• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Sun Jiacheng, Wu Yanyan, Zhu Jingle, Sun Yongyu, Feng Jian, Jiang Zeping, Shi Shengqing. Comparison and comprehensive evaluation of acorn qualities of Quercus and Castanopsis from different provenances[J]. Journal of Beijing Forestry University, 2022, 44(7): 36-51. DOI: 10.12171/j.1000-1522.20210117
Citation: Sun Jiacheng, Wu Yanyan, Zhu Jingle, Sun Yongyu, Feng Jian, Jiang Zeping, Shi Shengqing. Comparison and comprehensive evaluation of acorn qualities of Quercus and Castanopsis from different provenances[J]. Journal of Beijing Forestry University, 2022, 44(7): 36-51. DOI: 10.12171/j.1000-1522.20210117

Comparison and comprehensive evaluation of acorn qualities of Quercus and Castanopsis from different provenances

More Information
  • Received Date: March 28, 2021
  • Revised Date: May 11, 2021
  • Available Online: June 17, 2022
  • Published Date: July 24, 2022
  •   Objective  This paper aims to clarify and compare the characteristics of acorn qualities of Quercus and Castanopsis from different provenances, and fully tap the potential of fruit resources, then provide a reference for the selection and breeding, utilization, and protection of excellent fruit resources in China.
      Method  The acorns were collected, including 6 Quercus species from 28 provenances and 7 Castanopsis species from 48 provenances in 15 provinces (municipalities) in China, and the morphologies, nutrients, polyphenols and antioxidant capacities were determined, and then comprehensively evaluated by factor analysis.
      Result  (1) At the level of morphological traits, the Quercus acorns were mostly ellipsoidal in morphologies, while the Castanopsis acorns were mostly nearly spherical. The size and mass of the former were about 1.5‒2 times of that in the latter. (2) At the level of kernel nutrient components, the soluble sugar contents in Quercus were 18.31–79.94 mg/g, and they were higher in Q. acutissima, Q. serrata and Q. mongolica than the average value in Quercus; while those in Castanopsis were lower (about 20.16–52.08 mg/g) at the overall level, but a few species such as C. sclerophylla and C. fissa reached the average level in Quercus. The starch contents in Quercus were 169.33–382.27 mg/g, whereas those in Castanopsis were 130.29–544.12 mg/g, which were higher than that in Quercus as a whole, but the starch in C. fissa was significantly lower than that of each species. The average values of total amino acid and soluble protein contents in both Quercus and Castanopsis were relatively low, but there were significant differences between species. (3) At the level of kernel functional components, the total polyphenol contents in Quercus were 54.64–242.90 mg/g, while those in Castanopsis were 1.28–138.11 mg/g, the average contents in the former were about 4.5 times of those in the latter. Except for C. sclerophylla and C. fissa, the total polyphenol contents, between 1.28–4.66 mg/g, in other Castanopsis were extremely lower, and the changing trends of total flavonoids and soluble tannins were similar to the total polyphenols. The contents of vitamin E in Quercus were higher than those in Castanopsis, which had very low contents except for C. sclerophylla and C. fissa with high polyphenols. Further test showed that the total polyphenols in Q. serrata from provenance 25 had the highest antioxidant activity with a high DPPH value of 82.98% in both Quercus and Castanopsis. (4) Based on the comprehensive score ranking, it can be concluded that the acorns from provenance 16 had the largest seed and the higher content of polyphenols, and the acorns from provenance 20 had a larger seed size, higher starch and polyphenols, and moderate soluble protein and total amino acid contents. The ten top ranking of acorn qualities by comprehensive evaluation was provenance 16, 17, 20, 14, 2, 24, 28, 8, 3, and 19.
      Conclusion  The traits of phenotypes, nutrients and functional components were rich in variation as well as higher degree of variation in the selected acorns of Quercus and Castanopsis germplasm resources in China, in which, ten optimal germplasms with top ranking were selected. These findings would provide valuable resources for the selection and breeding of excellent new varieties rich in starch or polyphenols in future.
  • [1]
    中国科学院中国植物志编委会. 中国植物志[M]. 北京: 科学出版社, 1998, 22: 219−262.

