• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Zhang Wenwen, Yan Xiangxiang, Wang Qiuhua, Long Tengteng, Li Xiaona, Pu Jun, Ding Zongda. Effects of prescribed burning on fire behavior of surface fuel in Pinus yunnanensis forest land[J]. Journal of Beijing Forestry University, 2022, 44(5): 69-76. DOI: 10.12171/j.1000-1522.20200328
Citation: Zhang Wenwen, Yan Xiangxiang, Wang Qiuhua, Long Tengteng, Li Xiaona, Pu Jun, Ding Zongda. Effects of prescribed burning on fire behavior of surface fuel in Pinus yunnanensis forest land[J]. Journal of Beijing Forestry University, 2022, 44(5): 69-76. DOI: 10.12171/j.1000-1522.20200328

Effects of prescribed burning on fire behavior of surface fuel in Pinus yunnanensis forest land

More Information
  • Received Date: October 29, 2020
  • Revised Date: January 31, 2021
  • Accepted Date: March 02, 2022
  • Available Online: March 06, 2022
  • Published Date: May 24, 2022
  •   Objective  This paper aims to clarify the status of surface fuel and corresponding fire behavior characteristics of pure Pinus yunnanensis stand under the conditions of periodic (burning cycle was 1 year) prescribed burning, and then explore the impact of prescribed burning on the fire behavior of surface fuel of P. yunnanensis, and reasonably evaluate the ecological significance of prescribed burning, so as to provide scientific basis for forest fire management and fighting.
      Method  Sampling in field investigation and simulating combustion in laboratory, using the SPSS23.0 to process and analyze the data, we explored the influence of fuel types, fuel loads, moisture content and other characteristics of prescribed burning on fire behavior such as the temperature of fire, flame height, thermal radiation, spread rate, burning rate, fire intensity, etc. in Zhaobi Mountain, Xinping County, Yuxi City, Yunnan Province of southwestern China.
      Result  (1) The main fuel on the surface of pure P. yunnanensis stand was the withered pine needles, plus a small amount of withered pine branches and cones and dead ferns, the species was relatively single, and most of the fuel under the forest was fine fuel. (2) From 2018 to 2020, the average moisture content of dead fuel under the pure forest of P. yunnanensis was 9.39%, 8.04% and 9.89%, and the average fuel loads were (0.937 ± 0.303) kg/m2, (0.926 ± 0.253) kg/m2 and (0.669 ± 0.248) kg/m2, respectively. (3) The simulated fire behavior in the laboratory included: the fire intensity was (245.95 ± 130.51) kW/m, the flame height was (0.92 ± 0.22) m, fire ground temperature was (437.5 ± 171.6) ℃, the thermal radiation was (6.3 ± 0.9) kW/m2, the spread rate was (1.1 ± 0.3) m/min, the ignition time of the surface fuel was 1 s and burning rate was about 62%. (4) The mortality of P. yunnanensis in natural state was about 1.33%. In the field survey in 2018 and 2020, the mortality of P. yunnanensis under prescribed burning was 0.93% and 1.27%, respectively. P. yunnanensis has certain fire resistance.
      Conclusion  (1) For the pure P. yunnanensis stand under periodic prescribed burning, the canopy density of the standing forest is large, and the combustible vegetation under the forest is less, mainly pine needle litter and grass. (2) Prescribed burning can effectively reduce the surface fuel load, and the average load of surface fuel is less than 1 kg/m2. During the fire prevention period, the moisture content of the dead fuel on the surface of P. yunnanensis forest is less than 10%, which is easy to be ignited, but the flame height is within the range of 0.5−1.5 m, and the fire intensity is less than 750 kW/m, which belongs to low intensity fire; the temperature of the fire ground is high, the thermal radiation is strong, the fire spread speed is general, and the fire field can be controlled; the simulated burning rate in the laboratory is high, and the combustion effect is good. (3) It is necessary and feasible to carry out periodic prescribed burning in fire prone habitats and forests with certain adaptability to fire.
  • [1]
    李晓彤, 覃先林, 刘树超, 等. 森林可燃物类型遥感分类研究进展[J]. 森林防火, 2019(3): 26−30. doi: 10.3969/j.issn.1002-2511.2019.03.006

