• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
YAN Guo-yong, WANG Xiao-chun, XING Ya-juan, HAN Shi-jie, WANG Qing-gui. Response of root anatomy and tissue chemistry to nitrogen deposition in larch forest in the Great Xing’an Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2016, 38(4): 36-43. DOI: 10.13332/j.1000-1522.20150433
Citation: YAN Guo-yong, WANG Xiao-chun, XING Ya-juan, HAN Shi-jie, WANG Qing-gui. Response of root anatomy and tissue chemistry to nitrogen deposition in larch forest in the Great Xing’an Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2016, 38(4): 36-43. DOI: 10.13332/j.1000-1522.20150433

Response of root anatomy and tissue chemistry to nitrogen deposition in larch forest in the Great Xing’an Mountains of northeastern China

More Information
  • Received Date: November 19, 2015
  • Published Date: April 29, 2016
  • The increase of nitrogen deposition may change the underground carbon cycle and soil carbon pool, and thus influence the structure and chemical components of fine roots. A number of researches have been done on fine root dynamics and morphological structure, but little is known of effects of nitrogen deposition on fine root structure and components. In the Great Xing’an Mountains, northeastern China, four sampling sites were set in a Larix gmelinii forest in May, 2012, i.e., controlling site (CK,0 g/(m·a)), low nitrogen treatment (TL, 2.5 g/(m·a)), medium nitrogen treatment (TM, 5.0 g/(m·a)) and high nitrogen treatment (TH, 7.5·g/(m·a)). In the growing season in July, 2014, the complete root system was dug out, and cortical thickness, stele diameter, root diameter, ratio of stele to root diameter of first five orders, and tissue chemistry (N, C and P) under different nitrogen treatments were measured. The influence of nitrogen deposition on morphological structure and chemical component of fine roots was analyzed. It showed that, with the ascending root order, indices such asroot diameter, cortical thickness and stele diameter increased accordingly. However, there were significant differences in cortical thickness, stele diameter, root diameter and ratio of stele to root diameter in the same root order under different levels of N treatment, and root tissue chemistry also had significant difference in different diameter classes. In conclusion, nitrogen deposition may impact cortical thickness, stele diameter, root diameter, ratio of stele to root diameter of first five orders and tissue chemistry (N, C and P), thus influences the physiological functions of fine roots, and finally has impact on above- and underground carbon cycle of plants.
  • [1]
    JACKSON R B, MOONEY H A, SCHULZE E D. A global budget for fine root biomass, surface area, and nutrient contents [J]. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94:7362-7366.
    [1]
    WANG X R, WANG Z Q, HAN Y Z, et al. Variations of fine root diameter with root order in Manchurian ash and Dahurian larch plantations [J]. Acta Phytoecologica Sinica, 2005, 29(6): 871-877.
    [2]
    SHI W, WANG Z Q, LIU J L, et al. Fine root morphology of twenty hardwood species in Maoershan natural secondary forest in northeast in northeastern China [J]. Acta Phytoecologica Sinica, 2008, 32(6):1217-1226.
    [2]
    EISSENSTAT D M, YANAI R D. The ecology of root lifespan [J]. Advances in Ecological Research, 1997, 27: 1-60.
    [3]
    GU J C, ZHAO Y L, WANG W N, et al. Effects of cortical thickness and stele diameter on variations of root diameter in Fraxinus mandshurica and Larix gmelinii[J]. Scientia Silvae Sinicae, 2014, 50(10):59-66
    [3]
    PREGITZER K S, DE FOREST J L, BURTON A J, et al. Fine root architecture of nine North American trees [J]. Ecological Monographs, 2002, 72:293-309.
    [4]
    LIU S Q, SONG F B. A comparison of root anatomical structure of maize genotypes with different drought tolerance [J]. Agricultural Research in the Arid Areas, 2007, 25(2): 86-91.
    [4]
    王向荣, 王政权, 韩有志, 等. 水曲柳和落叶松不同根序之间细根直径的变异研究[J]. 植物生态学报, 2005, 29(6): 871-877.
