• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Ge Ying, Zhang Yuanting, Wan Ke, Miao Yuanyuan, Li Yixiang, Tian Mingliang, Guo Linjie, Liu Zhenbo. Vibration mode of Guzheng resonance panel with whole board structure[J]. Journal of Beijing Forestry University, 2021, 43(8): 107-116. DOI: 10.12171/j.1000-1522.20210136
Citation: Ge Ying, Zhang Yuanting, Wan Ke, Miao Yuanyuan, Li Yixiang, Tian Mingliang, Guo Linjie, Liu Zhenbo. Vibration mode of Guzheng resonance panel with whole board structure[J]. Journal of Beijing Forestry University, 2021, 43(8): 107-116. DOI: 10.12171/j.1000-1522.20210136

Vibration mode of Guzheng resonance panel with whole board structure

More Information
  • Received Date: April 11, 2021
  • Revised Date: April 29, 2021
  • Available Online: June 03, 2021
  • Published Date: August 30, 2021
  •   Objective  The performance effect of Guzheng is not only related to the skill of performer, but also closely related to the structure of Guzheng itself. Among them, the resonance panel receives the vibration of string and causes the resonant sound, which is a crucial part of the sound process of Guzheng. In this study, the acoustic vibration performance of Guzheng resonance panel with whole board structure was studied by different analysis methods.
      Method  The experimental modal analysis of the resonant panel was carried out by ZSDASP signal acquisition and analysis software, and the characteristics and laws of the resonance frequencies of each order and the corresponding mode shapes were obtained. A three-dimensional model of the resonance panel of the whole board structure was established, and the computational modal analysis was carried out to verify the feasibility of the computational modal analysis applied in this study.
      Result  Through modal analysis experiment and computational modal analysis, it was found that with the increase of vibration order, the mode shapes of the resonant panel of the whole board structure tended to be more complicated, and the corresponding resonance frequency gradually increased. In the modal experiment results, the resonance frequencies of (0, n), (1, n) and (2, n) orders were easier to identify; the mode shapes corresponding to the (0, n) order were relatively clear and easy to identify, but the mode shapes corresponding to the lower orders of (1, n) and (2, n) were not obvious. The modes corresponding to each frequency that can be identified by the computational modal were (1, n) and (2, n), which were missing (0, n) compared with the experimental modal results. But the results obtained by computational modal analysis were more continuous, and all orders of (1, n) and (2, n) can be identified. Several orders were not obvious enough in experimental modal analysis.
      Conclusion  The results of computational modal analysis are compared with the experimental modal results, and it is concluded that the computational modal analysis is feasible to be applied to the vibration modal research of the resonant panel of the whole board structure of Guzheng.
  • [1]
    周力, 邓小伟, 余征跃. 从振动与声学的角度研究古筝的制作[J]. 乐器, 2017, 45(9):20−23.

    Zhou L, Deng X W, Yu Z Y. Research on the production of Guzheng from the perspective of vibration and acoustics[J]. Musical Instruments, 2017, 45(9): 20−23.
    [2]
    刘子尧. 论中国传统乐器与西洋乐器的合作创新—以古筝和钢琴为例[J]. 休闲, 2019(2):47.

    Liu Z Y. On the cooperation and innovation of Chinese traditional musical instruments and western musical instruments: taking Guzheng and piano as examples[J]. Leisure, 2019(2): 47.
    [3]
    边疆. 古筝的选材与制作[J]. 音乐生活, 2014(10):30−32. doi: 10.3969/j.issn.0512-7920.2014.10.011

    Bian J. Selection and production of Guzheng[J]. Music Life, 2014(10): 30−32. doi: 10.3969/j.issn.0512-7920.2014.10.011
    [4]
    陈兴华. 论中国民族乐器的短板及其演奏组合形式[J]. 乐器, 2020, 48(3):16−19.

    Chen X H. Research the short board of Chinese national musical instruments and their performance combination forms[J]. Musical Instrument Magazine, 2020, 48(3): 16−19.
    [5]
    苗雨昕. 论中国传统古筝的传承与开发[J]. 北方音乐, 2020(1):38−39. doi: 10.3969/j.issn.1002-767X.2020.01.023

    Miao Y X. Research the inheritance and development of traditional Chinese Guzheng[J]. Northern Music, 2020(1): 38−39. doi: 10.3969/j.issn.1002-767X.2020.01.023
    [6]
    刘宝利, 韩二中. 钢琴音板振动的试验模态分析[J]. 乐器, 1991, 3(2):8−10.

    Liu B L, Han E Z. Experimental modal analysis of piano soundboard vibration[J]. Musical Instrument, 1991, 3(2): 8−10.
    [7]
    余征跃, 邓小伟, 姚卫平, 等. 从力学角度研究中国传统民族乐器[J]. 电声技术, 2017, 41(11/12):74−79.