    Li X T, Qin X L, Liu S C, et al. Advances in remote sensing classification of forest fuel types[J]. Forest Fire Prevention, 2019(3): 26−30. doi: 10.3969/j.issn.1002-2511.2019.03.006
    [2]
    袁春明, 文定元. 森林可燃物分类与模型研究的现状与展望[J]. 世界林业研究, 2001, 14(2): 29−34.

    Yuan C M, Wen D Y. Current situation and prospect of forest fuel classification and model research[J]. World Forestry Research, 2001, 14(2): 29−34.
    [3]
    王秋华, 肖慧娟, 仝艳民, 等. 滇中地区地盘松林凋落物燃烧特征[J]. 林业科技开发, 2014, 28(6): 83−86.

    Wang Q H, Xiao H J, Tong Y M, et al. Combustion characteristics of litter in pine forest in central Yunnan[J]. Forestry Science and Technology Development, 2014, 28(6): 83−86.
    [4]
    牛树奎, 贺庆棠, 陈锋, 等. 北京山区主要针叶林可燃物空间连续性研究: 可燃物水平连续性与树冠火蔓延[J]. 北京林业大学学报, 2012, 34(4): 1−9.

    Niu S K, He Q T, Chen F, et al. Spatial continuity of fuels in major coniferous forests in Beijing mountainous area: fuel horizontal continuity and crown fire spread[J]. Journal of Beijing Forestry University, 2012, 34(4): 1−9.
    [5]
    张韫, 于悦, 崔晓阳, 等. 试验林火干扰下大兴安岭北部落叶松林土壤含水率的时空变化[J]. 北京林业大学学报, 2020, 42(8): 94−101. doi: 10.12171/j.1000-1522.20190182

    Zhang Y, Yu Y, Cui X Y, et al. Temporal and spatial variation of soil moisture content in larch forest in northern Daxing’an Mountains under experimental forest fire disturbance[J]. Journal of Beijing Forestry University, 2020, 42(8): 94−101. doi: 10.12171/j.1000-1522.20190182
    [6]
    刘晓东, 王博. 森林燃烧主要排放物研究进展[J]. 北京林业大学学报, 2017, 39(12): 118−124.

    Liu X D, Wang B. Research progress of main emissions from forest combustion[J]. Journal of Beijing Forestry University, 2017, 39(12): 118−124.
    [7]
    王博, 韩树文, 武英达, 等. 辽河源自然保护区油松林火烧迹地林木更新研究[J]. 北京林业大学学报, 2020, 42(4): 41−50. doi: 10.12171/j.1000-1522.20190315

    Wang B, Han S W, Wu Y D, et al. Study on regeneration of Pinus tabulaeformis forest burned in Liaoheyuan Nature Reserve[J]. Journal of Beijing Forestry University, 2020, 42(4): 41−50. doi: 10.12171/j.1000-1522.20190315
    [8]
    Chernkhunthod C, Hioki Y. Fuel characteristics and fire behavior in mixed deciduous forest areas with different fire frequencies in Doi Suthep-Pui National Park, northern Thailand[J]. Landscape and Ecological Engineering, 2020, 16(2): 289−297.
    [9]
    Agee J K, Skinner C N. Basic principles of forest fuel reduction treatments[J]. Forest Ecology and Management, 2005, 211(1): 83−96.
    [10]
    He H S, Keane R E, Iverson L R. Forest landscape models, a tool for understanding the effect of the large-scale and long-term landscape processes[J]. Forest Ecology and Management, 2008, 254(3): 371−374. doi: 10.1016/j.foreco.2007.09.069
    [11]
    Sandberg D V, Riccardi C L, Schaaf M D. Fire potential rating for wildland fuelbeds using the fuel characteristic classification system[J]. Canadian Journal of Forest Research, 2007, 37(12): 2456−2463. doi: 10.1139/X07-093
    [12]
    陈岱, 舒立福, 李朔南. 美国森林火灾管理与策略[J]. 温带林业研究, 2020, 3(2): 12−17. doi: 10.3969/j.issn.2096-4900.2020.02.002

