• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
YAN Guo-yong, WANG Xiao-chun, XING Ya-juan, HAN Shi-jie, WANG Qing-gui. Response of root anatomy and tissue chemistry to nitrogen deposition in larch forest in the Great Xing’an Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2016, 38(4): 36-43. DOI: 10.13332/j.1000-1522.20150433
Citation: YAN Guo-yong, WANG Xiao-chun, XING Ya-juan, HAN Shi-jie, WANG Qing-gui. Response of root anatomy and tissue chemistry to nitrogen deposition in larch forest in the Great Xing’an Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2016, 38(4): 36-43. DOI: 10.13332/j.1000-1522.20150433

Response of root anatomy and tissue chemistry to nitrogen deposition in larch forest in the Great Xing’an Mountains of northeastern China

More Information
  • Received Date: November 19, 2015
  • Published Date: April 29, 2016
  • The increase of nitrogen deposition may change the underground carbon cycle and soil carbon pool, and thus influence the structure and chemical components of fine roots. A number of researches have been done on fine root dynamics and morphological structure, but little is known of effects of nitrogen deposition on fine root structure and components. In the Great Xing’an Mountains, northeastern China, four sampling sites were set in a Larix gmelinii forest in May, 2012, i.e., controlling site (CK,0 g/(m·a)), low nitrogen treatment (TL, 2.5 g/(m·a)), medium nitrogen treatment (TM, 5.0 g/(m·a)) and high nitrogen treatment (TH, 7.5·g/(m·a)). In the growing season in July, 2014, the complete root system was dug out, and cortical thickness, stele diameter, root diameter, ratio of stele to root diameter of first five orders, and tissue chemistry (N, C and P) under different nitrogen treatments were measured. The influence of nitrogen deposition on morphological structure and chemical component of fine roots was analyzed. It showed that, with the ascending root order, indices such asroot diameter, cortical thickness and stele diameter increased accordingly. However, there were significant differences in cortical thickness, stele diameter, root diameter and ratio of stele to root diameter in the same root order under different levels of N treatment, and root tissue chemistry also had significant difference in different diameter classes. In conclusion, nitrogen deposition may impact cortical thickness, stele diameter, root diameter, ratio of stele to root diameter of first five orders and tissue chemistry (N, C and P), thus influences the physiological functions of fine roots, and finally has impact on above- and underground carbon cycle of plants.
  • [1]
    JACKSON R B, MOONEY H A, SCHULZE E D. A global budget for fine root biomass, surface area, and nutrient contents [J]. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94:7362-7366.
    [1]
    WANG X R, WANG Z Q, HAN Y Z, et al. Variations of fine root diameter with root order in Manchurian ash and Dahurian larch plantations [J]. Acta Phytoecologica Sinica, 2005, 29(6): 871-877.
    [2]
    SHI W, WANG Z Q, LIU J L, et al. Fine root morphology of twenty hardwood species in Maoershan natural secondary forest in northeast in northeastern China [J]. Acta Phytoecologica Sinica, 2008, 32(6):1217-1226.
    [2]
    EISSENSTAT D M, YANAI R D. The ecology of root lifespan [J]. Advances in Ecological Research, 1997, 27: 1-60.
    [3]
    GU J C, ZHAO Y L, WANG W N, et al. Effects of cortical thickness and stele diameter on variations of root diameter in Fraxinus mandshurica and Larix gmelinii[J]. Scientia Silvae Sinicae, 2014, 50(10):59-66
    [3]
    PREGITZER K S, DE FOREST J L, BURTON A J, et al. Fine root architecture of nine North American trees [J]. Ecological Monographs, 2002, 72:293-309.
    [4]
    LIU S Q, SONG F B. A comparison of root anatomical structure of maize genotypes with different drought tolerance [J]. Agricultural Research in the Arid Areas, 2007, 25(2): 86-91.
    [4]
    王向荣, 王政权, 韩有志, 等. 水曲柳和落叶松不同根序之间细根直径的变异研究[J]. 植物生态学报, 2005, 29(6): 871-877.
    [5]
    师伟, 王政权, 刘金梁, 等. 帽儿山天然次生林20个阔叶树种细根形态[J]. 植物生态学报, 2008, 32(6):1217-1226.
    [5]
    WEI X, LIU Y, CHEN H B. Anatomical and functional heterogeneity among different root orders of Phellodendron amurense[J]. Journal of Plant Ecology, 2008, 32(6): 1238-1247.
    [6]
    XU Y, GU J C,DONG X Y, et al. Fine root morphology, anatomy and tissue nitrogen and carbon contents of the first five orders in four tropical hardwood species in Hainan Island, China [J]. Journal of Plant Ecology, 2011, 35(9):955-964.
