• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Fan Xiaoyun, Guo Sujuan, Li Yanhua. Quality difference analysis and climate adaptability evaluation of Chinese chestnut in different ecological regions[J]. Journal of Beijing Forestry University, 2022, 44(11): 20-30. DOI: 10.12171/j.1000-1522.20210289
Citation: Fan Xiaoyun, Guo Sujuan, Li Yanhua. Quality difference analysis and climate adaptability evaluation of Chinese chestnut in different ecological regions[J]. Journal of Beijing Forestry University, 2022, 44(11): 20-30. DOI: 10.12171/j.1000-1522.20210289

Quality difference analysis and climate adaptability evaluation of Chinese chestnut in different ecological regions

More Information
  • Received Date: August 01, 2021
  • Revised Date: August 18, 2021
  • Accepted Date: September 19, 2022
  • Available Online: September 21, 2022
  • Published Date: November 24, 2022
  •   Objective  This paper aims to screen the key climate factors affecting the quality of chestnut, to evaluate the climate adaptability of chestnut in different ecological regions and its suitable planting regionalization, and also to provide theoretical basis for the introduction and scientific planting of chestnut.
      Method  105 Chinese chestnut varieties (including superior lines) from 4 ecological regions in China (the Huanghuaihai, the Northwest, the middle and lower reaches of the Yangtze River, and the Southwest) were taken as the research objects. The differences of phenotypic traits such as single nut mass, fruit shape index, and the internal qualities such as soluble sugar, starch, and protein were analyzed. 12 climate factors from 24 main Chinese chestnut planting areas in the 4 regions were selected for principal component analysis to screen the climate factors that are most closely related to the formation of Chinese chestnut quality. The climate quality evaluation model of Chinese chestnut was constructed by stepwise regression. Climate adaptability index (CAI) was used to evaluate the climate adaptability of Chinese chestnut.
      Result  (1) There were significant differences in phenotypic traits and intrinsic qualities of chestnut in different ecological regions. The single grain mass and fruit shape index in the middle and lower reaches of the Yangtze River were significantly higher than those in other regions. The soluble sugar and amylopectin/amylose ratio were the highest in the Huanghuaihai region. (2) The main climate factors affecting the quality of chestnut nuts were heat factor, followed by light factor and water factor. There was a significantly positive correlation between single grain mass and annual mean temperature and growing season precipitation, a significantly negative correlation between single grain mass and temperature difference, and a significantly negative correlation between fruit shape index and temperature. There were significant positive correlations between water content and annual precipitation, average temperature in growing season and precipitation in growing season. Soluble sugar had significantly positive correlation with annual sunshine duration, temperature difference in growing season and sunshine duration in growing season. Amylopectin/amylose ratio was significantly positively correlated with sunshine duration, average temperature, temperature difference and sunshine duration in growing season. Protein was positively correlated with annual mean temperature, and negatively correlated with annual sunshine hours and growing season sunshine hours. (3) According to CAI, 24 main planting areas of Chinese chestnut in the four regions can be divided into the most suitable area, the more suitable area and the suitable area. The CAI value of the northern Huanghuaihai area reached 0.90−0.96, which was the most suitable area; the CAI value of the east, northwest and southwest of the Huanghuaihai area was 0.81−0.89, which was a suitable area; the middle and lower reaches of the Yangtze River had the lowest CAI value, 0.71−0.77, which was suitable for the region.
      Conclusion  The climatic conditions of large temperature difference, high average temperature, long sunshine hours in the growing season are favorable for the formation of sweet and waxy quality of chestnut nuts.
  • [1]
    张宇和, 柳鎏, 梁维坚. 中国果树志 板栗 榛子卷[M]. 北京: 中国林业出版社, 2005.