    Chen D, Shu L F, Li S N. Forest fire management and strategy in the United States[J]. Temperate Forest Research, 2020, 3(2): 12−17. doi: 10.3969/j.issn.2096-4900.2020.02.002
    [13]
    舒立福, 田晓瑞, 寇晓军. 计划烧除的应用与研究[J]. 火灾科学, 1998, 7(3): 3−5.

    Shu L F, Tian X R, Kou X J. Application and research of planned burning[J]. Fire Science, 1998, 7(3): 3−5.
    [14]
    查贵生. 云南省飞播造林回顾与展望[J]. 山地农业生物学报, 2003, 22(2): 151−154. doi: 10.3969/j.issn.1008-0457.2003.02.012

    Zha G S. Review and prospect of aerial seeding afforestation in Yunnan Province[J]. Journal of Mountain Agricultural Biology, 2003, 22(2): 151−154. doi: 10.3969/j.issn.1008-0457.2003.02.012
    [15]
    高源, 陆俊宇, 杨兴明. 红塔山自然保护区云南松火烧迹地天然更新调查研究[J]. 林业调查规划, 2020, 45(4): 105−108. doi: 10.3969/j.issn.1671-3168.2020.04.020

    Gao Y, Lu J Y, Yang X M. Investigation and study on natural regeneration of Pinus yunnanensis in Hongtashan Nature Reserve[J]. Forestry Survey and Planning, 2020, 45(4): 105−108. doi: 10.3969/j.issn.1671-3168.2020.04.020
    [16]
    王秋华, 单保君, 龚家平, 等. 滇中地区云南松纯林计划烧除研究[J]. 江西农业大学学报, 2018, 40(2): 235−240.

    Wang Q H, Shan B J, Gong J P, et al. Study on planned burning of Pinus yunnanensis pure forest in central Yunnan[J]. Journal of Jiangxi Agricultural University, 2018, 40(2): 235−240.
    [17]
    王叁, 牛树奎, 李德, 等. 云南松林可燃物的垂直分布及影响因子[J]. 应用生态学报, 2013, 24(2): 331−337.

    Wang S, Niu S K, Li D, et al. Vertical distribution and influencing factors of fuel in Pinus yunnanensis forest[J]. Journal of Applied Ecology, 2013, 24(2): 331−337.
    [18]
    常云霞, 苏文华, 杨锐, 等. 短时高温处理对云南松种子萌发的影响[J]. 西南林业大学学报, 2014, 34(2): 19−24. doi: 10.3969/j.issn.2095-1914.2014.02.004

    Chang Y X, Su W H, Yang R, et al. Effects of short-term high temperature treatment on seed germination of Pinus yunnanensis[J]. Journal of Southwest Forestry University, 2014, 34(2): 19−24. doi: 10.3969/j.issn.2095-1914.2014.02.004
    [19]
    苏文华, 崔凤涛, 赵元蛟, 等. 云南松球果延迟开放及其植冠种子库[J]. 生态学报, 2017, 37(2): 541−548.

    Su W H, Cui F T, Zhao Y J, et al. Delayed opening and crown seed bank of Pinus yunnanensis[J]. Journal of Ecology, 2017, 37(2): 541−548.
    [20]
    彭超, 李莲芳, 王慷林, 等. 宜良禄丰村林场云南松天然更新分析[J]. 中南林业科技大学学报, 2012, 32(11): 42−46.

