. Engineering Fracture Mechanics, 1985, 21(1): 31−48. doi: 10.1016/0013-7944(85)90052-9.
    [19]
    Liao Y T, Liao Q X, Shu C X, et al. Matching of cutting and feeding speed for reaping Arundo donax L. based on ANSYS/LS-DYNA[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(S1): 30−34.
    [20]
    廖宜涛. 基于有限元法的锯齿式芦竹切割器切割机理研究[D]. 武汉: 华中农业大学, 2007.

    Liao Y T. Study on FEM-based incising mechanism of saw-tooth type cutter for Arundo donax L. [D]. Wuhan: Huazhong Agricultural University, 2007.
    [21]
    郭茜. 藤茎类秸秆切割机理与性能试验研究[D]. 苏州: 江苏大学, 2014.

    Guo Q. Experimental research on the cutting mechanism and performance of rattan straw[D]. Suzhou: Jiangsu University, 2014.
    [22]
    苏工兵. 苎麻茎秆力学建模及有限元模拟分析研究[D]. 武汉: 华中农业大学, 2007.

    Su G B. Mechanical modeling and analysis of finite element method for ramie stalk[D]. Wuhan: Huazhong Agricultural University, 2007.
    [23]
    苏工兵, 刘俭英, 王树才, 等. 苎麻茎秆木质部力学性能试验[J]. 农业机械学报, 2007, 38(5):62−65. doi: 10.3969/j.issn.1000-1298.2007.05.016.

    Su G B, Liu J Y, Wang S C, et al. Study on mechanical properties of xylem of ramie stalk[J]. Transactions of the Chinese Society for Agricultural Machinery, 2007, 38(5): 62−65. doi: 10.3969/j.issn.1000-1298.2007.05.016.
    [24]
    柳爱群, 黄西成. 高应变率变形的Johnson-Cook动态本构模型参数识别方法[J]. 应用数学和力学, 2014, 35(2):219−225. doi: 10.3879/j.issn.1000-0887.2014.02.010.

    Liu A Q, Huang X C. Identification of high-strain-rate material parameters in dynamic Johnson-Cook constitutive model[J]. Applied Mathematics and Mechanics, 2014, 35(2): 219−225. doi: 10.3879/j.issn.1000-0887.2014.02.010.
    [25]
    季玉辉. 基于Johnson-Cook模型的硬物损伤数值模拟研究[D]. 南京: 南京航空航天大学, 2009.

    Ji Y H. Numerical simulation of hard-body foreign object damage based on Johnson-Cook model[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2009.
    [26]
    高宏阁. 视频引伸计研发[D]. 天津: 天津大学, 2005.

    Gao H G. The development of video-extensometer[D]. Tianjin: Tianjin University, 2005.
    [27]
    葛云燕, 王健. 视频引伸计[J]. 工程与试验, 2015(增刊1):24−26.

    Ge Y Y, Wang J. Video extensometer[J]. Engineering and Test, 2015(Suppl.1): 24−26.
    [28]
    张敬敏, 王春华, 周巍松, 等. 视频引伸计的误差源解析[J]. 物理测试, 2013(3):25−28.

    Zhang J M, Wang C H, Zhou W S, et al. Error analysis of video-extensometer[J]. Physics Examination and Testing, 2013(3): 25−28.
    [29]
    申荣华. 变形功计算法在金属塑性挤压工艺中的应用[J]. 贵州工业大学学报(自然科学版), 1999, 28(4):38−40.

    Sheng R H. Application of deformation work calculation in the metallic plastic extrusion processes[J]. Journal of Guizhou University of Technology (Natural Science), 1999, 28(4): 38−40.
    [30]
    崔慧然, 杨蕴林, 王长生. 约束条件下铜合金加热时的塑性变形及变形功[J]. 河南科技大学学报(自然科学版), 2005, 26(1):1−5.

    Cui H R, Yang Y L, Wang C S. Plastic deformation and plastic deformation work of copper alloy under condition of confining pressure in heating process[J]. Journal of Henan University of Science and Technology (Natural Science), 2005, 26(1): 1−5.
    [31]
    范亚夫, 段祝平. Johnson-Cook材料模型参数的实验测定[J]. 力学与实践, 2003, 25(5):40−43. doi: 10.3969/j.issn.1000-0879.2003.05.013.

    Fan Y F, Duan Z P. Cylinder explosive test and material model of Johnson-Cook[J]. Mechanics in Engineering, 2003, 25(5): 40−43. doi: 10.3969/j.issn.1000-0879.2003.05.013.
    [32]
    李建光, 施琪, 曹结东. Johnson-Cook本构方程的参数标定[J]. 兰州理工大学学报, 2012, 38(2):164−167. doi: 10.3969/j.issn.1673-5196.2012.02.038.