    Zhang Y H, Liu L, Liang W J. The Chinese fruit tree Chinese chestnut hazelnut roll[M]. Beijing: China Forestry Publishing House, 2005.
    [2]
    路超, 郭素娟. 16份板栗种质资源主要营养品质分析与综合评价[J]. 食品工业科技, 2016, 37(23): 357−361. doi: 10.13386/j.issn1002-0306.2016.23.059

    Lu C, Guo S J. Analysis on the nutritional characters and comprehensive evaluation of 16 chestnut germplasm resources[J]. Science and Technology of Food Industry, 2016, 37(23): 357−361. doi: 10.13386/j.issn1002-0306.2016.23.059
    [3]
    郭素娟, 吕文君, 邹锋, 等. 迁西板栗主栽品种授粉组合的优化[J]. 江西农业大学学报, 2013, 35(3): 437−443. doi: 10.3969/j.issn.1000-2286.2013.03.001

    Guo S J, Lü W J, Zou F, et al. Experiment on screening pollination varieties for main Castanea mollissima varieties in Yan Mountain[J]. Acta Agriculturae Universitis Jiangxiensis, 2013, 35(3): 437−443. doi: 10.3969/j.issn.1000-2286.2013.03.001
    [4]
    Yang B, Jiang G, Gu C, et al. Structural changes in polysaccharides isolated from chestnut (Castanea mollissima Bl.) fruit at different degrees of hardening[J]. Food Chemistry, 2010, 119(3): 1211−1215. doi: 10.1016/j.foodchem.2009.08.050
    [5]
    Massantini R, Moscetti R, Frangipane M T. Evaluating progress of chestnut quality: a review of recent developments[J]. Trends in Food Science & Technology, 2021(113): 245−254.
    [6]
    张丽, 郭素娟, 孙慧娟, 等. 硼砂和蔗糖对板栗果实非结构性碳水化合物含量的影响[J]. 果树学报, 2018, 35(3): 319−325. doi: 10.13925/j.cnki.gsxb.20170301

    Zhang L, Guo S J, Sun H J, et al. Effects of borax and sucrose on the non-structural carbohydrate content in Chinese chestnut fruit[J]. Journal of Fruit Science, 2018, 35(3): 319−325. doi: 10.13925/j.cnki.gsxb.20170301
    [7]
    张强. ‘富士’苹果果实品质与土壤养分和气象因子关系的研究[D]. 北京: 中国农业大学, 2018.

    Zhang Q. Study on relationship between fruit quality of‘Fuji’apple and soil nutrition, meterological factors[D]. Beijing: China Agricultural University, 2018.
    [8]
    杨栋, 朱佳敏, 丁烨毅, 等. 浙江省水蜜桃物候、品质和产量对气候变化的响应[J]. 生态学杂志, 2019, 38(11): 3366−3375. doi: 10.13292/j.1000-4890.201911.035

    Yang D, Zhu J M, Ding Y Y, et al. Responses of phenology, quality and yield of juicy peach to climate in Zhejiang Province[J]. Chinese Journal of Ecology, 2019, 38(11): 3366−3375. doi: 10.13292/j.1000-4890.201911.035
    [9]
    王亚军, 梁晓婕, 张波, 等. 产地差异对宁夏枸杞果实形态及糖分含量的影响[J]. 干旱地区农业研究, 2018, 36(5): 68−75,81. doi: 10.7606/j.issn.1000-7601.2018.05.11

    Wang Y J, Liang X J, Zhang B, et al. Effects of different habitats on the fruit morphol of Lycium Barbarum L.[J]. Agricultural Research in the Arid Areas, 2018, 36(5): 68−75,81. doi: 10.7606/j.issn.1000-7601.2018.05.11
    [10]
    魏丽萍, 韩艳英, 大布穷, 等. 西藏光核桃果实表型性状变异分析与种质资源筛选[J]. 北京林业大学学报, 2020, 42(7): 48−57. doi: 10.12171/j.1000-1522.20190422

    Wei L P, Han Y Y, Dabuqiong, et al. Analysis on phenotypic variation and germplasm resource selection of wild Amygdalus mira in Tibet of southwestern China[J]. Journal of Beijing Forestry University, 2020, 42(7): 48−57. doi: 10.12171/j.1000-1522.20190422
    [11]
    魏钦平, 程述汉, 唐芳, 等. 红富士苹果品质与生态气象因子关系的研究[J]. 应用生态学报, 1999, 10(3): 289−292. doi: 10.3321/j.issn:1001-9332.1999.03.009

