• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Song Shuang, Wang Shaohan, Shi Mengxi, Hu Shanshan, Xu Dawei. Spatial and temporal evolution characteristics and prediction of landscape ecology in Naolihe Basin of northeastern China[J]. Journal of Beijing Forestry University, 2023, 45(6): 90-99. DOI: 10.12171/j.1000-1522.20210395
Citation: Song Shuang, Wang Shaohan, Shi Mengxi, Hu Shanshan, Xu Dawei. Spatial and temporal evolution characteristics and prediction of landscape ecology in Naolihe Basin of northeastern China[J]. Journal of Beijing Forestry University, 2023, 45(6): 90-99. DOI: 10.12171/j.1000-1522.20210395

Spatial and temporal evolution characteristics and prediction of landscape ecology in Naolihe Basin of northeastern China

More Information
  • Received Date: October 07, 2021
  • Revised Date: September 17, 2022
  • Available Online: May 15, 2023
  • Published Date: June 24, 2023
  •   Objective  The landscape ecological conditions are closely related to land use changes, and the clarification and prediction of spatial and temporal landscape ecological evolution characteristics of basin based on land use is important for its ecological conservation.
      Method  We took the Naolihe Basin of northeastern China as the study area and constructed a landscape ecological estimation model in terms of three aspects: physiology, functionality and sustainability to analyze the spatial and temporal evolution characteristics of the landscape ecology from 2010 to 2020. Based on the CLUE-S model, we simulated the land use pattern of the study area under three scenarios in 2040 and predicted the landscape ecological status under different scenarios.
      Result  (1) From 2010 to 2020, the landscape ecological index of the study area was at a medium level and showed a decreasing trend, and the spatial distribution was “high in the east and low in the west”, the nature of land use patches was a key factor in determining the landscape ecology of the study area, and the change of landscape ecological level was closely related to the change of the land use pattern. (2) Under the simulation scenarios of the study area in 2040, the area of cultivated land and grassland decreased, and the outer banks of the Waiqixing River and the periphery of the original settlements being the main areas for the expansion of construction land. (3) The decline of the landscape ecological index in the study area was mitigated only under the ecological conservation scenario, the landscape ecological index of the areas that were highly affected by the expansion of agricultural activities and construction land in the trend development and accelerated development scenarios, the expansion of some areas with low values of landscape ecological index in the ecological conservation scenario was mitigated, but there was also the problem that the landscape ecological was not improved by the spreading development of construction land.
      Conclusion  Changes in land use patterns due to agricultural activities and urbanization development will continue to be the main reason for the decline in the landscape ecological level of the basin, the formulation of scientific and targeted control and compensation strategies for various ecological types of land is an effective means to improve its landscape ecological level. The results could provide reference for the management and sustainable development of landscape ecological resources in the basin.
  • [1]
    Wei S M, Pan J H, Liu X. Landscape ecological safety assessment and landscape pattern optimization in arid inland river basin: take Ganzhou District as an example[J]. Human and Ecological Risk Assessment: an International Journal, 2020, 26(3): 782−806. doi: 10.1080/10807039.2018.1536521
    [2]
    李春晖, 崔嵬, 庞爱萍, 等. 流域生态健康评价理论与方法研究进展[J]. 地理科学进展, 2008, 27(1): 9−17.

    Li C H, Cui W, Pang A P, et al. Progress on theories and methods of watershed eco-health assessment[J]. Progress in Geography, 2008, 27(1): 9−17.
    [3]
    曹宇, 哈斯巴根, 宋冬梅. 景观健康概念、特征及其评价[J]. 应用生态学报, 2002, 13(11): 1511−1515.

    Cao Y, Hasbagon, Song D M. Concep, characteristics and evaluation of landscape health[J]. Chinese Journal of Applied Ecology, 2002, 13(11): 1511−1515.
    [4]
    常守志. 基于生态流的城市景观生态变化与优化研究[D]. 长春: 吉林大学, 2019.

