• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Han Liping, Wang Qingping, Zhang Jingpeng, Jiang Mingliang, Cao Jinzhen. Analytical method of IPBC by HPLC and leachability in treated wood and bamboo[J]. Journal of Beijing Forestry University, 2021, 43(5): 140-146. DOI: 10.12171/j.1000-1522.20210049
Citation: Han Liping, Wang Qingping, Zhang Jingpeng, Jiang Mingliang, Cao Jinzhen. Analytical method of IPBC by HPLC and leachability in treated wood and bamboo[J]. Journal of Beijing Forestry University, 2021, 43(5): 140-146. DOI: 10.12171/j.1000-1522.20210049

Analytical method of IPBC by HPLC and leachability in treated wood and bamboo

More Information
  • Received Date: February 09, 2021
  • Revised Date: March 09, 2021
  • Available Online: April 08, 2021
  • Published Date: May 26, 2021
  •   Objective  In order to explore the leachability of iodopropynyl butylcarbamate (IPBC) formulations, an analytical method of IPBC by high performance liquid chromatography (HPLC) was established and used for the determination of IPBC leaching rate of treated wood and bamboo, aiming to determine an analytical method of IPBC by HPLC and the leachability of IPBC.
      Method  UV detector and C18 column (150 mm × 4.6 mm (inner diameter), 5 μm) were used for detection. The chromatographic conditions, such as detection wavelength, mobile phase composition and ratio, column temperature and mobile phase flow rate were investigated and discussed, so as to optimize the chromatographic conditions suitable for the analysis of IPBC. The IPBC standard solution was detected by external standard method. The standard curve, precision and accuracy were evaluated. The leaching procedure was adopted according to the Chinese standard method. The IPBC leachability rate was tested in treated wood and bamboo by the established analytical method.
      Result  The chromatographic conditions for the determination of IPBC content by HPLC were as follows: flow phase acetonitrile-water (60∶40), flow rate 1.0 mL/min, UV detection wavelength 200 nm. There was a good linear relationship between IPBC concentration and chromatographic peak area in the range of 5−80 mg/L for IPBC standard solution. The correlation coefficient was r = 0.999 4. The standard deviation and coefficient of variation were 0.05% and 0.50%, respectively. The recovery rates were 99.5%−100.4%. The leaching rate of IPBC in Masson pine and radiation pine decreased with the increase of IPBC concentration, the leaching rate of Masson pine ranged from 0.11% to 1.99%, the leaching rate of radiation pine ranged from 0.10% to 0.48%. In bamboo, the leaching rate of IPBC increased with the increase of IPBC concentration, with the leaching rate ranged from 3.11% to 7.08%. The average leaching rate of IPBC treated bamboo was higher than IPBC/PPZ-TEB. The leaching rate of IPBC micro emulsion in treated wood was higher than that dissolved with ethanol. The leaching rate of IPBC with surface coating of hard wax oil in treated wood was lower than that without surface coating.
      Conclusion  The determination method of IPBC content by HPLC with good correlation, high precision and recovery rate could be used for the analysis of IPBC content. The leaching rates of IPBC treated masson pine, radiant pine and bamboo were very low as less than 7.1%. The leaching rate of IPBC could be decreased by mixing with other agents or surface coating with hard wax oil.
  • [1]
    曹金珍. 国外木材防腐技术和研究现状[J]. 林业科学, 2006, 42(7):120−126. doi: 10.3321/j.issn:1001-7488.2006.07.021

    Cao J Z. A review on wood preservation technologies and research[J]. Scientia Silvae Sinicae, 2006, 42(7): 120−126. doi: 10.3321/j.issn:1001-7488.2006.07.021
    [2]
    孙芳利, Prosper N K, 吴华平, 等. 木竹材防腐技术研究概述[J]. 林业工程学报, 2017, 2(5):1−8.