    [6]
    YANAI R D, EISSENSTAT D M. Coping with herbivores and pathogens: a model of optimal root turnover [J].Functional Ecology, 2002, 16: 865-869.
    [7]
    WELLS C E, GLENN D M, EISSENSTAT D M. Changes in the risk of fine root mortality with age: a case study in peach, Prunus persica (Rosaceae) [J].American Journal of Botany, 2002, 89:79-87.
    [8]
    谷加存, 赵妍丽, 王文娜, 等. 皮层和中柱对水曲柳和落叶松吸收根直径变异的影响[J].林业科学, 2014, 50(10):59-66.
    [9]
    HISHI T. Heterogeneity of individual roots within the fine root architecture: causal links between physiological and ecosystem functions [J]. Journal of Forest Research, 2007, 12:126-133.
    [10]
    REAY D S, DENTENER F, SMITH P, et al. Global nitrogen deposition and carbon sinks [J]. Nature Geoscience, 2008, 1(7): 430-437.
    [11]
    LIU X, ZHANG Y, HAN W, et al. Enhanced nitrogen deposition over China [J]. Nature, 2013, 494: 459-462.
    [12]
    FL>Ü, CKIGER W, BRAUN S. Nitrogen deposition in Swiss forests and its possible relevance for leaf nutrient status, parasite attacks and soil acidification [J]. Environmental Pollution, 1998, 102(1): 69-76.
    [13]
    LIU K H, FANG Y T, YU F M, et al. Soil acidification in response to acid deposition in three subtropical forests of subtropical China [J]. Pedosphere, 2010, 20(3): 399-408.
    [14]
    VESTGARDEN L S, SELLE L T, STUANEST A O. In situ soil nitrogen mineralisation in a Scots pine (Pinus sylvestris L.) stand: effects of increased nitrogen input [J]. Forest Ecology and Management, 2003, 176(1-3): 205-216.
    [15]
    LEPPLAMMI-KUJANSUU J, OSTONEN I, STRMGREN M, et al. Effects of long-term temperature and nutrient manipulation on Norway spruce fine roots and mycelia production [J]. Plant and Soil, 2013, 366(1-2): 287-303.
    [16]
    RICHARD W, ZOBEL T B, KINRAIDE V C, et al. Fine root diameters can change in response to changes in nutrient concentrations [J]. Plant and Soil, 2007(1-2), 297: 243-254.
    [17]
    MATAMALA R, GONZALEZ-MELER M A, JASTROW J D, et al. Impacts of fine root turnover on forest NPP and soil C sequestration potential [J]. Science, 2003, 302: 1385-1387.
    [18]
    BADDELEY J A, WATSON C A. Influences of root diameter, tree age, soil depth and season on fine root survivorship in Prunus avium[J]. Plant and Soil, 2005, 276(1): 15-22.
    [19]
    JIA S, MCLAUGHLIN N B, GU J, et al. Relationships between root respiration rate and root morphology, chemistry and anatomy in Larix gmelinii and Fraxinus mandshurica[J]. Tree Physiology, 2013, 33(6): 579-589.
    [20]
    刘胜群, 宋凤斌. 不同耐旱性玉米根系解剖结构比较研究[J].干旱地区农业研究, 2007, 25(2): 86-91.
    [21]
    GUO D L, XIA M X, WEI X, et al. Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty-three Chinese temperate tree species [J]. New Phytologist, 2008, 180(3): 673-683.
    [22]
    MCCORMACK M L, ADAMS T S, SMITHWICK E A, et al. Predicting fine root lifespan from plant functional traits in temperate trees [J]. New Phytologist, 2012, 195: 823-831.
    [23]
    WANG C, HAN S, ZHOU Y, et al. Responses of fine roots and soil N availability to short-term nitrogen fertilization in a broad-leaved Korean pine mixed forest in northeastern China [J]. PLoS One, 2012, 7:e31042.
    [24]
    HELMISAARI H S, SAARSALMI A, KUKKOLA M. Effects of wood ash and nitrogen fertilization on fine root biomass and soil and foliage nutrients in a Norway spruce stand in Finland [J]. Plant and Soil, 2009, 314(1):121-132.
    [25]
    TU L H, PENG Y, CHEN G, et al. Direct and indirect effects of nitrogen additions on fine root decomposition in a subtropical bamboo forest [J]. Plant and Soil, 2014, 389(1-2): 273-288.