    Chang S Z. Research on ecological change and optimization of urban landscape based on ecological flow[D]. Changchun: Jilin University, 2019.
    [5]
    Song S, Xu D W, Hu S S, et al. Ecological network optimization in urban central district based on complex network theory: a case study with the urban central district of Harbin[J]. International Journal of Environmental Research and Public Health, 2021, 18: 1427. doi: 10.3390/ijerph18041427
    [6]
    倪畅, 周凯, 郑曦. 基于景观生态风险评价的景观格局优化: 以北京市浅山区为例[J]. 风景园林, 2021, 28(5): 80−85.

    Ni C, Zhou K, Zheng X. Landscape pattern optimization based on landscape ecological risk assessment: a case study of shallow mountain area in Beijing[J]. Landscape Architecture, 2021, 28(5): 80−85.
    [7]
    李卫海, 李阳兵, 邵景安, 等. 基于景观尺度的城市生态健康时空过程: 贵阳市案例研究[J]. 环境科学学报, 2011, 31(2): 440−448.

    Li W H, Li Y B, Shao J A, et al. Spatio-temporal process of urban ecological health based on landscape scale: a case study of Guiyang City[J]. Acta Scientiae Circumstantiae, 2011, 31(2): 440−448.
    [8]
    巫涛. 长沙城市绿地景观格局及其生态服务功能价值研究[D]. 长沙: 中南林业科技大学, 2012.

    Wu T. The research on landscape pattern and ecosystem service in Changsha [D]. Changsha: Central South University of Forestry & Technology, 2012.
    [9]
    黄嘉颖, 赵伟伟. 景观指数化视角下的榆林古城文化景观特征解析及格局修补[J]. 规划师, 2020(3): 31−38.

    Huang J Y, Zhao W W. Character analysis and pattern repair of cultural landscape in Yulin Ancient Town from landscape indexation viewpoint[J]. Planners, 2020(3): 31−38.
    [10]
    徐梦林, 李冠衡, 鞠鲤懋. 基于ENVI技术下的蒙山风景区景观格局动态评估与分析[J]. 北京林业大学学报, 2019, 41(10): 107−120.

    Xu M L, Li G L, Ju L M. Dynamic evaluation and analysis of landscape pattern of Mengshan Scenic Spot based on ENVI technology[J]. Journal of Beijing Forestry University, 2019, 41(10): 107−120.
    [11]
    Hou L, Wu F Q, Xie X L. The spatial characteristics and relationships between landscape pattern and ecosystem service value along an urban-rural gradient in Xi’an City, China [J/OL]. Ecological Indicators, 2020, 108: 105820[2021−12−25]. https://doi.org/10.1016/j.ecolind.2019.105720.
    [12]
    王楚琦, 闫晋钰, 李冠衡. 基于ENVI技术的永定河段景观格局演变与优化研究[J]. 北京林业大学学报, 2021, 43(6): 118−129.

    Wang C Q, Yan J Y, Li G H. Evolution and optimization research on landscape pattern of Yongding River Section of Beijing based on ENVI technology[J]. Journal of Beijing Forestry University, 2021, 43(6): 118−129.
    [13]
    邵明, 董宇翔, 林辰松. 基于GWR模型的成渝城市群生态系统服务时空演变及驱动因素研究[J]. 北京林业大学学报, 2020, 42(11): 118−129.

    Shao M, Dong Y X, Lin C S. Spatio-temporal evolution and driving factors of ecosystem services in Chengdu-Chongqing urban agglomeration of southwestern China based on GWR model[J]. Journal of Beijing Forestry University, 2020, 42(11): 118−129.
    [14]
    宫兴龙, 杜树平, 付强, 等. 挠力河流域丘陵−平原−湿地区径流变化驱动力分析[J]. 农业工程学报, 2019, 35(16): 114−124.

