• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Wang Shuo, Han Daxiao, Wang Qianxue, Cong Rizheng, Wang Xiaohong, Yang Guang, Wang Lizhong, Zhang Jili. Effects of different forest fire intensities on the spatial distribution pattern of natural Larix gmelinii forests in the Great Xing’an Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2023, 45(2): 87-95. DOI: 10.12171/j.1000-1522.20210367
Citation: Wang Shuo, Han Daxiao, Wang Qianxue, Cong Rizheng, Wang Xiaohong, Yang Guang, Wang Lizhong, Zhang Jili. Effects of different forest fire intensities on the spatial distribution pattern of natural Larix gmelinii forests in the Great Xing’an Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2023, 45(2): 87-95. DOI: 10.12171/j.1000-1522.20210367

Effects of different forest fire intensities on the spatial distribution pattern of natural Larix gmelinii forests in the Great Xing’an Mountains of northeastern China

More Information
  • Received Date: September 14, 2021
  • Revised Date: March 01, 2022
  • Accepted Date: November 14, 2022
  • Available Online: November 16, 2022
  • Published Date: February 24, 2023
  •   Objective  The spatial distribution pattern of trees is important for evaluating whether the forest needs to be managed, and judging which distribution state (aggregated distribution, random distribution, or uniform distribution) of trees is a prerequisite for developing suitable management plans. Moderate and high severity forest fires can kill a large number of trees, and then change the distribution characteristics of stand diameter and the spatial distribution pattern of forest trees. We investigated natural Larix gmelinii forests in the Da’erbinhu National Forest Park, Inner Mongolia of northern China one year following a mixed-severity wildfire.
      Method  By comparing the distribution of stand diameter, the spatial distribution pattern of different types of trees and their association, we analyzed the influence of fire on the spatial distribution pattern of trees.
      Result  The results showed that in high severity areas, the number of small living trees and the gathering radius of small dead trees were relatively small. Compared with the unburned sample plots, the medium living trees presented a clustered distribution at the medium scale in the burned areas. The middle trees and the small trees were associated in the moderate severity burned sample plots. The medium dead trees and the surrounding small dead trees were positively associated within a radius of 4 to 8 m, while the medium living trees and the surrounding small dead trees were negatively associated within a radius of 8 to 20 m.
      Conclusion  The spatial pattern of trees and the association between trees of different sizes and different status are affected by the fire severity. Choosing suitable afforestation measures according to the aggregation scale of trees for different fire severities is of great significance to forest restoration after a fire. This study can provide a scientific basis for the protection and rational use of nature larch forests in the Great Xing’an Mountains of northeastern China.
  • [1]
    杨慧, 娄安如, 高益军, 等. 北京东灵山地区白桦种群生活史特征与空间分布格局[J]. 植物生态学报, 2007, 31(2): 272−282. doi: 10.3321/j.issn:1005-264X.2007.02.010

    Yang H, Lou A R, Gao Y J, et al. Life history characteristics and spatial distribution of the Betula platyphylla population in the Dongling Mountain Region, Beijing, China[J]. Journal of Plant Ecology, 2007, 31(2): 272−282. doi: 10.3321/j.issn:1005-264X.2007.02.010
    [2]
    马芳, 王顺忠, 冯金朝, 等. 北京东灵山优势种群树木死亡对空间格局与生境的影响[J]. 生态学报, 2018, 38(21): 7669−7678.