    Sun F L, Prosper N K, Wu H P, et al. A review on the development of wood and bamboo preservation[J]. Journal of Forestry Engineering, 2017, 2(5): 1−8.
    [3]
    钟莎, 张双保, 覃道春, 等. 毛竹含水率、基本密度和干缩性的变异规律[J]. 北京林业大学学报, 2009, 31(增刊1):185−188.

    Zhong S, Zhang S B, Qin D C, et al. Variation patterns of moisture content, basic density and dry shrinkage of Phyllostachys pubescens[J]. Journal of Beijing Forestry University, 2009, 31(Suppl.1): 185−188.
    [4]
    李景鹏, 吴再兴, 任丹静, 等. 无机纳米材料在木竹材防霉防腐中的研究进展[J]. 竹子学报, 2019, 38(2):16−23.

    Li J P, Wu Z X, Ren D J, et al. Research progress on antifungal activities of inorganic nanomaterials in bamboo/wood[J]. Journal of Bamboo Research, 2019, 38(2): 16−23.
    [5]
    李万菊, 王昊, 安晓静, 等. 糠醇树脂改性对竹材物理、力学及防霉性能的影响[J]. 北京林业大学学报, 2014, 36(2):133−138.

    Li W J, Wang H, An X J, et al. Effects of furfurylation on the physical, mechanical and mold proof performance of bamboo[J]. Journal of Beijing Forestry University, 2014, 36(2): 133−138.
    [6]
    蒋明亮. 国内外木材防腐新技术的开发与应用[J]. 木材工业, 2006, 20(2):23−25.

    Jiang M L. Current status of research and development of new wood preservation technology[J]. China Wood Industry, 2006, 20(2): 23−25.
    [7]
    马星霞, 蒋明亮, 李志强. 木材生物降解与保护[M]. 北京: 中国林业出版社, 2011.

    Ma X X, Jiang M L, Li Z Q. Wood biodegradation and protection[M]. Beijing: China Forestry Publishing House, 2011.
    [8]
    Badreshia S, Marks J G. Iodopropynyl butylcarbamate[J]. American Journal of Contact Dermatitis, 2002, 13(2): 77−79.
    [9]
    Volkmer T, Landmesser H, Genoud A, et al. Penetration of 3-iodo-2-propynyl butylcarbamate (IPBC) in coniferous wood pre-treated with Physisporinus vitreus[J]. Journal of Coatings Technology & Research, 2010, 7(6): 721−726.
    [10]
    Fanun M. Microemulsions: properties and applications[J]. Nihon Chikusan Gakkaiho, 2009, 50: 863−869.
    [11]
    朱愿. 异噻唑啉酮微乳液型木材防腐体系构建及性能[D]. 北京: 北京林业大学, 2017.

    Zhu Y. Development and performance of a novel wood preservative system of isothiazolone microemulsion[D]. Beijing: Beijing Forestry University, 2017.
    [12]
    李晓文, 席丽霞, 蒋明亮. 5种三唑微乳液及其铜胺制剂的抗流失性能[J]. 林业科学, 2017, 53(3):147−153.

    Li X W, Xi L X, Jiang M L. The leachability of five kinds of triazoles and their copper triazole formulations[J]. Scientia Silvae Sinicae, 2017, 53(3): 147−153.
    [13]
    席丽霞. 三唑类木材防腐剂的制备及其性能研究[D]. 北京: 中国林业科学研究院, 2014.

    Xi L X. Study on preparation and properties of triazole wood preservatives[D]. Beijing: Chinese Academy of Forestry, 2014.
    [14]
    王卿平. 三唑复合防腐剂处理竹材的性能及其涂层防护研究[D]. 北京: 北京林业大学, 2020.

    Wang Q P. Study on performance and coating protection of bamboo treated with triazole formulations[D]. Beijing: Beijing Forestry University, 2020.
    [15]
    翟炜. 碘代丙炔基氨基甲酸酯类化合物的改性及防腐性能研究[D]. 南京: 南京林业大学, 2013.