    Peng C, Li L F, Wang K L, et al. Natural regeneration analysis of Pinus yunnanensis in Lufeng Village Forest Farm, Yiliang[J]. Journal of Central South University of Forestry Science and Technology, 2012, 32(11): 42−46.
    [21]
    杨历雨, 李莲芳, 杨文君, 等. 云南松蹲苗的特征分析[J]. 种子, 2020, 39(8): 149−153,163.

    Yang L Y, Li L F, Yang W J, et al. Analysis of the characteristics of Pinus yunnanensis squatting seedlings[J]. Seeds, 2020, 39(8): 149−153,163.
    [22]
    张子翼, 胡宗华. 云南森林资源[M]. 昆明: 云南科技出版社, 2018.

    Zhang Z Y, Hu Z H. Yunnan forest resources [M]. Kunming: Yunnan Science and Technology Press, 2018.
    [23]
    杨桂珍, 严理, 韦虹日, 等. 云南松及其变种栽培与适应性研究进展[J]. 山西农业科学, 2019, 47(10): 1853−1856. doi: 10.3969/j.issn.1002-2481.2019.10.38

    Yang G Z, Yan L, Wei H R, et al. Research progress on cultivation and adaptability of Pinus yunnanensis and its varieties[J]. Shanxi Agricultural Science, 2019, 47(10): 1853−1856. doi: 10.3969/j.issn.1002-2481.2019.10.38
    [24]
    Peterson D L. Fire in mediterranean ecosystems: ecology, evolution and management[J]. Fire Ecology, 2014, 10(1): 86−87. doi: 10.4996/fireecology.1001086
    [25]
    Reich R M, Lundquist J E, Bravo V A. Spatial models for estimating fuel loads in the Black Hills, South Dakota, USA[J]. International Journal of Wildland Fire, 2004, 13(1): 119−129. doi: 10.1071/WF02049
    [26]
    李世友, 张凯, 杨清, 等. 华山松林细小可燃物层燃烧初始蔓延速度的初步研究[J]. 福建林业科技, 2009, 36(1): 58−61. doi: 10.3969/j.issn.1002-7351.2009.01.012

    Li S Y, Zhang K, Yang Q, et al. Preliminary study on the incipient burning velocity of fine combustible layer in Pinus armandii forest[J]. Fujian Forestry Science and Technology, 2009, 36(1): 58−61. doi: 10.3969/j.issn.1002-7351.2009.01.012
    [27]
    徐伟恒, 黄邵东, 杨磊, 等. 滇东北地区云南松地表可燃物载量及火强度研究[J]. 西部林业科学, 2019, 48(4): 19−26.

    Xu W H, Huang S D, Yang L, et al. Study on surface fuel loading and fire intensity of Pinus yunnanensis in Northeast Yunnan[J]. Western Forestry Science, 2019, 48(4): 19−26.
    [28]
    王健宇, 邵加云, 李星亮, 等. 栖霞山老龄枫香林凋落物载荷量及潜在燃烧性分析[J]. 森林防火, 2019(2): 15−18. doi: 10.3969/j.issn.1002-2511.2019.02.005

    Wang J Y, Shao J Y, Li X L, et al. Analysis of litter load and potential combustibility in agedLiquidambar formosana forest[J]. Forest Fire Prevention, 2019(2): 15−18. doi: 10.3969/j.issn.1002-2511.2019.02.005
    [29]
    李世友, 张凯, 刘会龙, 等. 一种快速测定云南松和华山松林下细小可燃物负荷量的方法[J]. 福建林业科技, 2009, 36(2): 238−241. doi: 10.3969/j.issn.1002-7351.2009.02.051

    Li S Y, Zhang K, Liu H L, et al. A method for rapid determination of fine fuel load under Pinus yunnanensis and Pinus armandii[J]. Fujian Forestry Science and Technology, 2009, 36(2): 238−241. doi: 10.3969/j.issn.1002-7351.2009.02.051
    [30]
    张玉红, 覃炳醒, 孙铭隆, 等. 林火对大兴安岭典型林型林下植被与土壤的影响[J]. 北京林业大学学报, 2012, 34(2): 7−13.

