• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Li Lijing, Zhang Zhiwei, Xue Yun, Zhang Jiahang, Han Liebao, Xu Lixin. Effects of low temperature stress on chlorophyll metabolism of Zoysia japonica[J]. Journal of Beijing Forestry University, 2022, 44(2): 91-99. DOI: 10.12171/j.1000-1522.20200400
Citation: Li Lijing, Zhang Zhiwei, Xue Yun, Zhang Jiahang, Han Liebao, Xu Lixin. Effects of low temperature stress on chlorophyll metabolism of Zoysia japonica[J]. Journal of Beijing Forestry University, 2022, 44(2): 91-99. DOI: 10.12171/j.1000-1522.20200400

Effects of low temperature stress on chlorophyll metabolism of Zoysia japonica

More Information
  • Received Date: December 14, 2020
  • Revised Date: March 09, 2021
  • Accepted Date: December 14, 2021
  • Available Online: December 21, 2021
  • Published Date: February 24, 2022
  •   Objective  Zoysia japonica is a warm season lawn grass, which has many excellent characters and is widely used. One of the limiting factors for Z. japonica is its early leaf de-greening in late autumn and early winter in the north. The objective of this study was to investigate the underlying mechanism of leaf de-greening process of Z. japonica in response to low temperature stress.
      Method  In this experiment, Z. japonica was exposed to light for 14 h (4 ℃) and dark for 10 h (2 ℃) in a growth chamber to simulate cold stress. Chlorophyll content, the activities of key enzymes in chlorophyll synthesis and degradation pathway and the expression of genes related to chlorophyll metabolism were studied.
      Result  Z. japonica leaves turned yellow and curly under low temperature stressed conditions. The concentrations of chlorophyll, chlorophyll a, chlorophyll b , the ratio of chlorophyll a to chlorophyll b , the activities of ALAD, PBGD and the content of PBG in low temperature treatment group were significantly lower than CK. The activity of MDCase increased significantly. Chlorophyll synthesis related genes (except ZjMgCH2) were down-expressed and chlorophyll degradation related genes (except ZjNYC1) were high-expressed.
      Conclusion  Chlorophyll synthesis decreases and chlorophyll degradation increases in Z. japonica under low temperature stress. In addition, MDCase is proved to be the key factor in the chlorophyll degradation pathway of Z. japonica. This study provides a theoretical basis for understanding mechanisms underlying the stay-green characters of Z. japonica. At the same time, it has great significance to breeding variety of Z. japonica with stay-green character.
  • [1]
    李亚, 刘建秀, 向其伯. 结缕草属种质资源研究进展[J]. 草业学报, 2002, 11(2): 7−14. doi: 10.3321/j.issn:1004-5759.2002.02.002

    Li Y, Liu J X, Xiang Q B. Progress in zoysiagrasses germplasm resources research[J]. Acta Prataculture Sinica, 2002, 11(2): 7−14. doi: 10.3321/j.issn:1004-5759.2002.02.002
    [2]
    刘美君, 丁鹿, 王丽娜, 等. 低温胁迫对紫花苜蓿根系呼吸作用的影响[J]. 草原与草坪, 2020, 40(4): 22−26, 33.

    Liu M J, Ding L, Wang L N, et al. Effect of low temperature stress on respiration of root in Medicago sativa[J]. Grassland and Turf, 2020, 40(4): 22−26, 33.
    [3]
    高茜, 徐洪雨, 李振松, 等. 低温胁迫对紫花苜蓿种子萌发的影响[J]. 草原与草坪, 2020, 40(4): 34−39, 46.

    Gao Q, Xu H Y, Li Z S, et al. Effects of chilling stress on seed germination of alfalfa[J]. Grassland and Turf, 2020, 40(4): 34−39, 46.
    [4]
    李小安, 周青平. 低温胁迫对扁蓿豆的脯氨酸含量和 POD、SOD 酶活性的影响[J]. 青海大学学报 (自然科学版), 2009, 27(1): 60−63.

    Li X A, Zhou Q P. The effect of chilling stress on SOD, POD activity and proline content of Melilotus ruthenicus[J]. Journal of Qinghai University (Nature Science), 2009, 27(1): 60−63.
    [5]
    李小安. 低温胁迫对青藏扁蓿豆与和田苜蓿种子游离脯氨酸和可溶性糖含量的影响[J]. 青海大学学报 (自然科学版), 2011, 29(4): 10−13.