    Zhai W. Modification and corrosion resistance research of iodopropargyl carbamate[D]. Nanjing: Nanjing Forestry University, 2013.
    [16]
    魏万姝, 覃道春. 4种防霉剂对重组竹性能的影响[J]. 东北林业大学学报, 2011, 39(4):93−95. doi: 10.3969/j.issn.1000-5382.2011.04.027

    Wei W S, Qin D C. Effects of four mold inhibitor on properties of reconsolidated bamboo[J]. Journal of Northeast Forestry University, 2011, 39(4): 93−95. doi: 10.3969/j.issn.1000-5382.2011.04.027
    [17]
    蒋明亮, 李晓文, 张景朋, 等. 一种木竹材防腐防霉改性组合剂及处理木竹材的方法: 中国, CN109015981A[P]. 2018−12−18.

    Jiang M L, Li X W, Zhang J P, et al. A modified combination preservative and treatment method for wood/bamboo: China, CN109015981A [P]. 2018−12−18.
    [18]
    中国人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 木材防腐剂流失率试验方法: GB/T 29905—2013[S]. 北京: 中国标准出版社, 2013.

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Laboratory method of determining the leachability of wood preservatives: GB/T 29905−2013[S]. Beijing: Standards Press of China, 2013.
    [19]
    费本华, 刘嵘, 刘贤淼, 等. 竹材纹孔结构及表征方法研究进展[J]. 林业工程学报, 2019, 4(2):13−18.

    Fei B H, Liu R, Liu X M, et al. A review of structure and characterization methods of bamboo pits[J]. Journal of Forestry Engineering, 2019, 4(2): 13−18.
    [20]
    许斌, 张齐生. 竹材通过端部压注处理进行防裂及防蛀的研究[J]. 竹子研究汇刊, 2002, 21(4):61−66.

    Xu B, Zhang Q S. Research on crack-proofing and moth-proofing of bamboo by end-injection[J]. Journal of Bamboo Research, 2002, 21(4): 61−66.
  • Related Articles

    [1]Zhou Yunhong, Li Jianliang, Wang Lidong, Zou Jinlong, Liu Yanqing, Lu Jingxing, Zhao Wanning, Jia Zhongkui. Effects of thinning on litter decomposition of Larix principis-rupprechtii plantation[J]. Journal of Beijing Forestry University, 2021, 43(12): 29-37. DOI: 10.12171/j.1000-1522.20210114
    [2]Wang Lina, Wu Junwen, Dong Qiong, Shi Zhuogong, Hu Haocheng, Wu Danzi, Li Luping. Effects of tending and thinning on non-structural carbon and stoichiometric characteristics of Pinus yunnanensis[J]. Journal of Beijing Forestry University, 2021, 43(8): 70-82. DOI: 10.12171/j.1000-1522.20210115
    [3]Jia Weiwei, Luo Tianze, Li Fengri. Branch density model for Pinus koraiensis plantation based on thinning effects[J]. Journal of Beijing Forestry University, 2021, 43(2): 10-21. DOI: 10.12171/j.1000-1522.20200057
    [4]Chen Beibei, Jiang Jun, Lu Yuanchang, Liu Xianzhao, Jia Hongyan, Ming Angang, Zhang Xianqiang. Effects of thinning intensity on the growth of interplanting broadleaved trees under Pinus massoniana plantation[J]. Journal of Beijing Forestry University, 2021, 43(1): 58-65. DOI: 10.12171/j.1000-1522.20200086
    [5]Hu Xuefan, Zhang Huiru, Zhou Chaofan, Zhang Xiaohong. Effects of different thinning patterns on the spatial structure of Quercus mongolica secondary forests[J]. Journal of Beijing Forestry University, 2019, 41(5): 137-147. DOI: 10.13332/j.1000-1522.20190037
    [6]ZHANG Tian, ZHU Yu-jie, DONG Xi-bin. Effects of thinning on the habitat of natural mixed broadleaf-conifer secondary forest in Xiaoxing'an Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2017, 39(10): 1-12. DOI: 10.13332/j.1000-1522.20170187
    [7]SUN Zhi-hu, WANG Xiu-qin, CHEN Xiang-wei.. Effects of thinning intensity on carbon storage of Larix olgensis plantation ecosystem.[J]. Journal of Beijing Forestry University, 2016, 38(12): 1-13. DOI: 10.13332/j.1000-1522.20160016
    [8]ZHANG Yi, WANG Chun-mei, XU Ke, HAN Jin-feng, YANG Xin-tong, LIN Jia-li. Short-term effect of increasing nitrogen deposition on greenhouse gas emissions in Zoige wetland, western China.[J]. Journal of Beijing Forestry University, 2016, 38(8): 54-63. DOI: 10.13332/j.1000-1522.20160048
    [9]WANG Xiong-bin, YU Xin-xiao, XU Cheng-li, , GU Jian-cai, ZHOU Bin, FAN Min-rui, JIA Guo-dong, LV xi-zhi. Effects of thinning on edge effect of Larix principisrupprechtii plantation.[J]. Journal of Beijing Forestry University, 2009, 31(5): 29-34.
    [10]LI Guo-lei, LIU Yong, XU Yang, GUO Bei, ZHANG Ke-dong, ZHAO Shuang-rong. Effects of thinning intensity on the development of undergrowth in Pinus tabulaeformis plantations[J]. Journal of Beijing Forestry University, 2007, 29(2): 70-75.
  • Cited by