    Wei Q P, Cheng S H, Tang F, et al. Relationship between fruit quality of Fuji apple meteorological factors[J]. Chinese Journal of Applied Ecology, 1999, 10(3): 289−292. doi: 10.3321/j.issn:1001-9332.1999.03.009
    [12]
    禄彩丽, 何秉宇, 马珊, 等. 环塔里木盆地骏枣质地品质及其与气象因子的关系[J]. 西北农林科技大学学报(自然科学版), 2021, 49(2): 1−9. doi: 10.13207/j.cnki.jnwafu.2021.02.007

    Lu C L, He B Y, Ma S, et al. Texture quality of Ziziphus jujuba cv. Junzao of Tarim Basin and its relationship with meteorological factors[J]. Journal of Northwest A&F University (Natural Science Edition), 2021, 49(2): 1−9. doi: 10.13207/j.cnki.jnwafu.2021.02.007
    [13]
    姚俊英, 张海玉, 南极月, 等. 平榛气候品质评价技术与方法[J]. 东北林业大学学报, 2019, 47(11): 73−76. doi: 10.3969/j.issn.1000-5382.2019.11.014

    Yao J Y, Zhang H Y, Nan J Y, et al. Technology and methods in climate quality assessment of Corylus heterophylla Fisch[J]. Journal of Northeast Forestry University, 2019, 47(11): 73−76. doi: 10.3969/j.issn.1000-5382.2019.11.014
    [14]
    谢远玉, 王培娟, 朱凌金, 等. 基于气象因子的赣南脐橙气候品质指标评价模型[J]. 生态学杂志, 2019, 38(7): 2265−2274. doi: 10.13292/j.1000-4890.201907.028

    Xie Y Y, Wang P J, Zhu L J, et al. Climate quality evaluation model for navel orange in Ganzhou[J]. Chinese Journal of Ecology, 2019, 38(7): 2265−2274. doi: 10.13292/j.1000-4890.201907.028
    [15]
    江锡兵, 龚榜初, 刘庆忠, 等. 中国板栗地方品种重要农艺性状的表型多样性[J]. 园艺学报, 2014, 41(4): 641−652. doi: 10.16420/j.issn.0513-353x.2014.04.008

    Jiang X B, Gong B C, Liu Q Z, et al. Phenotypic diversity of important agronomic traits of local cultivars of Chinese chestnut[J]. Acta Horticulturae Sinica, 2014, 41(4): 641−652. doi: 10.16420/j.issn.0513-353x.2014.04.008
    [16]
    刘亚斌, 郭素娟, 孙传昊. 基于巢式分组设计的板栗刺苞与坚果形态多样性分析[J]. 中南林业科技大学学报, 2020, 40(10): 51−60. doi: 10.14067/j.cnki.1673-923x.2020.10.006

    Liu Y B, Guo S J, Sun C H. Morphological diversity analysis of chestnut thorns bract and nuts based on nested grouping design[J]. Journal of Central South University of Forestry & Technology, 2020, 40(10): 51−60. doi: 10.14067/j.cnki.1673-923x.2020.10.006
    [17]
    杜常健, 孙佳成, 武妍妍, 等. 燕山北部山区板栗优良种质资源收集及其品质评价[J]. 林业科学研究, 2020, 33(3): 1−11. doi: 10.13275/j.cnki.lykxyj.2020.03.001

    Du C J, Sun J C, Wu Y Y, et al. Collection and quality evaluation of elite chestnut germplasm resources in northern Yanshan Mountains[J]. Forest Research, 2020, 33(3): 1−11. doi: 10.13275/j.cnki.lykxyj.2020.03.001
    [18]
    于长文, 许启慧, 马贵东, 等. 河北青龙板栗生长气象条件分析与气候品质认证[J]. 农学学报, 2020, 10(3): 93−100. doi: 10.11923/j.issn.2095-4050.cjas20191100267

