Advanced search
    Li Guannan, Zhang Chunyu, Zhao Xiuhai. Seedling dynamics and environmental driving factors of coniferous and broadleaved mixed forest in Jiaohe, Jilin Province of northeastern China[J]. Journal of Beijing Forestry University, 2021, 43(8): 41-49. DOI: 10.12171/j.1000-1522.20200356
    Citation: Li Guannan, Zhang Chunyu, Zhao Xiuhai. Seedling dynamics and environmental driving factors of coniferous and broadleaved mixed forest in Jiaohe, Jilin Province of northeastern China[J]. Journal of Beijing Forestry University, 2021, 43(8): 41-49. DOI: 10.12171/j.1000-1522.20200356

    Seedling dynamics and environmental driving factors of coniferous and broadleaved mixed forest in Jiaohe, Jilin Province of northeastern China

    More Information
    • Received Date: November 16, 2020
    • Revised Date: January 01, 2021
    • Available Online: June 18, 2021
    • Published Date: August 30, 2021
    •   Objective  In this paper, taking the coniferous and broadleaved mixed forest at different development stages in Jiaohe, Jilin Province of northeastern China as research object, the interannual variation of kernel density estimation curve of seedling density was compared and analyzed. The relative effects of marginal changes of soil factors and distribution changes of soil factors on the dynamics of seedling density distribution were discussed.
        Method  Seedling investigation sample plots were systematically arranged in 420 m × 520 m half-matured forest (HF) sample plots and 500 m × 840 m mature forest (MF) sample plots. Quantile regression and counterfactual decomposition were used to test the marginal effects of environmental factors on seedling density at different quantile levels, and then to identify the leading factors resulting in the unequal change of seedling density.
        Result  The kernel density estimation curve of seedling density showed a positive skewed distribution with peak value shifting to the left and long tail extending to the right. At the high quantile of θ = 0.90, the change value of seedling density was −5.9 in HF sample plots and −2.6 in MF sample plots. The change value of seedling density in HF sample plot was 5.8 when θ = 0.75, and that in MF sample plot was 2 when θ = 0.50 and θ = 0.75. The greater change of seedling density at high quantile reflects the inequality of probability distribution of the right single tail. The relative effects of coefficient effect and covariant effect on seedling density distribution were different in varied estimated quantiles. The coefficient effect in HF sample plots had a high explanation on all estimated quantiles; in MF sample plots, the covariant effect had 89% explanation for the change of seedling density at θ = 0.50 quantile. In other estimated quantiles, the explanation of coefficient effect was higher. Therefore, the relative effect of distribution of soil factors on the distribution of seedling density was greater, and the marginal change of soil factors was the main factor leading to unequal change of seedling density. Most of the changes in the distribution of available nitrogen, available phosphorus and available potassium in soil explained less than 30% of the changes in seedling density at each estimated quantile, while soil water content and soil pH had a relatively greater effect on the change of seedling density.
        Conclusion  The interannual variation of seedling density is unequal in different quantiles, especially in the high quantile. The marginal change of soil factors and the distribution of soil factors determine the survival dynamics of seedlings.
    • [1]
      韩有志, 王政权. 森林更新与空间异质性[J]. 应用生态学报, 2002, 13(5):615−619. doi: 10.3321/j.issn:1001-9332.2002.05.024

      Han Y Z, Wang Z Q. Spatial heterogeneity and forest regeneration[J]. Chinese Journal of Applied Ecology, 2002, 13(5): 615−619. doi: 10.3321/j.issn:1001-9332.2002.05.024
      [2]
      潘春柳, 赖家业, 黎向东, 等. 单性木兰种子雨与天然更新的初步调查[J]. 生态学杂志, 2008, 27(12):2235−2239.