    Yu Z Y, Deng X W, Yao W P, et al. Research on Chinese traditional national musical instruments from the perspective of mechanics[J]. Electroacoustic Technology, 2017, 41(11/12): 74−79.
    [8]
    Curtu I, Stanciu M D, Cretu N C, et al. Modal analysis of different types of classical guitar bodies[C]//WSWAS International Conferences. Brasov: Recent Advances in Acoustics & Music, 2009: 18−23.
    [9]
    Nicholas N C, Gruber C, Hartman N. Optimization of acoustic soundboard through modal analysis and material selection[D]. Akron: The University of Akron, 2017.
    [10]
    Domnica S M, Ioan C, Camelia C, et al. New concept about stiffness of guitar soundboard based on golden section numbers[C]//Ekinović S, Vivancos J, Yalcin S. 13th International Research/Expert Conference “Trends in the Development of Machinery and Associated Technology”. Hammamet: [s.n.], 2009.
    [11]
    胡均安, 向在喜, 汤亮. 小提琴共鸣箱面板和底板弧度对振动特性的影响[J]. 黄钟—中国·武汉音乐学院学报, 2005, 10(1):131−135. doi: 10.3969/j.issn.1003-7721.2005.01.022

    Hu J A, Xiang Z X, Tang L. The influence of the curvature of the front panel and bottom plate of the violin resonance box on the vibration characteristics[J]. Huang Zhong Journal of Wuhan Conservatory of Music China, 2005, 10(1): 131−135. doi: 10.3969/j.issn.1003-7721.2005.01.022
    [12]
    邓小伟. 民族乐器古筝的结构振动声学特性分析[D]. 上海: 上海交通大学, 2015.

    Deng X W. Analysis of structure vibration and acoustic characteristics of Chinese musical instrument Guzheng[D]. Shanghai: Shanghai Jiao Tong University, 2015.
    [13]
    于洋, 许震宇. 古琴共鸣体的声固耦合模态分析[J]. 振动与冲击, 2016, 35(16):226−230.

    Yu Y, Xu Z Y. The acoustic-structure coupling modal analysis of Guqin resonance body[J]. Journal of Vibration and Shock, 2016, 35(16): 226−230.
    [14]
    Klimova H, Tippner J. Modal analysis of soundboard of the upright piano by finite element method (FEM)[J]. Wood Research, 2014, 59(1): 123−135.
    [15]
    刘镇波, 李司单, 刘一星, 等. 琵琶共鸣面板的振动模态分析[J]. 北京林业大学学报, 2012, 34(2):125−132.

    Liu Z B, Li S D, Liu Y X, et al. Vibration mode analysis of Pipa resonant panel[J]. Journal of Beijing Forestry University, 2012, 34(2): 125−132.
    [16]
    Corradi R, Miccoli S, Squicciarini G, et al. Modal analysis of a grand piano soundboard at successive manufacturing stages[J]. Applied Acoustics, 2017, 125(10): 113−127.
    [17]
    Hossein M. Modal analysis of the Setar: a numerical-experimental comparison[J]. Journal of Vibration and Acoustics, 2015, 137(6): 1007−1014.
    [18]
    雷福娟, 黄腾华, 陈桂丹. 音板声学品质的主要影响因子及其评测方法[J]. 陕西林业科技, 2017, 225(5):85−89, 94. doi: 10.3969/j.issn.1001-2117.2017.05.021

    Lei F J, Huang T H, Chen G D. The main influencing factors and evaluation methods of soundboard acoustic quality[J]. Shaanxi Forestry Science and Technology, 2017, 225(5): 85−89, 94. doi: 10.3969/j.issn.1001-2117.2017.05.021
    [19]
    Pedrammehr S, Aghdam N J, Pakzad S, et al. A study on vibration of Setar: stringed Persian musical instrument[J]. Journal of Vibroengineering, 2018, 20(7): 2680−2689. doi: 10.21595/jve.2018.19505
    [20]
    傅志方, 华宏星. 模态分析理论与应用[M]. 上海: 上海交通大学出版社, 2000: 2−80.

    Fu Z F, Hua H X. Theory and application of modal analysis[M]. Shanghai: Shanghai Jiaotong University Press, 2000: 2−80.
    [21]
    郑清铭, 左付山, 朱泳旭, 等. 基于模态分析的永磁同步电机振动研究[J]. 森林工程, 2019, 35(5):76−81. doi: 10.3969/j.issn.1006-8023.2019.05.013

    Zheng Q M, Zuo F S, Zhu Y X, et al. Research on vibration of permanent magnet synchronous motor based on modal analysis[J]. Forest Engineering, 2019, 35(5): 76−81. doi: 10.3969/j.issn.1006-8023.2019.05.013
    [22]
    陈璇. 古琴共鸣体声学振动特性的研究和分析[D]. 吉林: 长春理工大学, 2011.