    Editorial Committee of Chinese Flora of Chinese Academy of Sciences. Flora of China[M]. Beijing: Science Press, 1998, 22: 219−262.
    [2]
    周磊, 许敏, 杨崇仁, 等. 壳斗科植物的化学成分及生物活性研究进展[J]. 天然产物研究与开发, 2012, 24(2): 260−273. doi: 10.3969/j.issn.1001-6880.2012.02.028

    Zhou L, Xu M, Yang C R, et al. The advance of chemical components and bioactivity of Fagaceous plants[J]. Natural Product Research and Development, 2012, 24(2): 260−273. doi: 10.3969/j.issn.1001-6880.2012.02.028
    [3]
    刘瑞亮. 栎属橡子单宁提取与淀粉浓醪发酵工艺研究[D]. 北京: 北京化工大学, 2016.

    Liu R L. Study on acorn (Quercus L.) tannin extraction and very high gravity (VHG) fermentation of acorn starch[D]. Beijing: Beijing University of Chemical Technology, 2016.
    [4]
    周伟, 夏念和. 我国壳斗科植物资源: 尚待开发的宝库[J]. 林业资源管理, 2011(2): 93−96,100. doi: 10.3969/j.issn.1002-6622.2011.02.018

    Zhou W, Xia N H. The Chinese Fagaceae resources: a treasury imperative for development[J]. Forest Resources Management, 2011(2): 93−96,100. doi: 10.3969/j.issn.1002-6622.2011.02.018
    [5]
    谢碧霞, 谢涛. 我国橡实资源的开发利用[J]. 中南林业科技大学学报, 2002, 22(3): 37−41. doi: 10.3969/j.issn.1673-923X.2002.03.006

    Xie B X, Xie T. Exploitation study of acorn resources in China[J]. Journal of Central South of Forestry University, 2002, 22(3): 37−41. doi: 10.3969/j.issn.1673-923X.2002.03.006
    [6]
    杨舒婷. 我国壳斗科淀粉资源植物的研究与开发利用[J]. 江苏农业科学, 2014, 42(5): 324−327. doi: 10.3969/j.issn.1002-1302.2014.05.106

    Yang S T. Exploitation and utilization of starch resource plants of Fagaceae in China[J]. Jiangsu Agricultural Sciences, 2014, 42(5): 324−327. doi: 10.3969/j.issn.1002-1302.2014.05.106
    [7]
    高立琼, 陈丽冰, 杨倩, 等. 橡子淀粉制备及其理化性质研究[J]. 食品科技, 2015, 40(4): 215−218.

    Gao L Q, Chen L B, Yang Q, et al. Preparation of acorn starch and its physicochemical properties[J]. Food Science and Technology, 2015, 40(4): 215−218.
    [8]
    李娜, 赵文恩, 李勇. 橡实利用研究进展[J]. 中国野生植物资源, 2016, 35(2): 45−50. doi: 10.3969/j.issn.1006-9690.2016.02.013

    Li N, Zhao W E, Li Y. Advances in studies on acorn exploitation and utilization[J]. Chinese Wild Plant Resources, 2016, 35(2): 45−50. doi: 10.3969/j.issn.1006-9690.2016.02.013
    [9]
    孙巧玉, 刘勇. 控释肥和灌溉方式对栓皮栎容器苗苗木质量及造林效果的影响[J]. 林业科学研究, 2018, 31(5): 137−144.

    Sun Q Y, Liu Y. Effect of controlled-release fertilizer and irrigation method on seedling quality and outplanting performance of Quercus variabilis[J]. Forest Research, 2018, 31(5): 137−144.
    [10]
    罗强. 栓皮栎橡子果仁多酚组分及功能性评价[D]. 杨凌: 西北农林科技大学, 2017.