    Yu C W, Xu Q H, Ma G D, et al. Growth meteorological condition analysis and climate quality certification of Qinglong chestnut in Hebei[J]. Journal of Agriculture, 2020, 10(3): 93−100. doi: 10.11923/j.issn.2095-4050.cjas20191100267
    [19]
    高桂芹, 王猛, 费晓臣, 等. 迁西县板栗气象干旱指数保险产品设计[J]. 现代农业科技, 2017(2): 183−185. doi: 10.3969/j.issn.1007-5739.2017.02.114

    Gao G Q, Wang M, Fei X C, et al. Design of product for Chinese chestnut meteorological drought index insurance in Qianxi County[J]. Modern Agricultural Science and Technology, 2017(2): 183−185. doi: 10.3969/j.issn.1007-5739.2017.02.114
    [20]
    王文君. 气象灾害对遵化市板栗产业的影响及其防范措施[J]. 现代农业科技, 2017(22): 160−161. doi: 10.3969/j.issn.1007-5739.2017.22.087

    Wang W J. Effects of meteorological disasters on chestnut industry in Zunhua City and its preventive measures[J]. Modern Agricultural Science and Technology, 2017(22): 160−161. doi: 10.3969/j.issn.1007-5739.2017.22.087
    [21]
    邹伦星, 李鑫, 李海燕, 等. 大悟县板栗种植气象条件分析[J]. 南方农业, 2015, 9(24): 45−46. doi: 10.19415/j.cnki.1673-890x.2015.24.027

    Zou L X, Li X, Li H Y, et al. Analysis on meteorological conditions of chestnut planting in Dawu County[J]. South China Agriculture, 2015, 9(24): 45−46. doi: 10.19415/j.cnki.1673-890x.2015.24.027
    [22]
    刘艳, 柳文祥, 王金金, 等. 炒食板栗品种营养品质评价及糖组分分析[J]. 北京农学院学报, 2013, 28(2): 21−24.

    Liu Y, Liu W X, Wang J J, et al. The evaluation of nutrition quality and the analysis of sugar components in fried chestnut varieties (Castanea mollissima)[J]. Journal of Beijing University of Agriculture, 2013, 28(2): 21−24.
    [23]
    Sasaki T, Yasui T, Kiribuchi-Otobe C, et al. Rheological properties of starch gels from wheat mutants with reduced amylose content[J]. Cereal Chemistry, 2007, 84(1): 102−107. doi: 10.1094/CCHEM-84-1-0102
    [24]
    梁丽松, 徐娟, 王贵禧, 等. 板栗淀粉糊化特性与淀粉粒粒径及直链淀粉含量的关系[J]. 中国农业科学, 2009, 42(1): 251−260. doi: 10.3864/j.issn.0578-1752.2009.01.032

    Liang L S, Xu J, Wang G X, et al. Relationship between starch pasting, amylose content and starch granule size in different Chinese chestnut variety groups[J]. Scientia Agricultural Sinica, 2009, 42(1): 251−260. doi: 10.3864/j.issn.0578-1752.2009.01.032
    [25]
    孙涵, 毛留喜, 毕宝贵. 中国精细化农业气候区划: 产品制作与发布系统[M]. 北京: 气象出版社, 2015.

    Sun H, Mao L X, Bi B G. Refined agroclimatic regionalization in China: production and distribution system[M]. Beijing: China Meteorogical Press, 2015.
    [26]
    王广鹏, 刘庆香, 孔德军, 等. 两种板栗淀粉含量测定方法的比较研究[J]. 安徽农学通报, 2007, 18(5): 27, 107. doi: 10.3969/j.issn.1007-7731.2007.05.012

    Wang G P, Liu Q X, Kong D J, et al. Comparative studies on two methods for analyzing starch content in Castanea mollissima Bl.[J]. Anhui Agricultural Science Bulletin, 2007, 18(5): 27, 107. doi: 10.3969/j.issn.1007-7731.2007.05.012
    [27]
    黄小红, 别娜娜, 周圣东. 连续流动分析仪测定地表水中的总氮[J]. 分析仪器, 2010, 11(4): 36−38. doi: 10.3969/j.issn.1001-232X.2010.04.008