      Pan C L, Lai J Y, Li X D, et al. Seed rain and natural regeneration of Kmeria septentrionalis in Mulun of Guangxi[J]. Chinese Journal of Ecology, 2008, 27(12): 2235−2239.
      [3]
      Cairns S C. Introduction to population ecology[J]. Austral Ecology, 2006, 31(7): 907−908. doi: 10.1111/j.1442-9993.2006.01674.x
      [4]
      彭闪江, 黄忠良, 彭少麟, 等. 植物天然更新过程中种子和幼苗死亡的影响因素[J]. 广西植物, 2004, 24(2):113−121. doi: 10.3969/j.issn.1000-3142.2004.02.004

      Peng S J, Huang Z L, Peng S L, et al. Factors influencing mortality of seed and seedling in plant nature regeneration process[J]. Guihaia, 2004, 24(2): 113−121. doi: 10.3969/j.issn.1000-3142.2004.02.004
      [5]
      Poorter L. Are species adapted to their regeneration niche, adult niche, or both[J]. American Naturalist, 2007, 169(4): 433−442. doi: 10.1086/512045
      [6]
      张健, 李步杭, 白雪娇, 等. 长白山阔叶红松林乔木树种幼苗组成及其年际动态[J]. 生物多样性, 2009, 17(4):385−396. doi: 10.3724/SP.J.1003.2009.09102

      Zhang J, Li B H, Bai X J, et al. Composition and interannual dynamics of tree seedlings in broad-leaved Korean pine (Pinus koraiensis) mixed forest in Changbai Mountain[J]. Biodiversity Science, 2009, 17(4): 385−396. doi: 10.3724/SP.J.1003.2009.09102
      [7]
      姚杰, 闫琰, 张春雨, 等. 吉林蛟河针阔混交林乔木幼苗组成与月际动态[J]. 植物生态学报, 2015, 39(7):717−725. doi: 10.17521/cjpe.2015.0068

      Yao J, Yan Y, Zhang C Y, et al. Composition and monthly dynamics of tree seedlings in a coniferous and broad-leaved mixed forest in Jiaohe, Jilin Province, China[J]. Chinese Journal of Plant Ecology, 2015, 39(7): 717−725. doi: 10.17521/cjpe.2015.0068
      [8]
      赵雪, 刘妍妍, 金光泽. 地形对阔叶红松林幼苗更新的影响[J]. 应用生态学报, 2013, 24(11):3035−3042.

      Zhao X, Liu Y Y, Jin G Z. Effects of topography on seedling regeneration in a mixed broadleaved-Korean pine forest in Xiaoxing’an Mountains, Northeast China[J]. Chinese Journal of Applied Ecology, 2013, 24(11): 3035−3042.
      [9]
      Lebrija-Trejos E, Wright S J, Hernández A, et al. Does relatedness matter? Phylogenetic density-dependent survival of seedlings in a tropical forest[J]. Ecology, 2014, 95: 940−951. doi: 10.1890/13-0623.1
      [10]
      Moran E V, Das A J, Keeley J E, et al. Negative impacts of summer heat on Sierra Nevada tree seedlings[J]. Ecosphere, 2019, 10(6): 1−22.
      [11]
      陈永富. 森林天然更新障碍机制研究进展[J]. 世界林业研究, 2012, 25(2):41−45.

      Chen Y F. Research progress of natural regeneration barrier of forest[J]. World Forestry Research, 2012, 25(2): 41−45.
      [12]
      康冰, 刘世荣, 蔡道雄, 等. 南亚热带不同植被恢复模式下土壤理化性质[J]. 应用生态学报, 2010, 21(10):2479−2486.

      Kang B, Liu S R, Cai D X, et al. Soil physical and chemical characteristics under different vegetation restoration patterns in China south subtropical area[J]. Chinese Journal of Applied Ecology, 2010, 21(10): 2479−2486.
      [13]
      苏松锦, 刘金福, 何中声, 等. 格氏栲天然林土壤养分空间异质性[J]. 生态学报, 2012, 32(18):5673−5682. doi: 10.5846/stxb201108041146

      Su S J, Liu J F, He Z S, et al. The spatial heterogeneity of soil nutrients in a mid-subtropical Castanopsis kawakamii natural forest[J]. Acta Ecologica Sinica, 2012, 32(18): 5673−5682. doi: 10.5846/stxb201108041146
      [14]
      刘帅, 廖嘉星, 肖翠, 等. 长白山次生针阔混交林乔木幼苗存活的影响因素分析[J]. 植物生态学报, 2016, 40(7):711−722. doi: 10.17521/cjpe.2015.0366