    Li X A. Effects of chilling stress on proline and soluble sugar content of Melilotus ruthenicus and Hetian alfalfa[J]. Journal of Qinghai University (Nature Science), 2011, 29(4): 10−13.
    [6]
    Wei S J, Du Z L, Gao F, et al. Global transcriptome profiles of ‘Meyer’ zoysiagrass in response to cold stress[J/OL]. PLoS One, 2015, 10(6): 0131153 [2020−06−13]. https://doi.org/10.1371/journal.pone.0131153.
    [7]
    Mishra D, Shekhar S, Chakraborty S, et al. Wheat 2-Cys peroxiredoxin plays a dual role in chlorophyll biosynthesis and adaptation to high temperature[J]. The Plant Journal, 2021, 105(5): 1374−1389. doi: 10.1111/tpj.15119
    [8]
    Zhang J, Li H, Jiang Y W, et al. Natural variation of physiological traits, molecular markers, and chlorophyll catabolic genes associated with heat tolerance in perennial ryegrass accessions. [J/OL]. BMC Plant Biology, 2020, 20(1):8[2020−10−13]. https://doi.org/10.1186/s12870-020-02695-8.
    [9]
    Zhang J Y, Sui C H, Liu H M, et al. Effect of chlorophyll biosynthesis-related genes on the leaf color in Hosta (Hosta plantaginea Aschers) and tobacco (Nicotiana tabacum L.)[J]. BMC Plant Biology, 2021, 21(1): 21−45. doi: 10.1186/s12870-020-02811-8
    [10]
    李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000.

    Li H S. Principle and technology of plant physiological and biochemical experiment[M]. Beijing: Higher Education Press, 2000.
    [11]
    李晓东, 谭海丽, 尤宏. 海洋酸度变化下孔石莼对农药硫丹的生态响应研究[J]. 中国海洋大学学报(自然科学版), 2019, 49(4): 71−81.

    Li X D, Tan H L, You H. The research on the ecotoxiology of ocean acidification and endosulfan in Ulva pertusa[J]. Periodical of Ocean University of China (Nature Science), 2019, 49(4): 71−81.
    [12]
    Bogorad L, Colowick S P, Kaplan N O. Methods in enzymology 5[M]. New York: Academic Press, 1962: 885−891.
    [13]
    Mauzerall D, Granick S. The occurence and determination of δ-aminolevulinic acid and porphobilinogen in urine[J]. Biological Chemistry, 1956, 219: 435−446. doi: 10.1016/S0021-9258(18)65809-0
    [14]
    Takara Biomedical Technology. TaKaRa mini BEST plant RNA extraction kit[EB/OL]. [2020−10−15]. http://www.takarabiomed.com.cn/DownLoad/9769.pdf.
    [15]
    Takara Biomedical Technology. PrimeScript TMRT reagent kit with gDNA eraser (Perfect Real Time)[EB/OL]. [2020−10−15]. http://www.takarabiomed.com.cn/DownLoad/RR047A.pdf.
    [16]
    Takara Biomedical Technology. TB GreenTM Premix Ex TaqTM (Tli RNaseH Plus)[EB/OL]. [2020−10−15]. http://www.takarabiomed.com.cn/DownLoad/RR420A.pdf.
    [17]
    周黄磊, 黄升谋. 库源关系对水稻叶绿素含量及叶绿素a/b值的影响[J]. 绿色科技, 2017(24): 147−149.

    Zhou H L, Huang S M. Effects of sink source relationship on chlorophyll content and photosynthetic characteristics of rice[J]. Green Technology, 2017(24): 147−149.
    [18]
    李利红, 李先芳, 马锋旺. 杏树花芽分化期叶绿素含量·比叶重和叶绿素a/b的研究[J]. 安徽农业科学, 2006(19): 4917−4918, 4920. doi: 10.3969/j.issn.0517-6611.2006.19.048

    Li L H, Li X F, Ma F W. Study on the content of chlorophyll, the variation of SLW and the value of chlorophyll a/b in differentiation[J]. Journal of Anhui Agricultural Sciences, 2006(19): 4917−4918, 4920. doi: 10.3969/j.issn.0517-6611.2006.19.048
    [19]
    邵麟惠, 杨占武, 于应文, 等. 柴达木盆地6种灌木主要渗透调节物质分布特征和抗旱性研究[J]. 草原与草坪, 2007(1): 19−23. doi: 10.3969/j.issn.1009-5500.2007.01.005

    Shao L H, Yang Z W, Yu Y W, et al. Distribution characteristics of mainly osmotic adjustment substance of six shrubs and their drought-resistance in Tsaidam Basin[J]. Grassland and Turf, 2007(1): 19−23. doi: 10.3969/j.issn.1009-5500.2007.01.005
    [20]
    赵明范, 葛成, 翟志中. 干旱地区次生盐碱地主要造林树种抗盐指标的确定及耐盐能力排序[J]. 林业科学研究, 1997, 10(2): 87−91.