    Ma F, Wang S Z, Feng J Z, et al. The study of the effect of tree death on spatial pattern and habitat associations in dominant populations of Dongling Mountains in Beijing[J]. Acta Ecologica Sinica, 2018, 38(21): 7669−7678.
    [3]
    Zenner E K, Hibbs D E. A new method for modeling the heterogeneity of forest structure[J]. Forest Ecology and Management, 2000, 129(1−3): 75−87. doi: 10.1016/S0378-1127(99)00140-1
    [4]
    Lydersen J M, Collins B M, Miller J D, et al. Relating fire-caused change in forest structure to remotely sensed estimates of fire severity[J]. Fire Ecology, 2016, 12(3): 99−116. doi: 10.4996/fireecology.1203099
    [5]
    Stevens C S, Sieg C H, Hunter M E. Ten years after wildfires: how does varying tree mortality impact fire hazard and forest resiliency[J]. Forest Ecology and Management, 2012, 267: 199−208. doi: 10.1016/j.foreco.2011.12.003
    [6]
    Sparkle M. Mixed-severity fire fosters heterogeneous spatial patterns of conifer regeneration in a dry conifer forest[J]. Forests, 2018, 9(1): 1−17.
    [7]
    Sparks A M, Talhelm A F, Partelli F R, et al. An experimental assessment of the impact of drought and fire on western larch injury, mortality and recovery[J]. International Journal of Wildland Fire, 2018, 27: 1−8. doi: 10.1071/WF16221
    [8]
    李艳丽, 杨华, 邓华锋. 蒙古栎−糠椴天然混交林空间格局研究[J]. 北京林业大学学报, 2019, 41(3): 33−41.

    Li Y L, Yang H, Deng H F. Spatial distribution patterns of Quercus mongolica and Tilia mandshurica natural mixed forests[J]. Journal of Beijing Forestry University, 2019, 41(3): 33−41.
    [9]
    Zhang L Y, Dong L B, Liu Q, et al. Spatial patterns and interspecific associations during natural regeneration in three types of secondary forest in the central part of the Greater Khingan Mountains, Heilongjiang Province, China[J]. Forests, 2020, 152(11): 1−18.
    [10]
    倪瑞强, 唐景毅, 程艳霞, 等. 长白山云冷杉林主要树种空间分布及其关联性[J]. 北京林业大学学报, 2013, 35(6): 28−35. doi: 10.13332/j.1000-1522.2013.06.013

    Ni R Q, Tang J Y, Cheng Y X, et al. Spatial distribution patterns and associations of main tree species in spruce-fir forest in Changbai Mountains, northeastern China[J]. Journal of Beijing Forestry University, 2013, 35(6): 28−35. doi: 10.13332/j.1000-1522.2013.06.013
    [11]
    白小军, 贾琳, 谷会岩. 大兴安岭次生林区优势种落叶松分布格局及竞争作用[J]. 生态学报, 2021, 41(10): 4194−4202.

    Bai X J, Jia L, Gu H Y. Spatial distribution pattern and competition relationship of the dominantLarix gmelinii species in Greater Khingan Mountains’ secondary forest area[J]. Acta Ecologica Sinica, 2021, 41(10): 4194−4202.
    [12]
    胡海清, 魏书精, 孙龙. 1965—2010年大兴安岭森林火灾碳排放的估算研究[J]. 植物生态学报, 2012, 36(7): 629−644.

    Hu H Q, Wei S J, Sun L. Estimation of carbon emissions due to forest fire in Daxing’an Mountains from 1965 to 2010[J]. Chinese Journal of Plant Ecology, 2012, 36(7): 629−644.
    [13]
    Ban Y, Xu H, Kneeshaw B D. Gap regeneration of shade-intolerant Larix gmelini in old-growth boreal forests of northeastern China[J]. Journal of Vegetation Science, 1998, 9(4): 529−536. doi: 10.2307/3237268
    [14]
    Cai W, Yang J, Liu Z, et al. Post-fire tree recruitment of a boreal larch forest in Northeast China[J]. Forest Ecology and Management, 2013, 307: 20−29. doi: 10.1016/j.foreco.2013.06.056
    [15]
    刘志华, 常禹, 贺红士, 等. 火控制政策对大兴安岭森林景观、可燃物动态及火险的长期影响[J]. 生态学杂志, 2009, 28(1): 70−79. doi: 10.13292/j.1000-4890.2009.0055