    Luo Q. Polyphenol components and functional evaluation of Quercus variabilis acorn nutlet[D]. Yangling: Northwest A&F University, 2017.
    [11]
    Vinha A F, Barreira J C M, Costa A S G, et al. A new age for Quercus spp. fruits: review on nutritional and phytochemical composition and related biological activities of acorns[J]. Comprehensive Reviews in Food Science and Food Safety, 2016, 15(6): 947−981. doi: 10.1111/1541-4337.12220
    [12]
    Vinha A F, Costa A S G, Barreira J C M, et al. Chemical and antioxidant profiles of acorn tissues from Quercus spp. : potential as new industrial raw materials[J]. Industrial Crops and Products, 2016, 94: 143−151.
    [13]
    Akcan T, Gökçe R, Asensio M, et al. Acorn (Quercus spp.) as a novel source of oleic acid and tocopherols for livestock and humans: discrimination of selected species from Mediterranean forest[J]. Journal of Food Science and Technology, 2017, 54: 3050−3057. doi: 10.1007/s13197-017-2740-3
    [14]
    Makhlouf F Z, Squeo G, Barkat M, et al. Antioxidant activity, tocopherols and polyphenols of acornoil obtained from Quercus species grown in Algeria[J]. Food Research International, 2018, 114: 208−213. doi: 10.1016/j.foodres.2018.08.010
    [15]
    Zhang L, Wang Y, Li D, et al. The absorption, distribution, metabolism and excretion of procyanidins[J]. Food and Function, 2016, 7(3): 1273−1281. doi: 10.1039/C5FO01244A
    [16]
    张志健, 王勇. 我国橡子资源开发利用现状与对策[J]. 氨基酸和生物资源, 2009, 31(3): 10−14.

    Zhang Z J, Wang Y. Exploitation and utilization of acorn resources in China[J]. Amino Acids and Biotic Resources, 2009, 31(3): 10−14.
    [17]
    邱丽氚, 路丹桂, 李雅丽, 等. 中国壳斗科植物属的分布区定量研究[J]. 西北植物学报, 2019, 39(2): 343−348.

    Qiu L C, Lu D G, Li Y L, et al. Quantitative analysis of geographical distributions in all genera of Fagaceae in China[J]. Acta Botanica Boreali-Occidentalia Sinica, 2019, 39(2): 343−348.
    [18]
    魏园园, 刘琪, 梁宗瑶, 等. 栓皮栎橡子果仁多酚抗氧化与抑菌活性研究[J]. 食品工业科技, 2019, 40(20): 42−48.

    Wei Y Y, Liu Q, Liang Z Y, et al. Antioxidative and antibacterial activity of polyphenolsin Quercus variabilis acorn nutlet[J]. Science and Technology of Food Industry, 2019, 40(20): 42−48.
    [19]
    王亚凤. 锥属植物栲中多酚类成分及抗氧化研究[D]. 桂林: 广西师范大学, 2019.

    Wang Y F. Polyphenols and antioxidant capacity of polyphenols from Castanopsis fargesii Franch[D]. Guilin: Guangxi Normal University, 2019.
    [20]
    Li S N, Zhou Y B, Liu M, et al. Nutrient composition and starch characteristics of Quercus glandulifera Bl. seeds from China[J]. Food Chemistry, 2015, 185(2015): 371−376.
    [21]
    马冬雪, 刘仁林. 9种壳斗科树种坚果3种矿质元素及Vc含量分析[J]. 林业科学研究, 2011, 24(2): 253−255.

    Ma D X, Liu R L. Analysis of 3 mineral elements and Vc contents in nuts of 9 Fagaceae species[J]. Forest Research, 2011, 24(2): 253−255.
    [22]
    丁月平. 苦槠淀粉理化性质及其体外消化特性研究[D]. 南昌: 南昌大学, 2019.