    Zhao M F, Ge C, Zhai Z Z. Determination of salt resistance index and sorting of salt tolerance ability of main afforestation tree species in secondary saline-alkali land in arid[J]. Forestry Scientific Research, 1997, 10(2): 87−91.
    [21]
    伍泽堂. 超氧自由基与叶片衰老时叶绿素破坏的关系(简报)[J]. 植物生理学报, 1991(4): 277−279.

    Wu Z T. Relationship between superoxide radical and chlorophyll destruction during leaf senescence (brief report)[J]. Journal of Plant Physiology, 1991(4): 277−279.
    [22]
    毛晶晶, 李泽娇, 赵雨晴, 等. 低温胁迫对玉米转绿过程中叶绿素生物合成的影响[J]. 四川农业大学学报, 2019, 37(5): 617−622.

    Mao J J, Li Z J, Zhao Y Q, et al. The effects of low temperature on chlorophyll synthesis during greening of maize[J]. Journal of Sichuan Agricultural University, 2019, 37(5): 617−622.
    [23]
    韩巧红. 低温胁迫对水稻叶绿素生物合成及叶绿体发育的影响[D]. 雅安: 四川农业大学, 2017.

    Han Q H. Effects of low temperature stress on chlorophyll biosynthesis and chloroplast development in rice[D]. Ya’an: Sichuan Agricultural University, 2017.
    [24]
    Tang L, Okazawa A, Fukusaki E, et al. Removal of magnesium by Mg-dechelatase is a major step in the chlorophyll-degrading pathway in Ginkgo biloba in the process of autumnal tints[J]. Ztschrift Für Naturforschung C, 2000, 55(11−12): 923−926.
    [25]
    王阳光. 采后青梅果实叶绿素降解机制及保绿措施的研究[D]. 杭州: 浙江大学, 2003.

    Wang Y G. Study on chlorophyll degradation mechanism and green preservation measures of postharvest green plum fruit[D]. Hangzhou: Zhejiang University, 2003.
    [26]
    Yamauchi N, Watada A E. Regulated chlorophyll degradation in spinach leaves during storage[J]. Journal of the American Society for Horticultural Science American Society for Horticultural Science, 1991, 116(1): 58−62. doi: 10.21273/JASHS.116.1.58
    [27]
    Yamauchi N, Watada A E. Pigment changes in parsley leaves during storage in controlled or ethylene containing atmosphere[J]. Journal of Food Science, 2010, 58(3): 616−618.
    [28]
    Fang Z, Bouwkamp J C, Theophanes S. Chlorophyllase activities and chlorophyll degradation during leaf senescence in non-yellowing mutant and wild type of Phaseolus vulgaris L.[J]. Journal of Experimental Botany, 1998, 49: 503−510.
    [29]
    Minguez-Mosquera M I, Gallardo-Guerrero L. Role of chlorophyllase in chlorophyll metabolism in olives cv. Gordal[J]. Phytochemistry, 1996, 41(3): 691−697. doi: 10.1016/0031-9422(95)00708-3
    [30]
    Almela L, Fernández-López J A, Marı́a J R. High-performance liquid chromatographic screening of chlorophyll derivatives produced during fruit storage[J]. Journal of Chromatography A, 2000, 870(1): 483−489.
    [31]
    Jespersen D, Zhang J, Huang B R. Chlorophyll loss associated with heat-induced senescence in bentgrass[J]. Plant Science, 2016, 249: 1−12. doi: 10.1016/j.plantsci.2016.04.016
    [32]
    Kaewmanee T, Benjakul S, Visessanguan W. Effect of salting processes on chemical composition, textural properties and microstructure of duck egg[J]. Journal of the Science of Food and Agriculture, 2010, 89(4): 625−633.
    [33]
    邹强, 赵婷, 朴一龙, 等. 野生软枣猕猴桃冷藏期间生理变化与叶绿素降解相关性研究[J]. 食品工业科技, 2012(23): 318−320, 353.

    Zou Q, Zhao T, Piao Y L, et al. Study on the relationship between physiological changes and chlorophyll degradation of Actinidia arguta Sieb. et Zucc during cold storage[J]. Food Industry Science and Technology, 2012(23): 318−320, 353.
  • Related Articles