    Periodical cited type(10)

    1. 罗光成,雷相东,史景宁,何潇,向玮,李玉堂. 基于潜在生产力的吉林省长白落叶松人工林立地质量评价. 北京林业大学学报. 2025(01): 1-10 . 本站查看
    2. 倪靖峰,吕世琪,王占印,周超凡,刘宪钊. 不同林龄华北落叶松优势木生长与空间结构的关联性. 陆地生态系统与保护学报. 2024(01): 1-10 .
    3. 徐罗,亢新刚,陈月明,刘旭. 依据单因子评价体系的天然云冷杉针阔混交林立地质量评价. 东北林业大学学报. 2024(12): 25-31 .
    4. 周甲敏,刘兆刚,董灵波. 基于蓄积潜在生产力的小兴安岭阔叶混交林立地质量评价. 北京林业大学学报. 2024(12): 21-29 . 本站查看
    5. 龚宇浩,孙益群,董晨,胡彦蓉,高威芳. 基于广义代数差分法和因子选择的杉木人工林立地质量评价. 浙江农林大学学报. 2023(06): 1282-1291 .
    6. 沈剑波,王应宽,雷相东,雷渊才,汪求来,叶金盛. 基于BP神经网络的广东省针阔混交异龄林立地质量评价. 北京林业大学学报. 2019(05): 38-47 . 本站查看
    7. 秦倩倩,王海燕,李翔,雷相东,解雅麟,郑永林,耿琦. 东北天然针阔混交林凋落物磷素空间异质性及其影响因素. 生态学报. 2019(12): 4519-4529 .
    8. 卢立华,冯益明,农友,李华,农良书,孙冬婧,黄德卫,明安刚. 基于林班尺度的森林立地类型划分与质量评价. 林业资源管理. 2018(02): 48-57 .
    9. 轩俊伟,朱静. 天山云杉立地指数地统计空间分析. 林业资源管理. 2017(03): 46-50 .
    10. 倪伟星. 闽北湿地松人工林立地质量精确评价. 武夷学院学报. 2017(12): 61-67 .

    Other cited types(9)

Catalog

    Article views (1961) PDF downloads (118) Cited by(19)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return