    [5]
    师伟, 王政权, 刘金梁, 等. 帽儿山天然次生林20个阔叶树种细根形态[J]. 植物生态学报, 2008, 32(6):1217-1226.
    [5]
    WEI X, LIU Y, CHEN H B. Anatomical and functional heterogeneity among different root orders of Phellodendron amurense[J]. Journal of Plant Ecology, 2008, 32(6): 1238-1247.
    [6]
    XU Y, GU J C,DONG X Y, et al. Fine root morphology, anatomy and tissue nitrogen and carbon contents of the first five orders in four tropical hardwood species in Hainan Island, China [J]. Journal of Plant Ecology, 2011, 35(9):955-964.
    [6]
    YANAI R D, EISSENSTAT D M. Coping with herbivores and pathogens: a model of optimal root turnover [J].Functional Ecology, 2002, 16: 865-869.
    [7]
    WELLS C E, GLENN D M, EISSENSTAT D M. Changes in the risk of fine root mortality with age: a case study in peach, Prunus persica (Rosaceae) [J].American Journal of Botany, 2002, 89:79-87.
    [8]
    谷加存, 赵妍丽, 王文娜, 等. 皮层和中柱对水曲柳和落叶松吸收根直径变异的影响[J].林业科学, 2014, 50(10):59-66.
    [9]
    HISHI T. Heterogeneity of individual roots within the fine root architecture: causal links between physiological and ecosystem functions [J]. Journal of Forest Research, 2007, 12:126-133.
    [10]
    REAY D S, DENTENER F, SMITH P, et al. Global nitrogen deposition and carbon sinks [J]. Nature Geoscience, 2008, 1(7): 430-437.
    [11]
    LIU X, ZHANG Y, HAN W, et al. Enhanced nitrogen deposition over China [J]. Nature, 2013, 494: 459-462.
    [12]
    FL>Ü, CKIGER W, BRAUN S. Nitrogen deposition in Swiss forests and its possible relevance for leaf nutrient status, parasite attacks and soil acidification [J]. Environmental Pollution, 1998, 102(1): 69-76.
    [13]
    LIU K H, FANG Y T, YU F M, et al. Soil acidification in response to acid deposition in three subtropical forests of subtropical China [J]. Pedosphere, 2010, 20(3): 399-408.
    [14]
    VESTGARDEN L S, SELLE L T, STUANEST A O. In situ soil nitrogen mineralisation in a Scots pine (Pinus sylvestris L.) stand: effects of increased nitrogen input [J]. Forest Ecology and Management, 2003, 176(1-3): 205-216.
    [15]
    LEPPLAMMI-KUJANSUU J, OSTONEN I, STRMGREN M, et al. Effects of long-term temperature and nutrient manipulation on Norway spruce fine roots and mycelia production [J]. Plant and Soil, 2013, 366(1-2): 287-303.
    [16]
    RICHARD W, ZOBEL T B, KINRAIDE V C, et al. Fine root diameters can change in response to changes in nutrient concentrations [J]. Plant and Soil, 2007(1-2), 297: 243-254.
    [17]
    MATAMALA R, GONZALEZ-MELER M A, JASTROW J D, et al. Impacts of fine root turnover on forest NPP and soil C sequestration potential [J]. Science, 2003, 302: 1385-1387.
    [18]
    BADDELEY J A, WATSON C A. Influences of root diameter, tree age, soil depth and season on fine root survivorship in Prunus avium[J]. Plant and Soil, 2005, 276(1): 15-22.
    [19]
    JIA S, MCLAUGHLIN N B, GU J, et al. Relationships between root respiration rate and root morphology, chemistry and anatomy in Larix gmelinii and Fraxinus mandshurica[J]. Tree Physiology, 2013, 33(6): 579-589.
    [20]
    刘胜群, 宋凤斌. 不同耐旱性玉米根系解剖结构比较研究[J].干旱地区农业研究, 2007, 25(2): 86-91.
    [21]
    GUO D L, XIA M X, WEI X, et al. Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty-three Chinese temperate tree species [J]. New Phytologist, 2008, 180(3): 673-683.