    Ding Y P. The study of physicochemical properties and in vitro digestibility of Castanopcis sclerophylla starch[D]. Nanchang: Nanchang University, 2019.
    [23]
    Korus J, Witczak M, Ziobro R, et al. The influence of acorn flour on rheological properties of gluten-free dough and physical characteristics of the bread[J]. European Food Research and Technology, 2015, 240(6): 1135−1143. doi: 10.1007/s00217-015-2417-y
    [24]
    Correia P R, Nunes M C, Beirão-Da-Costa M L. The effect of starch isolation method on physical and functional properties of Portuguese nut starches (Ⅱ): Q. rotundifolia Lam. and Q. suber Lam. acorns starches[J]. Food Hydrocolloids, 2013, 30(1): 448−455. doi: 10.1016/j.foodhyd.2012.06.014
    [25]
    Elham A, Arken M, Kalimanjan G, et al. A review of the phytochemical, pharmacological, pharmacokinetic, and toxicological evaluation of Quercus infectoria Galls[J]. Journal of Ethnopharmacology, 2020, 17: 113592.
    [26]
    Fernandes A, Fernandes I L, Cruz L, et al. Antioxidant and biological properties of bioactive phenolic compounds from Quercus suber L.[J]. Journal of Agricultural and Food Chemistry, 2009, 57(23): 11154−11160. doi: 10.1021/jf902093m
    [27]
    Wakamatsu H, Tanaka S, Matsuo Y, et al. Reductive metabolism of ellagitannins in the young leaves of Castanopsis sieboldii[J]. Molecules, 2019, 24(23): 4279−4292. doi: 10.3390/molecules24234279
    [28]
    Huang Y L, Tsujita T, Tanaka T, et al. Triterpene hexahydroxydiphenoyl esters and a quinic acid purpurogallin carbonyl ester from the leaves of Castanopsis fissa[J]. Phytochemistry, 2011, 72(16): 2006−2014. doi: 10.1016/j.phytochem.2011.07.007
    [29]
    李娜妮, 何念鹏, 于贵瑞. 中国4种典型森林中常见乔木叶片的非结构性碳水化合物研究[J]. 西北植物学报, 2015, 35(9): 1846−1854. doi: 10.7606/j.issn.1000-4025.2015.09.1846

    Li N N, He N P, Yu G R. Non-structural carbohydrates in leaves of tree species from four typical forests in China[J]. Acta Botanica Boreali-Occidentalia Sinica, 2015, 35(9): 1846−1854. doi: 10.7606/j.issn.1000-4025.2015.09.1846
    [30]
    王斌, 张腾霄, 宋相周, 等. 不同产地板蓝根中多糖及总氨基酸含量的分析比较[J]. 南方农业学报, 2014, 45(1): 23−27. doi: 10.3969/j:issn.2095-1191.2014.1.23

    Wang B, Zhang T X, Song X Z, et al. Comparison analysis on polysaccharide and total amino acids content in indigowoad root derived from different places[J]. Journal of Southern Agriculture, 2014, 45(1): 23−27. doi: 10.3969/j:issn.2095-1191.2014.1.23
    [31]
    张文德, 李信荣, 尹璐, 等. 食品中蛋白质的测定: GB/T 5009.5—2003[S]. 北京: 中国标准出版社, 2003.

    Zhang W D, Li X R, Yin L, et al. Determination of protein in food: GB/T 5009.5−2003 [S]. Beijing: China Standard Press, 2003.
    [32]
    Gallardo A, Morcuende D, Solla A, et al. Regulation by biotic stress of tannins biosynthesis in Quercus ilex: crosstalk between defoliation and Phytophthora cinnamomi infection[J]. Physiologia Plantarum, 2019, 165(2): 319−329. doi: 10.1111/ppl.12848
    [33]
    Deng N, Chang E M, Li M H, et al. Transcriptome characterization of Gnetum parvifolium reveals candidate genes involved in important secondary metabolic pathways of flavonoids and stilbenoids[J]. Frontiers in Plant Science, 2016, 7(174): 1−15.
    [34]
    郭婷婷, 门兴元, 于毅, 等. 二点委夜蛾适应性与玉米苗营养物质和次生代谢物质含量的关系[J]. 昆虫学报, 2018, 61(8): 984−990.