    Liu Z H, Chang Y, He H S, et al. Long-term effects of fire suppression policy on forest landscape, fuels dynam ics, and fire risks in Great Xing’an Mountains[J]. Chinese Journal of Ecology, 2009, 28(1): 70−79. doi: 10.13292/j.1000-4890.2009.0055
    [16]
    Chang Y, He H S, Hu Y, et al. Historic and current fire regimes in the Great Xing’an Mountains, northeastern China: implications for long-term forest management[J]. Forest Ecology and Management, 2008, 254(3): 445−453. doi: 10.1016/j.foreco.2007.04.050
    [17]
    Hu T, Zhou G. Drivers of lightning- and human-caused fire regimes in the Great Xing’an Mountains[J]. Forest Ecology and Management, 2014, 329: 49−58. doi: 10.1016/j.foreco.2014.05.047
    [18]
    刘树超, 陈小中, 覃先林, 等. 内蒙古毕拉河林场森林火灾受害程度遥感评价[J]. 林业资源管理, 2018(1): 90−95.

    Liu S C, Chen X Z, Qin X L, et al. Remote sensing assessment of forest fire damage degree in Bilahe Forest Farm, Inner Mongolia[J]. Forest Resources Management, 2018(1): 90−95.
    [19]
    李文辉. 浅谈毕拉河林业局立地类型分布特点[J]. 内蒙古林业调查设计, 2010, 33(3): 48−50. doi: 10.3969/j.issn.1006-6993.2010.03.021

    Li W H. Elementary discussion on the distribution characteristics of site types of Bilahe Forestry Bureau[J]. Inner Mongolia Forestry Investigation and Design, 2010, 33(3): 48−50. doi: 10.3969/j.issn.1006-6993.2010.03.021
    [20]
    Keeley J E. Fire intensity, fire severity and burn severity: a brief review and suggested usage[J]. International Journal of Wildland Fire, 2009, 18: 116−126. doi: 10.1071/WF07049
    [21]
    王睿智, 国庆喜. 小兴安岭阔叶红松林木本植物种−面积关系[J]. 生态学报, 2016, 36(13): 4091−4098.

    Wang R Z, Guo Q X. Woody plants species-area relationships in a broad-leaved Korean pine forest in the Xiaoxing’an Mountains[J]. Acta Ecologica Sinica, 2016, 36(13): 4091−4098.
    [22]
    赵广东, 熊凯, 许格希, 等. 川西米亚罗亚高山暗针叶林主要优势种岷江冷杉和糙皮桦的空间格局及其关联性分析[J]. 生态学报, 2022, 42(8): 1−12.

    Zhao G D, Xiong K, Xu G X, et al. Spatial patterns and associations of main dominant species Abies fargesii var. faxoniana andBetula utilis in Miyaluo subalpine dark coniferous forest of western Sichuan, China[J]. Acta Ecologica Sinica, 2022, 42(8): 1−12.
    [23]
    张春雨, 赵秀海, 夏富才. 长白山次生林树种空间分布及环境解释[J]. 林业科学, 2008, 44(8): 1−8. doi: 10.3321/j.issn:1001-7488.2008.08.001

    Zhang C Y, Zhao X H, Xia F C. Spatial distribution of tree species and environmental interpretations of secondary forest in Changbai Mountains[J]. Scientia Silvae Sinicae, 2008, 44(8): 1−8. doi: 10.3321/j.issn:1001-7488.2008.08.001
    [24]
    Condit R, Ashton P S, Baker P, et al. Spatial patterns in the distribution of tropical tree species[J]. Science, 2000, 288: 1414−1418. doi: 10.1126/science.288.5470.1414
    [25]
    Wiegand T, Moloney K A. Rings, circles, and null-models for point pattern analysis in ecology[J]. Oikos, 2004, 104(2): 209−229. doi: 10.1111/j.0030-1299.2004.12497.x
    [26]
    孙云霞, 刘兆刚, 董灵波. 帽儿山地区1983—2016年森林景观空间点格局及其关联动态性[J]. 应用生态学报, 2018, 29(8): 2601−2614.