      Liu S, Liao J X, Xiao C, et al. Effects of biotic neighbors and habitat heterogeneity on tree seedling survival in a secondary mixed conifer and broad-leaved forest in Changbai Mountain[J]. Chinese Journal of Plant Ecology, 2016, 40(7): 711−722. doi: 10.17521/cjpe.2015.0366
      [15]
      Wright S J, Yavitt J B, Wurzburger N, et al. Potassium, phosphorus, or nitrogen limit root allocation, tree growth, or litter production in a lowland tropical forest[J]. Ecology, 2011, 92(8): 1616−1625. doi: 10.1890/10-1558.1
      [16]
      闫琰, 张新娜, 姚杰, 等. 吉林蛟河不同演替阶段针阔混交林乔木幼苗数量组成及其时间动态[J]. 植物生态学报, 2016, 40(2):127−139. doi: 10.17521/cjpe.2015.0365

      Yan Y, Zhang X N, Yao J, et al. Composition and temporal dynamics of tree seedlings at different successional stages of conifer and broad-leaved mixed forests in Jiaohe, Jilin Province, China[J]. Chinese Journal of Plant Ecology, 2016, 40(2): 127−139. doi: 10.17521/cjpe.2015.0365
      [17]
      Koenker R, Bassett G. Regression quantiles[J]. Econometrica, 1978, 46: 33−50. doi: 10.2307/1913643
      [18]
      Machado J A F, Mata J. Counterfactual decomposition of changes in wage distributions using quantile regression[J]. Journal of Applied Econometrics, 2005, 20: 445−465. doi: 10.1002/jae.788
      [19]
      Mcmillen D. McSpatial: nonparametric spatial data analysis [Z/OL]. R package version 2.0. 2013 [2020−09−11]. http://CRANR-project.org/package=McSpatial.
      [20]
      樊后保, 臧润国, 李德志. 蒙古栎种群天然更新的研究[J]. 生态学杂志, 1996, 15(3):15−20.

      Fan H B, Zang R G, Li D Z. Natural regeneration of Mongolian oak population[J]. Chinese Journal of Ecology, 1996, 15(3): 15−20.
      [21]
      Yan Y, Zhang C Y, Wang Y X, et al. Drivers of seedling survival in a temperate forest and their relative importance at three stages of succession[J]. Ecology and Evolution, 2015, 5: 4287−4299. doi: 10.1002/ece3.1688
      [22]
      尹华军, 程新颖, 赖挺, 等. 川西亚高山65年人工云杉林种子雨、种子库和幼苗定居研究[J]. 植物生态学报, 2011, 35(1):35−44. doi: 10.3724/SP.J.1258.2011.00035

      Yin H J, Cheng X Y, Lai T, et al. Seed rain, soil seed bank and seedling regeneration in a 65-year Picea asperata plantation in subalpine coniferous, western Sichuan, China[J]. Chinese Journal of Plant Ecology, 2011, 35(1): 35−44. doi: 10.3724/SP.J.1258.2011.00035
      [23]
      郝彦宾, 王艳芬, 崔骁勇. 干旱胁迫降低了内蒙古羊草草原的碳累积[J]. 植物生态学报, 2010, 34(8):898−906. doi: 10.3773/j.issn.1005-264x.2010.08.002

      Hao Y B, Wang Y F, Cui X Y. Drought stress reduces the carbon accumulation of the Leymus chinensis steppe in Inner Mongolia, China[J]. Chinese Journal of Plant Ecology, 2010, 34(8): 898−906. doi: 10.3773/j.issn.1005-264x.2010.08.002
      [24]
      Tao F L, Hayashi Y, Zhang Z, et al. Global warming, rice production, and water use in China: developing a probabilistic assessment[J]. Agricultural and Forest Meteorology, 2008, 148(1): 94−110. doi: 10.1016/j.agrformet.2007.09.012
      [25]
      卢丽萍, 程丛兰, 刘伟东, 等. 30年来我国农业气象灾害对农业生产的影响及其空间分布特征[J]. 生态环境学报, 2009, 18(4):1573−1578. doi: 10.3969/j.issn.1674-5906.2009.04.062