    Huang X H, Bie N N, Zhou S D. Determination of total nitrogen in surface water by continuous flow analysis[J]. Analytical Instrumentation, 2010, 11(4): 36−38. doi: 10.3969/j.issn.1001-232X.2010.04.008
    [28]
    黄志伟, 曹剑, 柏玉平. 不同油茶品种对重庆市气候的适应性评价[J]. 南方农业学报, 2016, 47(8): 1338−1343. doi: 10.3969/j:issn.2095-1191.2016.08.1338

    Huang Z W, Cao J, Bai Y P. Adaptability of different Camellia oleifera Abel. varieties to climate of Chongqing[J]. Journal of Southern Agriculture, 2016, 47(8): 1338−1343. doi: 10.3969/j:issn.2095-1191.2016.08.1338
    [29]
    阚黎娜, 李倩, 谢爽爽, 等. 我国板栗种质资源分布及营养成分比较[J]. 食品工业科技, 2016, 37(20): 396−400. doi: 10.13386/j.issn1002-0306.2016.20.071

    Kan L N, Li Q, Xie S S, et al. Resource distribution and nutritional quality difference of Chinese chestnuts[J]. Science and Technology of Food Industry, 2016, 37(20): 396−400. doi: 10.13386/j.issn1002-0306.2016.20.071
    [30]
    Yang F, Liu Q, Pan S, et al. Chemical composition and quality traits of Chinese chestnuts (Castanea mollissima) produced in different ecological regions[J]. Food Bioscience, 2015, 11: 33−42. doi: 10.1016/j.fbio.2015.04.004
    [31]
    马雅莉, 郭素娟. 板栗冠层光合特性的空间异质性研究[J]. 北京林业大学学报, 2020, 42(10): 71−83.

    Ma Y L, Guo S J. Spatial heterogeneity of photosynthetic characteristics in Chinese chestnut canopy[J]. Journal of Beijing Forestry University, 2020, 42(10): 71−83.
    [32]
    李洪果, 陈达镇, 许靖诗, 等. 濒危植物格木天然种群的表型多样性及变异[J]. 林业科学, 2019, 55(4): 72−86. doi: 10.11707/j.1001-7488.20190408

    Li H G, Chen D Z, Xu J S, et al. Phenotypic diversity and variation in natural populations of Erythrophleum fordii, an endangered plant species[J]. Scientia Silvae Sinicae, 2019, 55(4): 72−86. doi: 10.11707/j.1001-7488.20190408
    [33]
    Yang F, Huang X, Zhang C, et al. Amino acid composition and nutritional value evaluation of Chinese chestnut (Castanea mollissima Blume) and its protein subunit[J]. Royal Society of Chemistry, 2018(8): 2653−2659.
  • Related Articles