    Guo T T, Men X Y, Yu Y, et al. Relationship between the adaptability of Athetis lepigone (Lepidoptera: Noctuidae) and the contents of nutrients and secondary metabolites in maize seedlings[J]. Acta Entomologica Sinica, 2018, 61(8): 984−990.
    [35]
    崔云龙, 李民. 分光光度法测定维生素E[J]. 临床检验杂志, 1990, 8(1): 14−16. doi: 10.3321/j.issn:1001-764X.1990.01.006

    Cui Y L, Li M. Determination of vitamin E by spectrophotometry[J]. Chinese Journal of Clinical Laboratory Science, 1990, 8(1): 14−16. doi: 10.3321/j.issn:1001-764X.1990.01.006
    [36]
    Brand-Williams W, Cuvelier M E, Berset C. Use of a free radical method to evaluate antioxidant activity[J]. LWT-Food Science and Technology, 1995, 28(1): 25−30. doi: 10.1016/S0023-6438(95)80008-5
    [37]
    Benzie I F F, Strain J J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay[J]. Analytical Biochemistry, 1996, 239(1): 70−76. doi: 10.1006/abio.1996.0292
    [38]
    Re R, Pellegrini N, Proteggente A, et al. Antioxidant activity applying an improved ABTS radical cation decolorization assay[J]. Free Radical Biology and Medicine, 1999, 26: 1231−1237. doi: 10.1016/S0891-5849(98)00315-3
    [39]
    王坤, 黄晓露, 李宝财, 等. 30个多穗柯种源主要经济性状及活性成分分析与评价[J]. 西南农业学报, 2019, 32(5): 1051−1056.

    Wang K, Huang X L, Li B C, et al. Analysis and evaluation on main economic traits and active constituents of thirty Lithocarpus ploystachyus Rehd. provenances[J]. Southwest China Journal of Agricultural Sciences, 2019, 32(5): 1051−1056.
    [40]
    Liebhold A, Sork V, Peltonen M, et al. Within-population spatial synchrony in mast seeding of North American oaks[J]. Oikos, 2004, 104(1): 156−164. doi: 10.1111/j.0030-1299.2004.12722.x
    [41]
    熊仕发, 吴立文, 陈益存, 等. 不同种源白栎果实形态特征和营养成分含量变异分析[J]. 林业科学研究, 2020, 33(2): 93−102. doi: 10.13275/j.cnki.lykxyj.2020.02.012

    Xiong S F, Wu L W, Chen Y C, et al. Variation in morphological characters and nutrient contents of Quercus fabri fruits from different provenances[J]. Forest Research, 2020, 33(2): 93−102. doi: 10.13275/j.cnki.lykxyj.2020.02.012
    [42]
    刘志龙, 虞木奎, 唐罗忠, 等. 不同种源麻栎种子形态特征和营养成分含量的差异及聚类分析[J]. 植物资源与环境学报, 2009, 18(1): 36−41. doi: 10.3969/j.issn.1674-7895.2009.01.007

    Liu Z L, Yu M K, Tang L Z, et al. Variation and cluster analyses of morphological characters and nutrient content of Quercus acutissima seed from different provenances[J]. Journal of Plant Resources and Environment, 2009, 18(1): 36−41. doi: 10.3969/j.issn.1674-7895.2009.01.007
    [43]
    王学, 肖治术, 张知彬, 等. 昆虫种子捕食与蒙古栎种子产量和种子大小的关系[J]. 昆虫学报, 2008, 51(2): 161−165. doi: 10.3321/j.issn:0454-6296.2008.02.009

    Wang X, Xiao Z S, Zhang Z B, et al. Insect seed predation and its relationships with seed crop and seed size of Quercus mongolica[J]. Acta Entomologica Sinica, 2008, 51(2): 161−165. doi: 10.3321/j.issn:0454-6296.2008.02.009
    [44]
    石培春, 李英枫, 韩璐, 等. 不同品质类型小麦籽粒淀粉含量积累的动态差异[J]. 石河子大学学报(自然科学版), 2012, 30(4): 417−421. doi: 10.13880/j.cnki.65-1174/n.2012.04.011