      Lu L P, Cheng C L, Liu W D, et al. Effect of the agricultural meteorological disasters on agricultural production and its spatial distribution characteristics during the last 30 years in China[J]. Ecology and Environmental Sciences, 2009, 18(4): 1573−1578. doi: 10.3969/j.issn.1674-5906.2009.04.062
      [26]
      Morgan J M. Osmoregulation and water stress in higher plants[J]. Annual Review of Plant Physiology, 1984, 35(1): 299−319. doi: 10.1146/annurev.pp.35.060184.001503
      [27]
      Hare P D, Cress W A, van Staden J. Dissecting the roles of osmolyte accumulation during stress[J]. Plant, Cell and Environment, 1998, 21(6): 535−553. doi: 10.1046/j.1365-3040.1998.00309.x
      [28]
      官守鹏, 陈芳清, 吕坤, 等. 疏花水柏枝幼苗生物量与构件对模拟土壤地下水位变化的响应[J]. 植物科学学报, 2019, 37(4):485−494.

      Guan S P, Chen F Q, Lü K, et al. Responses of biomass and components of Myricaria laxiflora seedlings to simulated soil water level changes[J]. Plant Science Journal, 2019, 37(4): 485−494.
      [29]
      李晗, 杨福孙, 李昌珍, 等. 不同土壤含水量下槟榔幼苗形态和生理特性[J]. 热带作物学报, 2020, 41(6):1132−1137. doi: 10.3969/j.issn.1000-2561.2020.06.009

      Li H, Yang F S, Li C Z, et al. Morphological and physiological characteristics of Areca catechu L. seedlings under different soil moisture contents[J]. Chinese Journal of Tropical Crops, 2020, 41(6): 1132−1137. doi: 10.3969/j.issn.1000-2561.2020.06.009
      [30]
      王鑫, 余新晓, 贾国栋, 等. 不同土壤水分条件下侧柏幼苗的生理活动及氮素分配策略[J]. 水土保持学报, 2020, 34(3):311−317.

      Wang X, Yu X X, Jia G D, et al. Physiological activities and nitrogen allocation strategies of Platyccladus orientalis seedlings under different soil water conditions[J]. Journal of Soil and Water Conservation, 2020, 34(3): 311−317.
      [31]
      周思婕, 王平, 张敏, 等. 酸胁迫对马尾松幼苗生长及根际铝形态的影响[J]. 应用与环境生物学报, 2019, 25(6):1292−1300.

      Zhou S J, Wang P, Zhang M, et al. Effects of acid stress on growth and aluminum speciation in the rhizosphere of Masson pine (Pinus massoniana L.) seedlings[J]. Chinese Journal of Applied and Environmental Biology, 2019, 25(6): 1292−1300.
      [32]
      Dyderski M, Gazda A, Hachułka M, et al. Impacts of soil conditions and light availability on natural regeneration of Norway spruce Picea abies (L.) H. Karst. in low-elevation mountain forests[J]. Annals of Forest Science, 2018, 75(4): 91. doi: 10.1007/s13595-018-0775-x
      [33]
      刘奎, 黄宝榴, 陈凯, 等. 望天树天然林幼苗更新及生长与环境因子的关系[J]. 湖南师范大学自然科学学报, 2018, 41(4):47−53.

      Liu K, Huang B L, Chen K, et al. Relationship between seedling regeneration, growth and environmental factors in Parashorea chinensis natural forest[J]. Journal of Natural Science of Hunan Normal University, 2018, 41(4): 47−53.
      [34]
      吴富勤, 张新军, 申仕康, 等. 土壤养分与水分对猪血木幼苗生长及生理特性的影响[J]. 广东农业科学, 2015, 20:45−51. doi: 10.3969/j.issn.1004-874X.2015.06.009

      Wu F Q, Zhang X J, Shen S K, et al. Effect of soil nutrition and water content on the seedling growth and physiological characteristics of Euryodendron excelsum H. T. change[J]. Guangdong Agricultural Sciences, 2015, 20: 45−51. doi: 10.3969/j.issn.1004-874X.2015.06.009
      [35]
      任学敏, 杨改河, 秦晓威, 等. 巴山冷杉-牛皮桦混交林乔木更新及土壤化学性质对更新的影响[J]. 林业科学, 2012, 48(1):1−6. doi: 10.11707/j.1001-7488.20120101