    [1]Guo Qi, Wu Yue, Zheng Huiquan, Hu Dehuo, Hu Ruiyang, Han Juan, Li Yun, Sun Yuhan. Effects of different culture conditions and their combinations on adventitious root induction of tissue culture seedlings of Chinese fir clone T-c22[J]. Journal of Beijing Forestry University, 2023, 45(1): 59-69. DOI: 10.12171/j.1000-1522.20210332
    [2]Chen Yaobing, Luo Kai, Li Meidong, Huang Xiufang, Liu Hanzhen, Wang Shuiqing, Chen Shenglin. Construction of tissue culture breeding system of Idesia polycarpa “Exuan 1”[J]. Journal of Beijing Forestry University, 2022, 44(12): 23-31. DOI: 10.12171/j.1000-1522.20210116
    [3]Wang Yin, Yao Ruiling. Establishment of an effective protocol for cultivation of tissue cultured seedlings in Pinus massoniana superior provenance[J]. Journal of Beijing Forestry University, 2020, 42(6): 43-51. DOI: 10.12171/j.1000-1522.20190396
    [4]MU Ying, ZHAO Xiao-yan, JING Dan-long, SONG Han, LU Hai, LIU Di. Telomerase activity assay in different organs and callus culture of Ginkgo biloba L.[J]. Journal of Beijing Forestry University, 2014, 36(3): 95-99. DOI: 10.13332/j.cnki.jbfu.2014.03.014
    [5]ZHANG Xiao-xia, DING You-fang, SHI Ling-ling, ZHANG Yun-wei, WANG Fu-hai, YANG Fu-yu, LIU Yu-jun. Tissue culture and rapid propagation of Pueraria lobata.[J]. Journal of Beijing Forestry University, 2010, 32(5): 138-142.
    [6]LI Ping, CHENG Fang-yun, ZHANG Ying-xing. Effects of browning antagonists on antibrowning, growth and multiplication of tissue culture of tree peony[J]. Journal of Beijing Forestry University, 2008, 30(2): 71-76.
    [7]YAO Na, ZHANG Zhi-yi, AN Xin-min, WANG Dong-mei, TAO Feng-jie. Effects of genotype on in vitro regeneration from the leaves of Populus tomentosa Carr[J]. Journal of Beijing Forestry University, 2007, 29(5): 38-43. DOI: 10.13332/j.1000-1522.2007.05.008
    [8]CHEN Jia, CHEN Xiao-yang, LI Zhong-qiu, PIAN Rui-qi, DING Xia. Tissue culture of Lespedeza cuneata[J]. Journal of Beijing Forestry University, 2007, 29(5): 31-37. DOI: 10.13332/j.1000-1522.2007.05.007
    [9]ZHOU Yan-ping, ZHENG Hong-juan, JIA Gui-xia. Establishment of regeneration system on two species of Lilium asiatic hybrid in vitro[J]. Journal of Beijing Forestry University, 2007, 29(1): 123-127. DOI: 10.13332/j.1000-1522.2007.01.022
    [10]LI Yan-ju, TAO Jia-hong, WANG Lan-zhen, HISAJIMA Shigeru. Tissue culture of Acer truncatum[J]. Journal of Beijing Forestry University, 2005, 27(3): 104-107.
  • Cited by

    Periodical cited type(11)

    1. 施云凤,李文秀,贺军军,罗萍,张华林,张凤英. 甲基磺酸乙酯诱变对阳春砂仁出苗的影响. 热带农业科学. 2024(10): 47-51 .
    2. 崔晓彤,刘婉婷,张恒月,段乌拉,王君. 杨树派间远缘杂种小胡杨(Populus simonii×P.euphratica)组培快繁体系的构建. 分子植物育种. 2023(07): 2337-2343 .
    3. 王欢,曾琪瑶,王春胜,郭俊杰,曾杰. 油榄仁种胚高质量组培快繁体系. 中南林业科技大学学报. 2023(09): 53-61+88 .
    4. 李春兰. 毛白杨良种繁殖技术研究进展. 安徽农业科学. 2022(10): 22-24+45 .
    5. 王雷,李百和,赵培霞,韩鹏. 蒙古莸(Caryopteris mongholica)组培快繁体系的建立和优化. 分子植物育种. 2022(14): 4745-4754 .
    6. 陈耀兵,罗凯,李美东,黄秀芳,刘汉蓁,王水清,陈圣林. “鄂选1号”山桐子组培繁育体系构建. 北京林业大学学报. 2022(12): 23-31 . 本站查看
    7. 屈超,叶冬梅,郭欣,崔雁敏,朝勒蒙. 互叶醉鱼草茎段组织培养技术研究. 江苏林业科技. 2022(06): 15-19 .
    8. 马秋月,李倩中,李淑顺,朱璐,颜坤元,李淑娴,张斌,闻婧. 元宝枫组织培养及快速繁殖技术研究. 南京林业大学学报(自然科学版). 2021(02): 220-224 .
    9. 石进朝,陈博,陈兰芬,李彦侠. 阳光毛白杨带芽茎段再生体系的构建. 江苏农业科学. 2021(14): 50-55 .
    10. 梁艳,赵雪莹,白雪,刘德强,张妍,潘朋. PVP处理对黑皮油松外植体酚类物质形成及酶活性的影响. 林业科学. 2021(10): 166-174 .
    11. 王建新,吴志茹,冯光惠. 榆林沙区引种波尔卡树莓的组织培养与快速繁殖. 山西农业科学. 2019(12): 2078-2082 .

    Other cited types(2)

Catalog

    Article views (744) PDF downloads (98) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return