    Shi P C, Li Y F, Han L, et al. The dynamic accumulations of grain starch content in wheat cultivars with different qualities[J]. Journal of Shihezi University (Natural Science), 2012, 30(4): 417−421. doi: 10.13880/j.cnki.65-1174/n.2012.04.011
    [45]
    梁晶, 石瑛, 刘凯, 等. 马铃薯不同品种在不同生态条件下的淀粉含量与淀粉产量[J]. 中国马铃薯, 2007, 21(2): 85−89. doi: 10.3969/j.issn.1672-3635.2007.02.005

    Liang J, Shi Y, Liu K, et al. Starch content and starch yield of eight potato varieties under different ecological environments[J]. Chinese Potato Journal, 2007, 21(2): 85−89. doi: 10.3969/j.issn.1672-3635.2007.02.005
    [46]
    敖特根, 杨秋林. 蒙古栎橡子营养成分的研究[J]. 内蒙古农牧学院学报, 1998, 19(1): 72−76.

    Ao T G, Yang Q L. Studies on nutrient contents in acorn of Quercus mongolia fisch[J]. Journal of Inner Mongolia Institute of Agriculture and Animal Husbandry, 1998, 19(1): 72−76.
    [47]
    Siro I, Kapolna E, Kapolna B, et al. Functional food. Product development, marketing and consumer acceptance: a review[J]. Appetite, 2008, 51(3): 456−467. doi: 10.1016/j.appet.2008.05.060
    [48]
    Blaiotta G, Gatta B L, Capua M D, et al. Effect of chestnut extract and chestnut fiber on viability of potential probiotic Lactobacillus strains under gastrointestinal tract conditions[J]. Food Microbiology, 2013, 36(2): 161−169. doi: 10.1016/j.fm.2013.05.002
    [49]
    Rodrigues A, Emeje M. Recent applications of starch derivatives in nanodrug delivery[J]. Carbohydrate Polymers, 2012, 87(2): 987−994. doi: 10.1016/j.carbpol.2011.09.044
    [50]
    栾泰龙, 郑焕春, 李淑玲,等. 橡子粉乙醇化试验条件研究[J]. 安徽农业科学, 2001, 16(3): 288−292. doi: 10.13989/j.cnki.0517-6611.2015.26.245

    Luan T L, Zheng H C, Li S L, et al. Experimental study on the acorn powder ethanol[J]. Journal of Anhui Agricultural Sciences, 2001, 16(3): 288−292. doi: 10.13989/j.cnki.0517-6611.2015.26.245
    [51]
    李迎超. 木本淀粉能源植物栓皮栎与麻栎资源调查及地理种源变异分析[D]. 北京: 中国林业科学研究院, 2013.

    Li Y C. Resource investigation and provenance analysis of woody starch energy plant Quercus variabilis Bl. and Quercus acutissima Carr[D]. Beijing: Chinese Academy of Forestry, 2013.
    [52]
    厉月桥. 木本能源植物蒙古栎与辽东栎资源调查与优良种质资源筛选[D]. 北京: 中国林业科学研究院, 2011.

    Li Y Q. Resource investigation and superior germplasm resources selection of woody energy plants Quercus mongolica Fisch and Quercus liaotungensis Koidz [D]. Beijing: Chinese Academy of Forestry, 2011.
    [53]
    郝乘仪, 于蕾, 胡杨. 我国橡子开发利用现状与前景[J]. 吉林医药学院学报, 2017, 38(5): 361−363. doi: 10.13845/j.cnki.issn1673-2995.2017.05.018

    Hao C Y, Yu L, Hu Y. Current status and prospects of development and utilization of acorns in China[J]. Journal of Jilin Medical University, 2017, 38(5): 361−363. doi: 10.13845/j.cnki.issn1673-2995.2017.05.018
    [54]
    翁德宝, 黄雪方, 杨基楼. 四种南京地产栽培野菜蛋白质营养价值的评价研究[J]. 自然资源学报, 2001, 16(3): 288−292. doi: 10.3321/j.issn:1000-3037.2001.03.015

    Weng D B, Huang X F, Yang J L. Evaluating protein quality of four kinds of cultivated wild vegetables in Nanjing[J]. Journal of Natural Resources, 2001, 16(3): 288−292. doi: 10.3321/j.issn:1000-3037.2001.03.015
    [55]
    赵竞, 景浩. 不同品种葡萄皮, 籽提取物多酚含量及抗氧化能力的比较研究[J]. 食品工业科技, 2009, 30(10): 154−158.