    Li J G, Shi Q, Cao J D. Parameters calibration for Johnson-Cook constitutive equation[J]. Journal of Lanzhou University of Technology, 2012, 38(2): 164−167. doi: 10.3969/j.issn.1673-5196.2012.02.038.
  • Related Articles

    [1]Xu Pengfei, Zhang Houjiang, Xin Zhenbo, Yuan Jiangyu. Numerical simulation of neutral axis in transverse bending of tree trunk[J]. Journal of Beijing Forestry University, 2024, 46(8): 1-14. DOI: 10.12171/j.1000-1522.20240073
    [2]Xing Yuhua, Zhang Dapeng, Li Siying, Wang Pei. Integration and simulation analysis of temperature gradient based 3T and resistance-based evapotranspiration model[J]. Journal of Beijing Forestry University, 2024, 46(4): 115-126. DOI: 10.12171/j.1000-1522.20230198
    [3]Liu Haozheng, Wang Jianshan, Shi Guangyu. Effects of microfibril helix angle in the S2 layer of compression wood cell wall on the compressive toughness of it[J]. Journal of Beijing Forestry University, 2023, 45(4): 136-146. DOI: 10.12171/j.1000-1522.20220506
    [4]Zhang Xingxin, Zhang Kai, Zhao Liming, Deng Yuhui, Deng Lijia. Numerical simulation on wind-sand flow field at the bridge and roadbed transition section of Golmud-Korla Railway in northwestern China[J]. Journal of Beijing Forestry University, 2022, 44(2): 75-81. DOI: 10.12171/j.1000-1522.20210213
    [5]Yu Yongzhu, Guan Cheng, Zhang Houjiang, Yao Xiaorui, Zhang Dian, Xin Zhenbo. Numerical simulation on the influence of wall wood column defects on the safety of ancient building[J]. Journal of Beijing Forestry University, 2022, 44(1): 132-145. DOI: 10.12171/j.1000-1522.20210341
    [6]Liu Fangni, Yin Hao, Zhou Xu. Numerical simulation study on the influence of greening between buildings on sunlight conditions of building in residential area[J]. Journal of Beijing Forestry University, 2020, 42(12): 101-114. DOI: 10.12171/j.1000-1522.20200039
    [7]Ou Zina, Zhang Houjiang, Guan Cheng. Numerical simulation of the safety influence of defects on Qijia-beams of ancient timber building[J]. Journal of Beijing Forestry University, 2020, 42(4): 142-154. DOI: 10.12171/j.1000-1522.20190328
    [8]LI Yan-jie, XU Chen, LU Yuan-jia, ZHAO Dong. Finite element analysis and experiments on the drill of earth auger[J]. Journal of Beijing Forestry University, 2013, 35(2): 112-117.
    [9]HAO Yan-hua, ZHANG Xiang-xue, DING Xiao-kang, LIU Jiao. Analysis and measurement of ultrasonic acoustic emissions from the cavitation in xylem sap.[J]. Journal of Beijing Forestry University, 2012, 34(3): 36-40.
    [10]YANG Xue, CHEN Guang-yuan, FENG Li-ning, LI Jian-rong. Investigation of airflow uniformity at air-exchange device in drying kiln by numerical simulation[J]. Journal of Beijing Forestry University, 2011, 33(4): 113-117.
  • Cited by

    Periodical cited type(7)

    1. 高斯远,曹广超,刁二龙,何启欣,程梦园,邱巡巡,程国,赵美亮. 盛行风作用下柴木达盆地典型多花柽柳灌丛资源岛特征. 水土保持通报. 2022(04): 293-300 .
    2. 董正武,李生宇,毛东雷,雷加强. 古尔班通古特沙漠西南缘柽柳沙包土壤粒度分布特征. 水土保持学报. 2021(04): 64-72+79 .
    3. 王永兵,李亚萍. 古尔班通古特沙漠南缘梭梭固沙林土壤粒度的分异规律. 水土保持通报. 2020(03): 75-80 .
    4. 杨异婷. 坡度及旅游干扰对土壤粒度特征的影响. 绿色科技. 2019(02): 12-16 .
    5. 张帅,丁国栋,高广磊,赵媛媛,于明含,包岩峰,王春媛. 风沙区公路防积沙的新型防护栏研究. 北京林业大学学报. 2018(02): 90-97 . 本站查看
    6. 谭凤翥,王雪芹,王海峰,徐俊荣,袁鑫鑫. 柽柳灌丛沙堆及丘间地蚀积分布随背景植被变化的风洞实验. 干旱区地理. 2018(01): 56-65 .
    7. 安志山,张克存,谭立海,蔡迪文,张余. 论沙漠-绿洲过渡带的风沙防护效应. 干旱区研究. 2017(05): 1196-1202 .

    Other cited types(7)

Catalog

    Article views (1404) PDF downloads (80) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return