    [22]
    MCCORMACK M L, ADAMS T S, SMITHWICK E A, et al. Predicting fine root lifespan from plant functional traits in temperate trees [J]. New Phytologist, 2012, 195: 823-831.
    [23]
    WANG C, HAN S, ZHOU Y, et al. Responses of fine roots and soil N availability to short-term nitrogen fertilization in a broad-leaved Korean pine mixed forest in northeastern China [J]. PLoS One, 2012, 7:e31042.
    [24]
    HELMISAARI H S, SAARSALMI A, KUKKOLA M. Effects of wood ash and nitrogen fertilization on fine root biomass and soil and foliage nutrients in a Norway spruce stand in Finland [J]. Plant and Soil, 2009, 314(1):121-132.
    [25]
    TU L H, PENG Y, CHEN G, et al. Direct and indirect effects of nitrogen additions on fine root decomposition in a subtropical bamboo forest [J]. Plant and Soil, 2014, 389(1-2): 273-288.
    [26]
    TAYLOR B N, STRAND A E, COOPER E R, et al. Root length, biomass, tissue chemistry and mycorrhizal colonization following 14 years of CO2 enrichment and 6 years of N fertilization in a warm temperate forest [J/OL]. Tree Physiology, 2014, [2014-07-22]. http:∥treephys.oxfordjournals.org/contet/early/2014107/22/treephys.tpu058.full.
    [27]
    FITTER A H, STICKLAND T R. Architectural analysis of plant root systems Ⅲ: Studies on plants under field conditions [J]. New Phytologist, 1992, 121(2): 243-248.
    [28]
    卫星, 刘颖, 陈海波. 黄波罗不同根序的解剖结构及其功能异质性[J]. 植物生态学报, 2008, 32(6): 1238-1247.
    [29]
    TAYLOR B N, BEIDLER K V, COOPER E R, et al. Sampling volume in root studies: the pitfalls of under-sampling exposed using accumulation curves [J]. Ecology Letters, 2013, 16:862-869.
    [30]
    RYSER P, LAMBERS H. Root and leaf attributes accounting for the performance of fast-and slow-growing grasses at different nutrient supply [J]. Plant and Soil, 1996, 170(2): 251-265.
    [31]
    RYSER P. Intra-and inter specific variation in root length, root turnover and the underlying parameters[M]∥LAMBERS H, POORTER H, VAN VUUREN M M I. Inherent variation in plant growth, physiological mechanisms and ecological consequences. Leiden: Backhuys, 1998:441-465.
    [32]
    KONÔPKA B, NOGUCHI K, SAKATA T, et al. Effects of simulated drought stress on the fine roots of Japanese cedar (Cryptomeria japonica) in a plantation forest on the Kanto Plain eastern Japan [J]. Journal of Forest Research, 2007, 12:143-151.
    [33]
    HISHI T, TAKEDA H. Dynamics of heterorhizic root systems: protoxylem groups within the fine-root system of Chamaecyparis obtusa [J]. New Phytologist, 2005, 167(2):509-521.
    [34]
    HOEBERG P, FAN H, QUIST M, et al. Tree growth and soil acidification in response to 30 years of experimental nitrogen loading on boreal forest [J]. Global Change Biology, 2006, 12: 489-499.
    [35]
    BLANCAFLOR E B, JONES D L, GILROY S. Alterations in the cytoskeleton accompany aluminum-induced growth inhibition and morphological changes in primary roots of maize [J]. Plant Physiology, 1998, 118(1):159-172.
    [36]
    LI W, JIN C, GUAN D, et al. The effects of simulated nitrogen deposition on plant root traits: a meta-analysis [J]. Soil Biology and Biochemistry, 2015, 82: 112-118.
    [37]
    PREGITZER K S, LASKOWSKI M J, BURTON A J, et al. Variation in sugar maple root respiration with root diameter and soil depth [J]. Tree Physiology, 1998, 18:665-670.
    [38]
    GUO D L, MITCHELL R J, HENDRICKS J J. Fine root branch orders respond differentially to carbon source-sink manipulations in a longleaf pine forest [J]. Oecologia, 2004, 140:450-457.