    Chen X. Research and analysis of acoustic vibration characteristics of Guqin resonance body[D]. Jilin: Changchun University of Science and Technology, 2011.
    [23]
    Huang J, Patil K, Baqersad J, et al. Extracting vibration characteristics of a guitar using finite element, modal analysis, and digital image correlation techniques[J]. Journal of the Acoustical Society of America, 2016, 140(4): 3211−3212.
    [24]
    宋经纬, 徐子然, 陈家鑫, 等. 我国木材市场供给现状分析与未来发展建议[J]. 中华纸业, 2021, 42(5):43−47, 7. doi: 10.3969/j.issn.1007-9211.2021.05.011

    Song J W, Xu Z R, Chen J X, et al. China’s timber market supply status analysis and future development proposals[J]. China Paper Industry, 2021, 42(5): 43−47, 7. doi: 10.3969/j.issn.1007-9211.2021.05.011
    [25]
    金吴亦美. 中国传统古筝的传承与开发设计研究[D]. 南京: 南京艺术学院, 2018.

    Jin-Wu Y M. Research on the inheritance and development of traditional Chinese kites[D]. Nanjing: Nanjing Academy of Art, 2018.
  • Related Articles

    [1]Xie Yunhong, Sun Zhao, Ding Zhidan, Luo Mi, Li Yun, Sun Yujun. UAV remote sensing image extraction of single tree crown of Chinese fir based on Mask R-CNN and transfer learning[J]. Journal of Beijing Forestry University, 2024, 46(3): 153-166. DOI: 10.12171/j.1000-1522.20210343
    [2]Cen Lumei, Lin Jian. Compression deformation fixation and properties of Chinese fir pretreated with citric acid[J]. Journal of Beijing Forestry University, 2022, 44(4): 157-164. DOI: 10.12171/j.1000-1522.20210467
    [3]Geng Dan, Xia Chaozong, Zhang Guobin, Liu Xiaodong, Kang Fengfeng. Biomass model construction of shrub layer of Chinese fir plantation[J]. Journal of Beijing Forestry University, 2018, 40(3): 34-41. DOI: 10.13332/j.1000-1522.20170257
    [4]ZHANG Shu-qin, YU Yan, FEI Ben-hua, WANG Han-kun. Longitudinal modulus of elasticity of Chinese fir tracheids[J]. Journal of Beijing Forestry University, 2012, 34(6): 126-130.
    [5]ZHANG Shu-qin, FEI Ben-hua, YU Yan, XING Xin-ting, WANG Han-kun. Constructing a twovariable model for predicting longitudinal MOE of wood: a case study on Chinese fir wood.[J]. Journal of Beijing Forestry University, 2012, 34(1): 123-126.
    [6]XIA Zhong-sheng, ZENG Wei-sheng, ZHU Song, LUO Hong-zhang1. Construction of tree volume equations for Chinese fir plantation in Guizhou Province, southwestern China.[J]. Journal of Beijing Forestry University, 2012, 34(1): 1-5.
    [7]ZENG Wei-sheng, XIA Zhong-sheng, ZHU Song, LUO Hong-zhang. Compatible tree volume and above-ground biomass equations for Chinese fir plantations in Guizhou[J]. Journal of Beijing Forestry University, 2011, 33(4): 1-6.
    [8]LI Yan-jun, TANG Rong-qiang, BAO Bin-fu, SUN Hui. Mechanical properties and dimensional stability of heat-treated Chinese fir[J]. Journal of Beijing Forestry University, 2010, 32(4): 232-236.
    [9]HUANG Hua-hong, CHEN Fen-xue, TONG Zai-kang, ZHU Yu-qiu.. Photosynthetic properties and chlorophyll florescence parameters of dwarf Chinese fir.[J]. Journal of Beijing Forestry University, 2009, 31(2): 69-73.
    [10]FU Yun-lin, XU Feng, TANG Li-ming, WEI Guang-sui. Wood anatomy of Chinese fir in different site types of its southern growing district.[J]. Journal of Beijing Forestry University, 2005, 27(1): 10-13.
  • Cited by

    Periodical cited type(3)

    1. 罗光成,雷相东,史景宁,何潇,向玮,李玉堂. 基于潜在生产力的吉林省长白落叶松人工林立地质量评价. 北京林业大学学报. 2025(01): 1-10 . 本站查看
    2. 高羽,李静,刘洋,乌雅瀚,巩家星,辛启睿. 结构方程模型在兴安落叶松林生长中的应用. 南京林业大学学报(自然科学版). 2023(01): 38-46 .
    3. 金鹏,徐明,冉富菊,雷云,蒙春灿,张健. 森林光环境特征及其生态作用. 山地农业生物学报. 2023(02): 38-47 .

    Other cited types(5)

Catalog

    Article views (1288) PDF downloads (75) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return