    Gong X L, Du S P, Fu Q, et al. Analysis on driving force of runoff change in hill-plain-wetland area of Naoli River Basin[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(16): 114−124.
    [15]
    刘曼红, 孟瑶, 曹晶晶, 等. 挠力河湿地大型底栖动物功能特性[J]. 东北林业大学学报, 2019, 47(1): 76−82.

    Liu M H, Meng Y, Cao J J, et al. Functional characteristics of macrobenthic fauna in the Nouli River Wetland[J]. Journal of Northeast Forestry University, 2019, 47(1): 76−82.
    [16]
    宋爽, 许大为, 石梦溪, 等. 挠力河流域景观生态健康时空演变[J]. 南京林业大学学报(自然科学版), 2021, 45(2): 177−186.

    Song S, Xu D W, Shi M X, et al. Spatial and temporal evolution of landscape ecological health in Naolihe Basin[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2021, 45(2): 177−186.
    [17]
    张弘强, 罗春雨, 崔玲, 等. 2011—2016年挠力河流域生长季地表温度时空变化特征分析[J]. 国土与自然资源研究, 2018(2): 68−69.

    Zhang H Q, Luo C Y, Cui L, et al. The spatail-temporal changes of land surface temperature in the growing season in Naoli River Basin during 2011−2016[J]. Land and Natural Resources Research, 2018(2): 68−69.
    [18]
    Pan Z Z, He J H, Liu D F, et al. Ecosystem health assessment based on ecological integrity and ecosystem services demand in the middle reaches of the Yangtze River Economic Belt, China [J/OL]. Science of the Total Environment, 2021, 774: 144837[2021−10−15]. http://dx.chinadoi.cn/10.1016/j.scitotenv.2020.144837.
    [19]
    Peng J, Ma J, Yuan Y, et al. Integrated urban land-use zoning and associated spatial development: a case study in Shenzhen, China[J]. Journal of Urban Planning and Development, 2015, 141: 05014025. doi: 10.1061/(ASCE)UP.1943-5444.0000245
    [20]
    谢高地, 张彩霞, 张雷明, 等. 基于单位面积价值当量因子的生态系统服务价值化方法改进[J]. 自然资源学报, 2015, 30(8): 1243−1254.

    Xie G D, Zhang C X, Zhang L M, et al. Improvement of the evaluation method for ecosystem service value based on per unit area[J]. Journal of Natural Resources, 2015, 30(8): 1243−1254.
    [21]
    邬建国. 景观生态学: 格局、过程、尺度与等级[M]. 北京: 高等教育出版社, 2007: 2−6.

    Wu J G. Landscape ecology: pattern, process, scale and grade[M]. Beijing: Higher Education Press, 2007: 2−6.
    [22]
    Zhang Z Y, Liu Y F, Wang Y H, et al. What factors affect the synergy and trade-off between ecosystem services, and how, from a geospatial perspective?[J/OL]. Journal of Cleaner Production, 2020, 257, 120454[2021−12−19]. https://www.sciencedirect.com/science/article/pii/S0959652620305011.
    [23]
    朱康文, 李月臣, 周梦甜. 基于CLUE-S模型的重庆市主城区土地利用情景模拟[J]. 长江流域资源与环境, 2015, 24(5): 789−797.

    Zhu K W, Li Y C, Zhou M T. Land use scenario simulation of the main city of in Chongqing City based on the CLUE-S model[J]. Resources and Environment in the Yangtze Basin, 2015, 24(5): 789−797.
    [24]
    Peng K F, Jiang W G, Deng Y, et al. Simulating wetland changes under different scenarios based on integrating the random forest and CLUE-S models: a case study of Wuhan Urban agglomeration [J/OL]. Ecological Indicators, 2020, 117: 106671[2021−10−19]. https://doi.org/10.1016/j.ecolind.2020.106671.
    [25]
    白立敏. 基于景观格局视角的长春市城市生态韧性评价与优化研究[D]. 长春: 东北师范大学, 2019.

    Bai L M. Evaluation and optimization of urban ecological resilience in Changchun based on landscape pattern[D]. Changchun: Northeast Normal University, 2019.
    [26]
    张文彤, 董伟. Spss统计分析高级教程 [M]. 北京: 高等教育出版社, 2018.