    [39]
    许旸, 谷加存, 董雪云, 等. 海南岛4个热带阔叶树种前5级细根的形态、解剖结构和组织CN含量[J]. 植物生态学报, 2011, 35(9):955-964.
    [40]
    BURTON A J, JARVEY J C, JARVI M P, et al. Chronic N deposition alters root respiration-tissue N relationship in northern hardwood forests [J]. Global Change Biology, 2014, 18: 258-266.
    [41]
    HYVONEN R, PERSSON T, ANDERSSON S, et al. Impact of long-term nitrogen addition on carbon stocks in trees and soils in northern Europe [J]. Biogeochemistry, 2008, 89: 121-137.
    [42]
    ADAMS T S, MCCORMACK M L, EISSENSTAT D M. Foraging strategies in trees of different root morphology: the role of root lifespan [J]. Tree Physiology, 2013, 33: 940-948.
  • Related Articles

    [1]Hu Zhenhong, Zhao Zhuqi, He Xian, Yuan Mengfan, Cheng Lei. Research progress of impacts of tree species diversity on microbial decomposition of forest deadwood and carbon cycling[J]. Journal of Beijing Forestry University, 2024, 46(11): 1-9. DOI: 10.12171/j.1000-1522.20240233
    [2]Zhou Cheng, Liu Tong, Wang Qinggui, Han Shijie. Effects of long-term nitrogen addition on fine root morphological, anatomical structure and stoichiometry of broadleaved Korean pine forest[J]. Journal of Beijing Forestry University, 2022, 44(11): 31-40. DOI: 10.12171/j.1000-1522.20210212
    [3]Zhang Yichi, Guo Sujuan, Sun Chuanhao. Effects of growth retardants on anatomy and non-structural carbohydrates of chestnut leaves[J]. Journal of Beijing Forestry University, 2020, 42(1): 46-53. DOI: 10.12171/j.1000-1522.20180437
    [4]He Jingwen, Liu Ying, Yu Hang, Wu Jianzhao, Cui Yu, Lin Yongming, Wang Daojie, Li Jian. Nutrient reabsorption efficiency of dominant shrubs in dry-hot valley and its C∶N∶P stoichiometry[J]. Journal of Beijing Forestry University, 2020, 42(1): 18-26. DOI: 10.12171/j.1000-1522.20190185
    [5]Tong Long, Zhang Lei, Li Bin, Geng Yanghui, Xie Jinzhong, Zhang Wei, Chen Lijie. Effects of different truncation treatments on the stoichiometry of C, N and P in leaves of Dendrocalamus latiflorus[J]. Journal of Beijing Forestry University, 2018, 40(11): 69-75. DOI: 10.13332/j.1000--1522.20180216
    [6]ZHONG Yue-ming, DONG Fang-yu, WANG Wen-juan, WANG Jian-ming, LI Jing-wen, WU Bo, JIA Xiao hong. Anatomical characteristics and adaptability plasticity of Populus euphratica in different habitats[J]. Journal of Beijing Forestry University, 2017, 39(10): 53-61. DOI: 10.13332/j.1000-1522.20170089
    [7]ZHANG Min, ZHANG Wei, GONG Zai-xin, ZHENG Cai-xia. Morphologic and anatomical observations in the process of ovulate strobilus generation and development in Pinus tabuliformis[J]. Journal of Beijing Forestry University, 2017, 39(6): 1-12. DOI: 10.13332/j.1000-1522.20160411
    [8]ZHAO Yan-xia, LUO You-qing, ZONG Shi-xiang, WANG Rong1, LUO Hong-mei. Comparison in leaf anatomical structure and drought resistance of different sex and varieties of sea buckthorn[J]. Journal of Beijing Forestry University, 2012, 34(6): 34-41.
    [9]XIAO Yang, CHEN Li-hua, YU Xin-xiao, WANG Xiao-ping, QIN Yong-sheng, CHEN Jun-qi. Nutrient cycling of N, P and K in a plantation ecosystem of Pinus tabulaeformis in Miyun District, Beijing.[J]. Journal of Beijing Forestry University, 2008, 30(supp.2): 72-75.