    Zhao J, Jing H. Analysis of polyphenol contents and antioxidant activity of grape skin and seed extracts from different varieties of grapes[J]. Science and Technology of Food Industry, 2009, 30(10): 154−158.
    [56]
    张盼. 橡子仁多酚提取工艺优化及功能活性评价[D]. 杭州: 浙江大学, 2003.

    Zhang P. Optimization of acorn nutlet polyphenol extraction and evaluation of acorn nutlet polyphenol functional activities [D]. Hangzhou: Zhejiang University, 2003.
    [57]
    侯盼盼. 橡子壳多酚的提取分离及功能性研究[D]. Yangling: 西北农林科技大学, 2018.

    Hou P P. Extration and separation and function of acorn shell polyphenols[D]. Yangling: Northwest A&F University, 2018.
    [58]
    魏艳秀, 刘攀峰, 杜庆鑫, 等. 不同种质杜仲叶中多酚和黄酮含量差异性分析[J]. 林业科学研究, 2016, 29(4): 529−535. doi: 10.3969/j.issn.1001-1498.2016.04.009

    Wei Y X, Liu P F, Du Q X, et al. Comparison in contents of polyphenol and flavonoid in leaves of Eucommia ulmoides germplasm[J]. Forest Research, 2016, 29(4): 529−535. doi: 10.3969/j.issn.1001-1498.2016.04.009
    [59]
    陆胜波, 陈静, 张文娥, 等. 遮光对铁核桃青皮多酚物质及相关酶活性和基因表达的影响[J]. 植物生理学报, 2020, 56(6): 1231−1242. doi: 10.13592/j.cnki.ppj.2020.0043

    Lu S B, Chen J, Zhang W E, et al. Effect of shading on polyphenols, related enzyme activity and gene expression in green husk of Juglans sigillata[J]. Plant Physiology Journal, 2020, 56(6): 1231−1242. doi: 10.13592/j.cnki.ppj.2020.0043
    [60]
    Karioti A, Sokovic M, Ciric A, et al. Antimicrobial properties of Quercus ilex L. proanthocyanidin dimers and simple phenolics: evaluation of their synergistic activity with conventional antimicrobials and prediction of their pharmacokinetic profile[J]. Journal of Agricultural and Food Chemistry, 2011, 59(12): 6412−6422. doi: 10.1021/jf2011535
    [61]
    Uprety Y, Poudel R C, Shrestha K K, et al. Diversity of use and local knowledge of wild edible plant resources in Nepal[J]. Journal of Ethnobiology and Ethnomedicine, 2012, 8(1): 16−31. doi: 10.1186/1746-4269-8-16
    [62]
    Aryal K P, Poudel S, Chaudhary R P, et al. Diversity and use of wild and non-cultivated edible plants in the western Himalaya[J]. Journal of Ethnobiology and Ethnomedicine, 2018, 14: 10−28. doi: 10.1186/s13002-018-0211-1
    [63]
    陈锋, 于翠翠. 野生食用植物资源的开发利用现状及前景分析[J]. 现代食品, 2018(19): 32−34. doi: 10.16736/j.cnki.cn41-1434/ts.2018.19.010

    Chen F, Yu C C. Current situation and prospect of exploitation and utilization of wild edible plant resources[J]. Modern Food, 2018(19): 32−34. doi: 10.16736/j.cnki.cn41-1434/ts.2018.19.010
    [64]
    Rakić S, Petrović S, Kukić J, et al. Influence of thermal treatment on phenolic compounds and antioxidant properties of oak acorns from Serbia[J]. Food Chemistry, 2007, 104(2): 830−834.
    [65]
    Gentilesca T, Camarero J J, Colangelo M, et al. Drought-induced oak decline in the western mediterranean region: an overview on current evidences, mechanisms and management options to improve forest resilience[J]. iForest Biogeosciences and Forestry, 2017, 10(5): 796−806.
    [66]
    Knutzen F, Dulamsuren C, Meier I C, et al. Recent climate warming-related growth decline impairs European beech in the center of its distribution range[J]. Ecosystems, 2017, 20(8): 1494−1511.
    [67]
    Colangelo M, Camarero J J, Borghetti M, et al. Drought and Phytophthora are associated with the decline of oak species in southern Italy[J]. Frontiers in Plant Science, 2018, 9: 1595−1608.
    [68]
    唐晓倩. 北方主要落叶栎类种子形态特征和养分含量的研究[D]. 泰安: 山东农业大学, 2012.