    Sun Y X, Liu Z G, Dong L B. Spatial point patterns and their association dynamics of forest landscapes in Maoershan Region, Northeast China between 1983 and 2016[J]. Chinese Journal of Applied Ecology, 2018, 29(8): 2601−2614.
    [27]
    舒兰, 刘兆刚, 董灵波. 帽儿山天然次生林内主要木本植物空间格局及更新特点[J]. 应用生态学报, 2019, 30(6): 1945−1955. doi: 10.13287/j.1001-9332.201906.026

    Shu L, Liu Z G, Dong L B. Spatial pattern and forest regeneration characteristics of natural secondary forest in Maoershan, Northeast China[J]. Chinese Journal of Applied Ecology, 2019, 30(6): 1945−1955. doi: 10.13287/j.1001-9332.201906.026
    [28]
    祝燕, 白帆, 刘海丰, 等. 北京暖温带次生林种群分布格局与种间空间关联性[J]. 生物多样性, 2011, 19(2): 252−259.

    Zhu Y, Bai F, Liu H F, et al. Population distribution patterns and interspecific spatial associations in warm temperate secondary forests, Beijing[J]. Biodiversity Science, 2011, 19(2): 252−259.
    [29]
    Yu H, Wiegand T, Yang X, et al. The impact of fire and density-dependent mortality on the spatial patterns of a pine forest in the Hulun Buir Sandland, Inner Mongolia, China[J]. Forest Ecology and Management, 2009, 257(10): 2098−2107. doi: 10.1016/j.foreco.2009.02.019
    [30]
    胡海清. 大兴安岭原始林区林木火疤的研究[J]. 自然灾害学报, 2003, 12(4): 68−72. doi: 10.3969/j.issn.1004-4574.2003.04.012

    Hu H Q. Study on fire scar of trees in Daxing’an Mountains’ virgin forest region[J]. Journal of Natural Disasters, 2003, 12(4): 68−72. doi: 10.3969/j.issn.1004-4574.2003.04.012
    [31]
    Stephens S L, Fry D L, Vizcaíno E F. Wildfire and spatial patterns in forests in northwestern Mexico: the United States wishes it had similar fire problems[J]. Ecology and Society, 2008, 13(2): 1−12.
    [32]
    Mantgem P J, Stephenson N L, Knapp E B, et al. Long-term effects of prescribed fire on mixed conifer forest structure in the Sierra Nevada, California[J]. Forest Ecology and Management, 2011, 261(6): 989−994. doi: 10.1016/j.foreco.2010.12.013
    [33]
    Fulé P Z, Covington W W. Spatial patterns of Mexican pine-oak forests under different recent fire regimes[J]. Plant Ecology, 1998, 134: 197−209. doi: 10.1023/A:1009789018557
    [34]
    Andrew J L, Derek C. Tree spatial patterns in fire-frequent forests of western North America, including mechanisms of pattern formation and implications for designing fuel reduction and restoration treatments[J]. Forest Ecology and Management, 2012, 267: 74−92. doi: 10.1016/j.foreco.2011.11.038
  • Related Articles