    [1]Lei Yongrui, Lin Xixiang, Niu Wenxi, Li Zhuqi, Chen Hui, Li Jianzhang. Preparation and property of cottonseed meal adhesive reinforced by low-temperature defatted soybean meal[J]. Journal of Beijing Forestry University, 2024, 46(6): 137-144. DOI: 10.12171/j.1000-1522.20240082
    [2]Liu Jiaqi, Zhao Lijuan, Liu Lei, Huang Ruifen, Han Youzhi, Zhang Zhiwei, Cui Shaopeng, Gao Ruihe. Physiological adaptation mechanism of 4-age wintering larvae of Monochamus alternatus (Coleoptera: Cerambycidae) in response to low temperature stress[J]. Journal of Beijing Forestry University, 2024, 46(4): 74-83. DOI: 10.12171/j.1000-1522.20220438
    [3]Zhang Xing, Wang Miaomiao, Li Guolei, Bai Zhengjia, Yao Fei. Photosynthetic response of Quercus variabilis and Quercus aliena var. acuteserrata seedlings to high temperature stress[J]. Journal of Beijing Forestry University, 2022, 44(7): 25-35. DOI: 10.12171/j.1000-1522.20210240
    [4]Xia Wen, Yin Zixu, Guan Fengying. Physiological response characteristics of Phyllostachys aureosulcata and its varieties after natural extreme low temperature[J]. Journal of Beijing Forestry University, 2022, 44(3): 75-84. DOI: 10.12171/j.1000-1522.20210330
    [5]Huo Xiaowei, Xu Qianhui, Wang Yanwei. Prediction of miRNA target genes in poplar and the expression analysis under low nitrogen stress[J]. Journal of Beijing Forestry University, 2019, 41(8): 28-37. DOI: 10.13332/j.1000-1522.20190205
    [6]ZHAI Fei-fei, LIU Jun-xiang, MAO Jin-mei, PENG Xiang-yong, HAN Lei, SUN Zhen-yuan. Physiological differences and variations in male and female plants of Salix viminalis under high temperature stress[J]. Journal of Beijing Forestry University, 2016, 38(1): 43-49. DOI: 10.13332/j.1000--1522.20150316
    [7]GAO Qiong, NIU Shi-hui, LI Wei, CHEN Xiao-yang. Regulation of low temperature stress on gibberellin metabolism[J]. Journal of Beijing Forestry University, 2014, 36(6): 135-141. DOI: 10.13332/j.cnki.jbfu.2014.06.025
    [8]WANG Qi, YU Xiao-nan.. Physiological response to low temperature stress and evaluation of cold resistance of three color-leafed trees.[J]. Journal of Beijing Forestry University, 2013, 35(5): 104-109.
    [9]JIANG Xi-bing, SONG Yue-peng, MA Kai-feng, GUO Bin, AN Xinmin, ZHANG Zhi-yi, SHI Zhi-wei, XU Lan-li, ZHANG You-hui. Changes of several physiological indices in hybrid clones of Populus deltoides Bartr. ×P. ussuriensis Kom. under low temperature stress.[J]. Journal of Beijing Forestry University, 2012, 34(1): 58-63.
    [10]QI Chun-hui, HAN Lie-bao, LIANG Xiao-hong, CENG Hui-ming, LIU Jun. Transgenic Zoysia japonica plants obtained by biolistic bombardment transformation[J]. Journal of Beijing Forestry University, 2006, 28(3): 71-75.
  • Cited by

    Periodical cited type(8)

    1. 林立,何月秋,王豪,陆云峰,王建军,黄华宏. 代谢组与转录组联合解析赤皮青冈叶片黄化变异机制. 广西植物. 2024(07): 1319-1336 .
    2. 李可悦,王丹丹,刘江涛,申琼,盖少杰,武峻新. 西葫芦嫩瓜皮叶绿素合成代谢与其皮色形成的关联性研究. 植物遗传资源学报. 2024(08): 1336-1346 .
    3. 靳程,曹孟岩,杨衡荣,项瑶,杨建峰,时波,黄颂谊,辛国荣. 施肥和修剪对‘兰引Ⅲ号’草坪冬季质量及土壤特性的影响. 草地学报. 2024(09): 3006-3016 .
    4. 邓皓予,吴一超,符腾,杨在君,乌日娜. 甘氨酸喷施下Cd对川麦28生理生化过程的影响. 华北农学报. 2024(S1): 63-71 .
    5. 刘冬杰,肖波,曹秀珑. 微生物菌剂对草坪草抗寒性的研究进展. 草学. 2023(01): 11-14 .
    6. 何海鹏,南丽丽,马彪,夏静,姚宇恒,陈洁,汪堃. 红豆草种质苗期耐寒性筛选及评价. 中国草地学报. 2023(05): 41-49 .
    7. 廖浩钦,谢文刚. 牧草应对低温胁迫机制研究进展. 中国草地学报. 2023(12): 99-111 .
    8. 王明莹. 不同品种苜蓿对低温胁迫的生理响应及抗寒性评价. 呼伦贝尔学院学报. 2022(03): 84-88+128 .

    Other cited types(9)

Catalog

    Article views (1249) PDF downloads (131) Cited by(17)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return