    Tang X Q. Study on the seed morphological characteristics and nutrient content of deciduous oak in northern China[D]. Tai’an: Shandong Agricultural University, 2012.
  • Cited by

    Periodical cited type(14)

    1. 王洪胜,吴思平,杨贤洪,朱熙隆,洪瑞成,许师瑛,马诚,王秋华. 栎类林燃烧性研究进展. 山东林业科技. 2025(01): 84-91 .
    2. 魏云敏,孙家宝,李丹丹. 黑龙江省草原草本燃烧性分析. 林业科技. 2023(02): 57-62 .
    3. 王博,杨雪清,蒋春颖,刘冬,陈锋,白夜,刘晓东. 基于GIS的北京市延庆区森林火灾蔓延风险. 林业科学. 2023(08): 90-101 .
    4. 高敏,任云卯,周晓东,陈思帆,高钰,王会娟,顾泽,刘晓东. 抚育间伐对西山林场侧柏林冠层可燃物特征及潜在火行为的影响. 北京林业大学学报. 2022(08): 56-65 . 本站查看
    5. 王立轩,杨光,高佳琪,郑鑫,李兆国,瓮岳太,邸雪颖,于宏洲. 兴安落叶松林火烧迹地地表枯落物燃烧性变化. 林业科学. 2022(06): 110-121 .
    6. 孟维英,尹汉臣,王学勇,宋红霞,刘峰. 太行山低丘陵区薪柴类能源林树种选择. 河北林业科技. 2022(03): 1-6 .
    7. 张状,宗树琴,闫星蓉,张浩,黄宏超,翟跃琴,符利勇. 林分和地形因子对崇礼冬奥核心区森林地表可燃物载量的影响. 林业科学. 2022(10): 59-66 .
    8. 苗杰,路兆军,王淑惠,李保进,张专文,张声凯,王益星,张靖川,孙太元. 烟台市赤松-黑松林林分结构因子对地表可燃物载量的影响. 安徽农业科学. 2021(09): 109-112 .
    9. 吕沣桐,周雪,丁佳欣,单延龙,尹赛男,刘泓禹,高博,韩喜越. 兴安落叶松人工林潜在地表火行为特征的影响因素. 东北林业大学学报. 2021(07): 83-90 .
    10. 王秋华,闫想想,龙腾腾,许若水,叶彪,陈启良,李晓娜. 昆明地区华山松纯林枯枝的燃烧性研究. 江西农业大学学报. 2020(01): 66-73 .
    11. 龙腾腾,向临川,闫想想,高磊,王秋华,叶彪,陈启良. 华山松林地表可燃物着火及蔓延特征研究. 消防科学与技术. 2020(05): 590-592 .
    12. 闫想想,王秋华,李晓娜,龙腾腾,叶彪,陈启良,张文文. 昆明周边主要林型地表可燃物的燃烧特性研究. 西南林业大学学报(自然科学). 2020(05): 135-142 .
    13. 詹航,牛树奎,王博. 北京地区8种树种枯死可燃物含水率预测模型及变化规律. 北京林业大学学报. 2020(06): 80-90 . 本站查看
    14. 高仲亮,魏建珩,龙腾腾,王秋华,周汝良,舒立福. 安宁市计划烧除点烧区域遴选研究. 消防科学与技术. 2020(09): 1285-1290 .

    Other cited types(5)

Catalog

    Article views (626) PDF downloads (78) Cited by(19)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return