    Zhang W T, Dong W. Spss statistical analysis advanced course [M]. Beijing: Higher Education Press, 2018.
    [27]
    周浩, 雷国平, 杨雪昕, 等. RCPs气候情景下三江平原典型流域耕地动态模拟[J]. 农业机械学报, 2017, 48(10): 121−133.

    Zhou H, Lei G P, Yang X X, et al. Simulation of cultivated land under RCPs scenarios in typical basin of Sanjiang Plain[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(10): 121−133.
    [28]
    Bai X F, Wang B, Qi Y. The effect of returning farmland to grassland and coniferous forest on watershed runoff: a case study of the Naoli River Basin in Heilongjiang Province, China [J/OL]. Sustainability, 2021, 13(11): 6264[2021−11−14]. https://doi.org.10.3390/su13116264.
  • Related Articles

    [1]Jin Siyu, Peng Zuodeng. Changes in response of carbon and water physiological parameters of Robinia pseudoacacia seedlings to long-term drought and rehydration[J]. Journal of Beijing Forestry University, 2023, 45(8): 43-56. DOI: 10.12171/j.1000-1522.20220096
    [2]Zhou Cheng, Liu Tong, Wang Qinggui, Han Shijie. Effects of long-term nitrogen addition on fine root morphological, anatomical structure and stoichiometry of broadleaved Korean pine forest[J]. Journal of Beijing Forestry University, 2022, 44(11): 31-40. DOI: 10.12171/j.1000-1522.20210212
    [3]Zou Qingqin, Wang Yisong, Jiang Zhiyan, Chen Xiangwei, Wang Xiuwei. Non-structural carbohydrate allocation and interspecific differences of different soil and water conservation tree species in typical black soil region[J]. Journal of Beijing Forestry University, 2021, 43(10): 1-8. DOI: 10.12171/j.1000-1522.20210233
    [4]Wang Lina, Wu Junwen, Dong Qiong, Shi Zhuogong, Hu Haocheng, Wu Danzi, Li Luping. Effects of tending and thinning on non-structural carbon and stoichiometric characteristics of Pinus yunnanensis[J]. Journal of Beijing Forestry University, 2021, 43(8): 70-82. DOI: 10.12171/j.1000-1522.20210115
    [5]Zhang Jianjun, Chen Liqi, Li Jianguang, Sun Miao, Fan Yongming, Yu Xiaonan. Anatomical structure characteristics and growth ring analysis of underground rhizome of herbaceous peony[J]. Journal of Beijing Forestry University, 2020, 42(5): 124-131. DOI: 10.12171/j.1000-1522.20190096
    [6]LI Wei-yi, ZHANG Qiu-hui, ZHAO Guang-jie.. Structure and properties characterization of the flame retardant wood wallpaper.[J]. Journal of Beijing Forestry University, 2016, 38(7): 91-97. DOI: 10.13332/j.1000-1522.20150453
    [7]YAN Guo-yong, WANG Xiao-chun, XING Ya-juan, HAN Shi-jie, WANG Qing-gui. Response of root anatomy and tissue chemistry to nitrogen deposition in larch forest in the Great Xing’an Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2016, 38(4): 36-43. DOI: 10.13332/j.1000-1522.20150433
    [8]LI Ji-ping, FENG Yao, ZHAO Chun-yan, ZHANG Cai-cai. Quantitative analysis of stand spatial structure of Cunninghamia lanceolata non-commercial forest based on Voronoi diagram.[J]. Journal of Beijing Forestry University, 2014, 36(4): 1-7. DOI: 10.13332/j.cnki.jbfu.2014.04.005
    [9]WU Sha-sha, PENG Dong-hui, LI Wen-qi, WANG Jing-mao, L&ucirc, Ying-min. Carbohydrate metabolism and activity variation of related enzymes during the exchanging role of bulb source and sink of oriental hybrid lily ‘Sorbonne'[J]. Journal of Beijing Forestry University, 2013, 35(6): 96-102.
    [10]ZHAO Yan-xia, LUO You-qing, ZONG Shi-xiang, WANG Rong1, LUO Hong-mei. Comparison in leaf anatomical structure and drought resistance of different sex and varieties of sea buckthorn[J]. Journal of Beijing Forestry University, 2012, 34(6): 34-41.
  • Cited by