    [1]Shen Xihuan, Li Huafeng, Zhao Shejiao, Ma Jianwei, Li Shujing, Wang Jun. Investigation and analysis of seedling and experiment plantation of 40 half-sib-families from 4 seed provenances of Pinus tabuliformis[J]. Journal of Beijing Forestry University, 2022, 44(4): 47-53. DOI: 10.12171/j.1000-1522.20210243
    [2]Zhou Hongxin, Didar Xerdiman, Li Shaocai, Sun Hailong, Tan Changming, Wang Xiaowen, Xia Min. Experiment on shrub spray sowing technology in limestone dreg field[J]. Journal of Beijing Forestry University, 2022, 44(1): 87-93. DOI: 10.12171/j.1000-1522.20210187
    [3]Meng Zhaoxin, Cao Jiajia, Zhu Li, Ma Jingyao, Shi Jinsong. Kinetics analysis and strategy of compensation control study for feeding platform of curve saw for wood[J]. Journal of Beijing Forestry University, 2020, 42(2): 159-166. DOI: 10.12171/j.1000-1522.20190234
    [4]Wang Yuanming, Zhang Fangyu, Yang Xuechun, Wang Lihai, Dong Zengchuan. Wave elimination mechanism of wavebreak forest by physical experiments in Baidajie Dike, Nenjiang River of northeastern China[J]. Journal of Beijing Forestry University, 2019, 41(10): 121-127. DOI: 10.13332/j.1000-1522.20180035
    [5]Li Xiang, Wang Yaming, Meng Chen, Li Jiao, Niu Jianzhi. A dynamic crown interception model based on simulated rainfall experiments of small trees[J]. Journal of Beijing Forestry University, 2018, 40(4): 43-50. DOI: 10.13332/j.1000-1522.20170348
    [6]WANG Chao, WANG Dong-mei, LI Yong-hong, ZHANG Yan, LAI Wen-hao. Introduction experiment of bio-energy plant Xanthoceras sorbifolia in the gully region of the loess tableland residue in Shanxi Province,northern China.[J]. Journal of Beijing Forestry University, 2013, 35(3): 90-96.
    [7]LI Yan-jie, XU Chen, LU Yuan-jia, ZHAO Dong. Finite element analysis and experiments on the drill of earth auger[J]. Journal of Beijing Forestry University, 2013, 35(2): 112-117.
    [8]ZHANG Jun-mei, LI Wen-bin, SA Chao, WANG De-ming. Motion control system of remote control pruning robot for standing trees[J]. Journal of Beijing Forestry University, 2007, 29(4): 33-36. DOI: 10.13332/j.1000-1522.2007.04.008
    [9]ZHANG Jun-mei, LI Wen-bin, SA Chao, WANG De-ming. Power control system of remote control pruning robot for standing trees[J]. Journal of Beijing Forestry University, 2007, 29(4): 22-26. DOI: 10.13332/j.1000-1522.2007.04.006
    [10]WANG An-zhi, LIU Jian-mei, PEI Tie-fan, JIN Chang-jie. An experiment and model construction of rainfall interception by Picea koraiensis[J]. Journal of Beijing Forestry University, 2005, 27(2): 38-42.
  • Cited by

    Periodical cited type(11)

    1. 杨涛,孙付春,黄波,吴柏强,冉光泽. 果园作业平台关键技术研究进展. 中国农机化学报. 2024(01): 152-159 .
    2. 汪若尘,蒋亦勇,丁仁凯,孙泽宇,徐可. 基于BP神经网络PID的机电式作业机全向调平控制. 农业工程学报. 2024(23): 52-62 .
    3. 姜欢龙,严重勇,李青涛,梁丽,李佳阳,谭芸颖. 自走式农业机械静态稳定性研究现状及展望. 西华大学学报(自然科学版). 2023(01): 32-41 .
    4. 聂昭成,罗红品,刘威,李光林. 丘陵山地作物信息采集全向自平衡装置的设计与试验. 西南大学学报(自然科学版). 2023(10): 129-138 .
    5. 蒋俞,孙泽宇,汪若尘,夏长高,叶青,郭逸凡. 丘陵山区履带式作业机全向调平系统设计与性能试验. 农业工程学报. 2023(18): 64-73 .
    6. 孙泽宇,夏长高,蒋俞,郭逸凡,汪若尘. 基于QBP-PID的履带式作业机全向调平控制研究. 农业机械学报. 2023(12): 397-406 .
    7. 姜彪,付友,郭靖,张海林,马新华. 煤矿抢险移动式自动调平搭载平台控制系统. 煤矿机械. 2022(04): 181-185 .
    8. 张翠英,仪垂良,刘学峰,任冬梅,张成保. 基于CAN总线的悬浮式转向驱动桥电气控制系统设计. 农业装备与车辆工程. 2021(05): 1-5 .
    9. 缪友谊,陈小兵,朱继平,袁栋,陈伟,丁艳. 果园作业平台研究进展分析. 中国农机化学报. 2021(06): 41-49 .
    10. 李林林,邓干然,林卫国,崔振德,何冯光,李国杰. 农业机械自动调平技术发展现状与趋势. 现代农业装备. 2021(05): 2-7+35 .
    11. 吕昊暾,胡召田,于泳超,康峰,郑永军. 果园高位作业平台自动调平前馈PID控制方法. 农业工程学报. 2021(18): 20-28 .

    Other cited types(5)

Catalog

    Article views (681) PDF downloads (85) Cited by(16)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return