    [10]YU Zhan-yuan, CENG De-hui, JIANG Feng-qi, FAN Zhi-ping, CHEN Fu-sheng, ZHAO Qiong. Responses of key carbon cycling processes to the addition of water and fertilizers to sandy grassland in semi-arid region[J]. Journal of Beijing Forestry University, 2006, 28(4): 45-50.
  • Cited by

    Periodical cited type(35)

    1. 沈汉,郑成忠,张能军,邱勇斌,徐金良,成向荣. 间伐对杉木大径材培育林分的生长和乔木碳储量的影响. 东北林业大学学报. 2025(04): 47-54+60 .
    2. 高彤,宋鑫彧,任允泽,毛亮亮,高然,董希斌. 抚育间伐强度对针阔混交林碳动态变化的影响. 中南林业科技大学学报. 2024(02): 118-128 .
    3. 牛鉴祺,吕彦飞,王树力. 抚育间伐对杨桦次生林非结构性碳水化合物质量分数和碳氮磷生态化学计量特征的影响. 东北林业大学学报. 2024(06): 51-57 .
    4. 赵鹏,刘子玺,李得禄,张俊年,张万科,肖东,杨斌元. 祁连山国家公园典型生态系统固碳功能研究综述. 陕西林业科技. 2024(02): 127-131+134 .
    5. 吴章明,唐思莹,宋思宇,李聪,刘丽鸽,朱鹏,徐红伟,张学强,张健,刘洋. 带状采伐初期对华西雨屏区杉木人工林土壤碳组分及稳定性的影响. 四川农业大学学报. 2024(04): 847-860+878 .
    6. 吕彦飞,牛鉴祺,王树力. 抚育间伐对小黑杨人工林非结构性碳和氮磷钾生态化学计量特征的影响. 森林工程. 2024(05): 62-73 .
    7. 邹丰虎,柴宗政. 近自然经营对马尾松人工林生态系统碳储量的影响. 广西科学. 2024(03): 405-415 .
    8. 赵吉平. 不同结构落叶松天然林生物量及生产力特征. 南方农业. 2023(04): 101-104 .
    9. 高谢雨,董利虎,郝元朔. 基于TLS的抚育间伐对长白落叶松干形的影响. 南京林业大学学报(自然科学版). 2023(06): 85-94 .
    10. 杜雪,王海燕,邹佳何,孟海,赵晗,崔雪,董齐琪. 长白山北坡云冷杉阔叶混交林土壤有机碳分布特征及其影响因素. 生态环境学报. 2022(04): 663-669 .
    11. 肖军,雷蕾,曾立雄,李肇晨,马成功,肖文发. 不同经营模式对华北油松人工林碳储量的影响. 生态环境学报. 2022(11): 2134-2142 .
    12. 张乃暄,王韵頔,许中旗,付立华,张菲,程顺. 抚育间伐对塞罕坝地区云杉人工林碳储量及固碳速率的影响. 河北农业大学学报. 2022(06): 81-87 .
    13. 王亚辉,牟长城,杨智慧,刘珽,李轩男. 透光抚育强度对小兴安岭“栽针保阔”红松林碳储量的影响. 北京林业大学学报. 2021(10): 54-64 . 本站查看
    14. 赵状,董希斌,曲杭峰,宋鑫彧,刘慧,毛亮亮. 可拓评判法在红皮云杉碳质量分数评价中的应用. 东北林业大学学报. 2021(10): 71-76 .
    15. 陈俊华,张鑫,谢天资,龚固堂,王琛,慕长龙. 川中丘陵区人工柏木林不同间伐强度效果评价. 四川林业科技. 2021(06): 11-20 .
    16. 南维波. 不同抚育强度对兴安落叶松人工林的影响. 农村实用技术. 2020(06): 121-122 .
    17. 徐清乾,黄帆,张勰,王湘莹,梁贵明. 雪峰山区杉木大径材培育立地及密度控制研究. 湖南林业科技. 2020(03): 32-38 .
    18. 龚映匀,王瑞辉,张斌,刘凯利,董凯丽,刘俊涛,赵苏亚,周钰淮. 抚育间伐对川西柳杉人工林生长和土壤有机碳的影响. 林业资源管理. 2020(06): 96-104 .