    Periodical cited type(34)

    1. 孙丽,张颖,李文彬,包红光,孙迎坤. 青岛市3种常绿灌木滞尘量与叶微观特征及光合作用等的相关性分析. 西北林学院学报. 2024(04): 232-241 .
    2. 裴云霞,洪慧,包美玲,邓俊,陈岷轩,张强. 农业环境损害鉴定中受体植物的损害因素判别及损害程度分析. 中国司法鉴定. 2024(04): 40-48 .
    3. 贺丹,李朝梅,华超,李思洁,雷雅凯,张曼. 郑州市10种园林植物叶片滞尘与富集重金属的能力. 西北林学院学报. 2023(01): 230-237 .
    4. 张碧媛,李智琦,阮琳,潘勇军,陈国财,代色平,冯娴慧. 2种常用的植物滞纳能力测定方法对比研究. 林业与环境科学. 2023(01): 112-119 .
    5. 罗建平,王宁,宋菲菲,魏汉博,原白玉,唐钰鑫. 大庆市6种绿化树种对SO_2、NO_2的消减及滞尘效应. 生态学报. 2023(11): 4561-4569 .
    6. 张翠,马瑞,谭立佳,杜婉倩,刘涵科. 兰州市10种常用园林绿化树种叶表面微结构对其滞尘量的影响. 甘肃农业大学学报. 2023(04): 192-200+211 .
    7. 廖慧敏,师凤起,李明,朱逸龙. 长沙市典型园林植物叶片的滞尘等级与模式识别研究. 生态环境学报. 2022(01): 110-116 .
    8. 贺丹,汪安印,李紫萱,王翼飞,李朝梅,雷雅凯,李永华,董娜琳. 郑州市常绿树种滞尘能力与叶片生理结构的响应. 福建农业学报. 2022(02): 203-212 .
    9. 李晓璐,叶锦东,章剑,周毅烈,袁楚阳,于慧,张天然,黄芳,张贵豪,邵锋. 乔木滞留大气颗粒物能力及其与叶表面微结构关系. 中国城市林业. 2022(03): 22-28+120 .
    10. 王军梦,汪安印,王翼飞,贺丹,李永华,董娜琳. 不同污染程度下树种滞尘能力与叶表微形态关系研究. 林业调查规划. 2022(05): 16-21+37 .
    11. 孟畅,彭洋,赵杨,王秀荣,肖枫. 2种叶型膏桐幼苗的形态结构和光合特性. 林业科学. 2022(12): 32-41 .
    12. 岳晨,李广德,席本野,曹治国. 叶片大气颗粒物滞纳能力评估方法的定量对比. 环境科学. 2021(01): 114-126 .
    13. 徐立人,刘宠,张军,柳俊明,王立成,李清泉,杨敏生,李彦慧. 单叶刺槐半同胞子代叶片的滞尘能力及叶表SEM特征分析. 西部林业科学. 2021(01): 124-131 .
    14. 杨克彤,陈国鹏,李广,汤东,张凯. 兰州市常见阔叶树种对大气颗粒物吸滞能力的评估. 东北林业大学学报. 2021(05): 84-89 .
    15. 刘宇,张楠,王晓立,周力行,韩浩章. 冬季苏北8种常绿乔木吸滞颗粒物能力与叶表微结构关系. 西北林学院学报. 2021(03): 80-87+127 .
    16. 王薇,张蕾. 基于CiteSpace的城市环境中细颗粒物研究进展的可视化分析. 生态环境学报. 2021(06): 1321-1332 .
    17. 谢长坤,郭健康,梁安泽,汪静,姜睿原,车生泉. 园林植物表面对大气颗粒物削减过程研究进展. 世界林业研究. 2021(05): 38-43 .
    18. 吴桂香,徐成林,刘杰,杨燕飞. 城市道路植物叶面滞尘的微观效应研究. 昆明理工大学学报(自然科学版). 2021(06): 109-115 .