    [26]
    TAYLOR B N, STRAND A E, COOPER E R, et al. Root length, biomass, tissue chemistry and mycorrhizal colonization following 14 years of CO2 enrichment and 6 years of N fertilization in a warm temperate forest [J/OL]. Tree Physiology, 2014, [2014-07-22]. http:∥treephys.oxfordjournals.org/contet/early/2014107/22/treephys.tpu058.full.
    [27]
    FITTER A H, STICKLAND T R. Architectural analysis of plant root systems Ⅲ: Studies on plants under field conditions [J]. New Phytologist, 1992, 121(2): 243-248.
    [28]
    卫星, 刘颖, 陈海波. 黄波罗不同根序的解剖结构及其功能异质性[J]. 植物生态学报, 2008, 32(6): 1238-1247.
    [29]
    TAYLOR B N, BEIDLER K V, COOPER E R, et al. Sampling volume in root studies: the pitfalls of under-sampling exposed using accumulation curves [J]. Ecology Letters, 2013, 16:862-869.
    [30]
    RYSER P, LAMBERS H. Root and leaf attributes accounting for the performance of fast-and slow-growing grasses at different nutrient supply [J]. Plant and Soil, 1996, 170(2): 251-265.
    [31]
    RYSER P. Intra-and inter specific variation in root length, root turnover and the underlying parameters[M]∥LAMBERS H, POORTER H, VAN VUUREN M M I. Inherent variation in plant growth, physiological mechanisms and ecological consequences. Leiden: Backhuys, 1998:441-465.
    [32]
    KONÔPKA B, NOGUCHI K, SAKATA T, et al. Effects of simulated drought stress on the fine roots of Japanese cedar (Cryptomeria japonica) in a plantation forest on the Kanto Plain eastern Japan [J]. Journal of Forest Research, 2007, 12:143-151.
    [33]
    HISHI T, TAKEDA H. Dynamics of heterorhizic root systems: protoxylem groups within the fine-root system of Chamaecyparis obtusa [J]. New Phytologist, 2005, 167(2):509-521.
    [34]
    HOEBERG P, FAN H, QUIST M, et al. Tree growth and soil acidification in response to 30 years of experimental nitrogen loading on boreal forest [J]. Global Change Biology, 2006, 12: 489-499.
    [35]
    BLANCAFLOR E B, JONES D L, GILROY S. Alterations in the cytoskeleton accompany aluminum-induced growth inhibition and morphological changes in primary roots of maize [J]. Plant Physiology, 1998, 118(1):159-172.
    [36]
    LI W, JIN C, GUAN D, et al. The effects of simulated nitrogen deposition on plant root traits: a meta-analysis [J]. Soil Biology and Biochemistry, 2015, 82: 112-118.
    [37]
    PREGITZER K S, LASKOWSKI M J, BURTON A J, et al. Variation in sugar maple root respiration with root diameter and soil depth [J]. Tree Physiology, 1998, 18:665-670.
    [38]
    GUO D L, MITCHELL R J, HENDRICKS J J. Fine root branch orders respond differentially to carbon source-sink manipulations in a longleaf pine forest [J]. Oecologia, 2004, 140:450-457.
    [39]
    许旸, 谷加存, 董雪云, 等. 海南岛4个热带阔叶树种前5级细根的形态、解剖结构和组织CN含量[J]. 植物生态学报, 2011, 35(9):955-964.
    [40]
    BURTON A J, JARVEY J C, JARVI M P, et al. Chronic N deposition alters root respiration-tissue N relationship in northern hardwood forests [J]. Global Change Biology, 2014, 18: 258-266.
    [41]
    HYVONEN R, PERSSON T, ANDERSSON S, et al. Impact of long-term nitrogen addition on carbon stocks in trees and soils in northern Europe [J]. Biogeochemistry, 2008, 89: 121-137.
    [42]
    ADAMS T S, MCCORMACK M L, EISSENSTAT D M. Foraging strategies in trees of different root morphology: the role of root lifespan [J]. Tree Physiology, 2013, 33: 940-948.