    19. 宋重升,张利荣,王有良,游云飞,冯随起,林开敏. 抚育间伐对人工林生态系统影响的研究进展. 亚热带农业研究. 2020(04): 279-288 .
    20. 刘泰瑞,任达,董威,覃志杰,张芸香,郭晋平. 华北落叶松天然林目标树间伐释压与胸径生长关系研究. 中南林业科技大学学报. 2019(01): 20-24+44 .
    21. 廖鋆章,贲丽云. 不同间伐措施强度对杉木人工林碳储量及其分配的影响研究. 低碳世界. 2019(04): 308-309 .
    22. 周焘,王传宽,周正虎,孙志虎. 抚育间伐对长白落叶松人工林土壤碳、氮及其组分的影响. 应用生态学报. 2019(05): 1651-1658 .
    23. Zhenge HUANG,Minyang XIE,Mingbao WEI,Bin HE,Shaozhuang MO,Gang ZHOU,Ji LIANG. Carbon Storage and Distribution of the Mature Pinus massoniana Plantation in Northwest Guangxi. Agricultural Biotechnology. 2019(03): 141-144 .
    24. 管惠文,董希斌,张甜,曲杭峰,王智勇. 抚育间伐后落叶松天然次生林生境恢复效果的评价. 东北林业大学学报. 2019(07): 6-13+24 .
    25. 戎建涛,张晓红,郜爱玲,王艳英,潘凡群. 不同间伐强度经营对柳杉人工林土壤理化性质的影响. 西北林学院学报. 2019(04): 206-211 .
    26. 董莉莉,赵济川,汪成成,刘红民,高英旭,杨鹤. 抚育间伐后蒙古栎阔叶混交林径级结构及生长动态研究. 西南林业大学学报(自然科学). 2019(06): 98-104 .
    27. 董莉莉,刘红民,汪成成,赵济川,高英旭,黄夏,肖尧. 间伐对蒙古栎次生林生态系统碳储量的短期和长期影响. 沈阳农业大学学报. 2019(05): 614-620 .
    28. 韦明宝,王朝健,杨正文,黄振格,王汉敢,何斌. 桂西北马尾松人工林生态系统碳贮量与分布. 亚热带农业研究. 2019(03): 152-156 .
    29. 银彬吾,刘奇林,陆滟灵,何斌,黄振格,谢敏洋. 2种更新方式4年生尾巨桉人工林碳储量及其分布特征. 广西林业科学. 2019(04): 466-471 .
    30. 朱子卉,杨华,张恒,王全军,孙权,杨超. 择伐后落叶松云冷杉林直径结构及生长的动态变化. 北京林业大学学报. 2018(05): 55-62 . 本站查看
    31. 韦家国,周刚,刘凡胜,杨正文,莫少壮,何斌. 秃杉林和连栽杉木林生态系统C积累及其分布格局. 亚热带农业研究. 2018(01): 29-33 .
    32. Zhou Gang,He Bin,Wei Jiaguo,Liu Fansheng,Mo Shaozhuang,Yang Zhengwen. Carbon Accumulation and Distribution in Ecosystems of Taiwania flousiana Plantation and Successive Rotation Plantation of Cunninghamia lanceolata. Meteorological and Environmental Research. 2018(04): 11-14+18 .
    33. 张期奇,董希斌,张甜,曲杭峰,马晓波,管惠文,王智勇,阮加甫,陈蕾. 抚育间伐强度对兴安落叶松中龄林测树因子的影响. 森林工程. 2018(05): 1-7+55 .
    34. 段梦成,王国梁,史君怡,周昊翔. 间伐对油松人工林碳储量的长期影响. 水土保持学报. 2018(05): 190-196 .
    35. 马长明,赵辉,牟洪香,刘炳响. 燕山山地华北落叶松人工林碳密度及分配特征. 水土保持学报. 2017(05): 208-214 .

    Other cited types(35)

Catalog

    Article views (1994) PDF downloads (46) Cited by(70)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return