    19. 陈胜楠,陈左司南,张志强. 北京山区油松和元宝槭冠层气孔导度特征及其环境响应. 植物生态学报. 2021(12): 1329-1340 .
    20. 王琴,冯晶红,黄奕,王鹏程,谢梦婷,万好,苏泽琳,王仁鹏,王征洋,余刘思. 武汉市15种阔叶乔木滞尘能力与叶表微形态特征. 生态学报. 2020(01): 213-222 .
    21. 童凌云,何婉璎,裘璐函,陈健,刘美华. 基于层次分析法的杭州市8种园林植物林分环境质量评价. 浙江林业科技. 2020(01): 56-62 .
    22. 苏维,刘苑秋,赖胜男,古新仁,刘青,龚鹏. 南昌市8种乔木叶片性状对叶表滞留颗粒物的影响. 西北林学院学报. 2020(04): 61-67 .
    23. 刘开琳,李学敏,万翔,刘淑娟,李菁菁,徐先英,刘虎俊. 民勤植物园3种灌木的叶面微结构及其滞尘能力研究. 中国农学通报. 2020(26): 62-68 .
    24. 孙应都,陈奇伯,李艳梅,杨思莹. 昆明市6个绿化树种叶表微结构与滞尘能力的关系研究. 西南林业大学学报(自然科学). 2019(03): 78-85 .
    25. 张俊叶,邹明,刘晓东,王林,朱晨晨,俞元春. 南京城市森林植物叶面颗粒物的含量特征. 环境污染与防治. 2019(07): 837-843 .
    26. 林星宇,李海梅,李彦华,姜月梅. 八种乔木滞尘效益及其与叶表面特征关系. 北方园艺. 2019(17): 94-101 .
    27. 林星宇,李海梅,李彦华,刘志科. 灌木滞尘能力与重金属含量间的关系. 江苏农业科学. 2019(15): 180-183 .
    28. 姜霞,侯贻菊,刘延惠,舒德远,崔迎春,李成龙,杨冰,丁访军. 3种木樨科树种叶片滞尘效应动态变化及其与叶片特征的关系. 江苏农业科学. 2019(16): 150-154 .
    29. 林星宇,李彦华,李海梅,李士美. 乔木对不同粒径颗粒物吸滞作用研究. 福建农业学报. 2019(08): 912-919 .
    30. 阿丽亚·拜都热拉,甄敬,潘存德,张中远,胡梦玲,喀哈尔·扎依木. 乌鲁木齐市河滩快速路林带内颗粒物浓度变化特征. 新疆农业大学学报. 2019(05): 378-384 .
    31. 林星宇,李海梅,李彦华,郑茗月. 5种灌木的滞尘效益研究. 现代农业科技. 2018(02): 150-151+155 .
    32. 赵文君,侯贻菊,舒德远,刘延惠,崔迎春,丁访军. 贵阳市木兰科树种叶片滞尘效应及影响因素. 贵州林业科技. 2018(02): 19-24 .
    33. 李艳梅,陈奇伯,王邵军,孙应都,杨淏舟,杨思莹. 昆明市主要绿化树种叶片滞尘能力的叶表微形态学解释. 林业科学. 2018(05): 18-29 .
    34. 朱济友,于强,刘亚培,覃国铭,李金航,徐程扬,何韦均. 植物功能性状及其叶经济谱对城市热环境的响应. 北京林业大学学报. 2018(09): 72-81 . 本站查看

    Other cited types(26)

Catalog

    Article views (628) PDF downloads (62) Cited by(60)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return