      Ren X M, Yang G H, Qin X W, et al. Tree regeneration in an Abies fargesii-Betula utilis mixed forest and effects of the soil chemical properties on regeneration[J]. Scientia Silvae Sinicae, 2012, 48(1): 1−6. doi: 10.11707/j.1001-7488.20120101
      [36]
      黄婷, 张莹, 陈建忠, 等. 育苗密度对千年桐幼苗N、P利用和生物量积累的影响[J]. 西南林业大学学报, 2013, 33(5):17−23. doi: 10.3969/j.issn.2095-1914.2013.05.003

      Huang T, Zhang Y, Chen J Z, et al. Effect of seedling density on nitrogen and phosphorus utilization and biomass accumulation of Aleurites montana seedlings[J]. Journal of Southwest Forestry University, 2013, 33(5): 17−23. doi: 10.3969/j.issn.2095-1914.2013.05.003
    • Related Articles

      [1]Zhang Luyue, Liu Yanhong, Han Dongqing. Differences in growth and adaptive strategies between male and female plants of Cercidiphyllum japonicum[J]. Journal of Beijing Forestry University, 2024, 46(12): 71-81. DOI: 10.12171/j.1000-1522.20230263
      [2]Liu Xiao, Yu Zhiming, Zhang Yang, Guo Jin, Zeng Guangchen. Evaluation of heat transfer performance of engineered wood flooring with built-in electric heating semi-conductive layer[J]. Journal of Beijing Forestry University, 2023, 45(5): 155-162. DOI: 10.12171/j.1000-1522.20220503
      [3]Liu Di, Sun Caowen, Wang Lixian, Jia Liming. Evaluation on field heat resistance of Sorbus pohuashanensis clonal seedlings introduced from different regions[J]. Journal of Beijing Forestry University, 2020, 42(4): 21-31. DOI: 10.12171/j.1000-1522.20190266
      [4]Liu Jingjing, Ma Lan, Li Junyou, Chen Peiyan, Zhang Jinge, Sun Zhanwei, Yan Lin, Zhang Dong. Experimental study on hydrodynamic characteristics of overland flow under different resistance conditions[J]. Journal of Beijing Forestry University, 2019, 41(8): 115-123. DOI: 10.13332/j.1000-1522.20190070
      [5]XU Kang, L Jian-xiong, LI Xian-jun, WU Yi-qiang. Effect of heat treatment on dimensional stability of phenolic resin impregnated poplar wood.[J]. Journal of Beijing Forestry University, 2015, 37(9): 70-77. DOI: 10.13332/j.1000-1522.20150019
      [6]WANG Yan-ping, LIU Mei-qin, SHI Jing, LIU Sheng-li, CHEN Yu-zhen, LU Cun-fu. Enhanced tolerance against heat stress of Escherichia coli cells by overexpressing an Ammopiptanthus mongolicus heat stress associated protein gene AmHsa32.[J]. Journal of Beijing Forestry University, 2012, 34(5): 37-43.
      [7]LI Yan-jun, TANG Rong-qiang, BAO Bin-fu, SUN Hui. Mechanical properties and dimensional stability of heat-treated Chinese fir[J]. Journal of Beijing Forestry University, 2010, 32(4): 232-236.
      [8]HUANG Rong-feng, Lv Jian-xiong, CAO Yong-jian, ZHAO Xiu, ZHAO You-ke, ZHOU Yong-dong, WU Yu-zhang. Impact of heat treatment on chemical composition of Chinese white poplar wood.[J]. Journal of Beijing Forestry University, 2010, 32(3): 155-160.
      [9]WANG Guo-xia, CAO Fu-liang, FANG Yan-ming. Genetic diversity of ancient male ginkgo trees by ISSR analysis[J]. Journal of Beijing Forestry University, 2010, 32(2): 39-45.
      [10]SUN Xiao-xia, XIE Xiang-ming, WU Yu-ying, LIU Ya-jie, HE Xiao-qing. Induction of xylanase from Strepotmyces albus and analysis of thermostability and alkali-tolerance[J]. Journal of Beijing Forestry University, 2005, 27(3): 72-75.
    • Cited by

      Periodical cited type(1)

      1. 陈铭,郭琳,郑笑,姜明云,王茹,丁雨龙,高志民,魏强. 中国15个主产区毛竹纤维形态比较. 南京林业大学学报(自然科学版). 2018(06): 7-12 .

      Other cited types(2)

    Catalog

      Article views (985) PDF downloads (86) Cited by(3)

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return