    Zhang Y H, Qin B X, Sun M L, et al. Effects of forest fire on understory vegetation and soil of typical forest types in Daxinganling[J]. Journal of Beijing Forestry University, 2012, 34(2): 7−13.
    [31]
    Rossi R. Fire fighting and its influence on the body[J]. Ergonomics, 2003, 46(10): 1017−1033. doi: 10.1080/0014013031000121968
    [32]
    Song G, Paskaluk S, Sati R, et al. Thermal protective performance of protective clothing used for low radiant heat protection[J]. Textile Research Journal, 2010, 81(3): 311−323.
    [33]
    Abbott N J, Schulman S. Protection from fire: nonflammable fabrics and coatings[J]. Journal of Industrial Textiles, 1976, 6(1): 48−64.
    [34]
    骆介禹. 森林燃烧能量学[M]. 哈尔滨: 东北林业大学出版社, 1992: 284.

    Luo J Y. Energy of forest combustion [M]. Harbin: Northeast Forestry University Press, 1992: 284.
    [35]
    Hellberg E, Niklasson M, Granstrm A. Influence of landscape structure on patterns of forest fires in boreal forest landscapes in Sweden[J]. Revue Canadienne De Recherche Forestiere, 2004, 34(2): 332−338.
    [36]
    Schwilk D W. Flammability is a niche construction trait: canopy architecture affects fire intensity[J]. American Naturalist, 2003, 162(6): 725−733. doi: 10.1086/379351
    [37]
    Nelson C D, Weng C, Kubisiak T L, et al. On the number of genes controlling the grass stage in longleaf pine[J]. Journal of Heredity, 2003, 94(5): 392−398. doi: 10.1093/jhered/esg086
    [38]
    罗绍华, 宗春淼, 王兰新, 等. 计划烧除对林下植物的影响分析: 以曼搞保护区为例[J]. 山东林业科技, 2019, 49(1): 35−39. doi: 10.3969/j.issn.1002-2724.2019.01.009

    Luo S H, Zong C M, Wang L X, et al. Impact of planned burning on understory plants: a case study of Mangao Nature Reserve[J]. Shandong Forestry Science and Technology, 2019, 49(1): 35−39. doi: 10.3969/j.issn.1002-2724.2019.01.009
    [39]
    赵文文, 刘乃安, 张林鹤. 多点法测定可燃物质自燃特性的可靠性研究[J]. 火灾科学, 2015, 24(2): 75−81. doi: 10.3969/j.issn.1004-5309.2015.02.03

    Zhao W W, Liu N A, Zhang L H. Reliability study on the determination of spontaneous combustion characteristics of combustible materials by multi-point method[J]. Fire Science, 2015, 24(2): 75−81. doi: 10.3969/j.issn.1004-5309.2015.02.03
  • Related Articles

    [1]Yang Zhou, Zhang Jianjun, Zhao Jiongchang, Hu Yawei, Li Yang, Wang Bo. Response of soil carbon, nitrogen and phosphorus stoichiometric characteristics of Pinus tabuliformis forests to stand age and density in the Loess Plateau region of western Shanxi Province, northern China[J]. Journal of Beijing Forestry University, 2024, 46(12): 30-40. DOI: 10.12171/j.1000-1522.20240188
    [2]Zhou Zhiyong, Xu Mengyao, Wang Yongqiang, Gao Yu, Jia Kuangdi. Evolutionary characteristics of soil quality and organic carbon stability with forest stand age for Pinus tabuliformis forests in the Taiyue Mountain of Shanxi Province, northern China[J]. Journal of Beijing Forestry University, 2022, 44(10): 112-119. DOI: 10.12171/j.1000-1522.20220320
    [3]Jin Shan, Wu Shuaikai. Niche and interspecific association of dominant species in herb layer of burned Pinus tabuliformis forest in the southern Taihang Mountain of northern China[J]. Journal of Beijing Forestry University, 2021, 43(4): 35-46. DOI: 10.12171/j.1000-1522.20210044
    [4]Wang Bo, Han Shuwen, Wu Yingda, Niu Shukui, Liu Xiaodong. Forest regeneration of Pinus tabuliformis burned area in Liaoheyuan Nature Reserve of northern China[J]. Journal of Beijing Forestry University, 2020, 42(4): 41-50. DOI: 10.12171/j.1000-1522.20190315
    [5]Liu Guanhong, Li Bingyi, Gong Dapeng, Li Weike, Liu Xiaodong. Effects of forest fire on soil chemical properties of Pinus tabuliformis forest in Pinggu District of Beijing[J]. Journal of Beijing Forestry University, 2019, 41(2): 29-40. DOI: 10.13332/j.1000-1522.20180339
    [6]Li Lianqiang, Niu Shukui, Tao Changsen, Chen Ling, Chen Feng. Correlations between stand structure and surface potential fire behavior of Pinus tabuliformis forests in Miaofeng Mountain of Beijing[J]. Journal of Beijing Forestry University, 2019, 41(1): 73-81. DOI: 10.13332/j.1000-1522.20180304
    [7]Han Mei, Wen Peng, Xu Huimin, Zhang Yongfu, Li Weike, Liu Xiaodong. Simulation of surface fire behavior of Pinus tabuliformis forest in Ming Tombs Forest Farm in Beijing[J]. Journal of Beijing Forestry University, 2018, 40(10): 95-101. DOI: 10.13332/j.1000-1522.20180249
    [8]LI Wei-ke, LIU Xiao-dong, NIU Shu-kui, LI Bing-yi, LIU Guan-hong, CHU Yan-qin. Impact of fire on soil microbial biomass of Pinus tabuliformis forest in Pingquan County, Hebei of northern China[J]. Journal of Beijing Forestry University, 2017, 39(10): 70-77. DOI: 10.13332/j.1000-1522.20160420
    [9]WANG Jin-song, ZHAO Xiu-hai, ZHANG Chun-yu, LI Hua-shan, WANG Na, ZHAO Bo. Effects of simulated nitrogen deposition on soil organic carbon and total nitrogen content in plantation and natural forests of Pinus tabuliformis.[J]. Journal of Beijing Forestry University, 2016, 38(10): 88-94. DOI: 10.13332/j.1000-1522.20140294
    [10]LI Li-ping, XING Shao-hua, ZHAO Bo, WANG Qing-chun, CUI Guo-fa. Comparative analysis of plant diversity of Pinus tabulaeformis forests in ten regions of Beijing mountainous areas[J]. Journal of Beijing Forestry University, 2005, 27(4): 12-16.
  • Cited by

    Periodical cited type(4)

    1. 闫宇,邓焯,李斌,赵天忠. 基于Landsat 8数据的人工林地上生物量估测模型研究. 西北林学院学报. 2024(05): 53-60+77 .
    2. 张双印,赵保成,赵登忠,周伟,任斐鹏,付重庆,郑航,郑学东,徐平. 长江源草地生物量空间分布及分配初步研究. 长江科学院院报. 2024(11): 196-202 .
    3. 崔立晗,郑盛,徐敏. 内蒙古森林和草地地上生物量遥感反演. 地理科学. 2024(12): 2215-2224 .
    4. 姬永杰,徐昆鹏,张王菲,史建敏,张甫香. 不同波长极化SAR数据水云模型森林生物量反演对比分析. 北京林业大学学报. 2023(02): 24-33 . 本站查看

    Other cited types(5)

Catalog

    Article views (866) PDF downloads (107) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return