  • Related Articles

    [1]Hu Zhenhong, Zhao Zhuqi, He Xian, Yuan Mengfan, Cheng Lei. Research progress of impacts of tree species diversity on microbial decomposition of forest deadwood and carbon cycling[J]. Journal of Beijing Forestry University, 2024, 46(11): 1-9. DOI: 10.12171/j.1000-1522.20240233
    [2]Zhou Cheng, Liu Tong, Wang Qinggui, Han Shijie. Effects of long-term nitrogen addition on fine root morphological, anatomical structure and stoichiometry of broadleaved Korean pine forest[J]. Journal of Beijing Forestry University, 2022, 44(11): 31-40. DOI: 10.12171/j.1000-1522.20210212
    [3]Zhang Yichi, Guo Sujuan, Sun Chuanhao. Effects of growth retardants on anatomy and non-structural carbohydrates of chestnut leaves[J]. Journal of Beijing Forestry University, 2020, 42(1): 46-53. DOI: 10.12171/j.1000-1522.20180437
    [4]He Jingwen, Liu Ying, Yu Hang, Wu Jianzhao, Cui Yu, Lin Yongming, Wang Daojie, Li Jian. Nutrient reabsorption efficiency of dominant shrubs in dry-hot valley and its C∶N∶P stoichiometry[J]. Journal of Beijing Forestry University, 2020, 42(1): 18-26. DOI: 10.12171/j.1000-1522.20190185
    [5]Tong Long, Zhang Lei, Li Bin, Geng Yanghui, Xie Jinzhong, Zhang Wei, Chen Lijie. Effects of different truncation treatments on the stoichiometry of C, N and P in leaves of Dendrocalamus latiflorus[J]. Journal of Beijing Forestry University, 2018, 40(11): 69-75. DOI: 10.13332/j.1000--1522.20180216
    [6]ZHONG Yue-ming, DONG Fang-yu, WANG Wen-juan, WANG Jian-ming, LI Jing-wen, WU Bo, JIA Xiao hong. Anatomical characteristics and adaptability plasticity of Populus euphratica in different habitats[J]. Journal of Beijing Forestry University, 2017, 39(10): 53-61. DOI: 10.13332/j.1000-1522.20170089
    [7]ZHANG Min, ZHANG Wei, GONG Zai-xin, ZHENG Cai-xia. Morphologic and anatomical observations in the process of ovulate strobilus generation and development in Pinus tabuliformis[J]. Journal of Beijing Forestry University, 2017, 39(6): 1-12. DOI: 10.13332/j.1000-1522.20160411
    [8]ZHAO Yan-xia, LUO You-qing, ZONG Shi-xiang, WANG Rong1, LUO Hong-mei. Comparison in leaf anatomical structure and drought resistance of different sex and varieties of sea buckthorn[J]. Journal of Beijing Forestry University, 2012, 34(6): 34-41.
    [9]XIAO Yang, CHEN Li-hua, YU Xin-xiao, WANG Xiao-ping, QIN Yong-sheng, CHEN Jun-qi. Nutrient cycling of N, P and K in a plantation ecosystem of Pinus tabulaeformis in Miyun District, Beijing.[J]. Journal of Beijing Forestry University, 2008, 30(supp.2): 72-75.
    [10]YU Zhan-yuan, CENG De-hui, JIANG Feng-qi, FAN Zhi-ping, CHEN Fu-sheng, ZHAO Qiong. Responses of key carbon cycling processes to the addition of water and fertilizers to sandy grassland in semi-arid region[J]. Journal of Beijing Forestry University, 2006, 28(4): 45-50.
  • Cited by

    Periodical cited type(22)

    1. 陈子川,潘国营,陈灿,徐云鹏,林晗,陈煜,谢安强,范海兰. 光强对木麻黄幼苗根系形态、解剖结构及其碳氮含量的影响. 生态学报. 2024(10): 4377-4387 .
    2. 陈静航,叶蕊蕊,孙建喜,罗利华,李灿,吴勇,胡田田. 滴灌施肥周期和毛管布设方式对苹果树细根直径时空分布的影响. 干旱地区农业研究. 2023(01): 101-110 .
    3. 吴小健,李秉钧,颜耀,李明,吴鹏飞,马祥庆. 不同种源杉木细根解剖性状的差异分析. 森林与环境学报. 2023(03): 232-239 .
    4. 吴义远,董文渊,浦婵,钟欢,夏莉,袁翎凌,陈新. 土壤水分和养分对筇竹竹鞭解剖特征及其适应可塑性的影响. 竹子学报. 2023(01): 1-10 .
    5. 张家豪,王根绪,王文志,孙守琴. 大气氮沉降增加对树木生长和水碳利用的影响. 西部林业科学. 2023(03): 145-151+159 .
    6. 韩梦豪,李俊杰,王磊,刘晴廙,关庆伟. 间伐对马尾松不同根序细根化学组分的影响. 森林与环境学报. 2023(04): 337-345 .
    7. 张玉慧,谢芳,闫国永. 不同乔木树种根系养分吸收策略的维度性差异. 林业科技. 2023(04): 16-22 .
    8. 刘逸潇,王传宽,上官虹玉,臧妙涵,梁逸娴,全先奎. 兴安落叶松不同径级根碳氮磷钾化学计量特征的种源差异. 应用生态学报. 2023(07): 1797-1805 .
    9. 周诚,刘彤,王庆贵,韩士杰. 长期氮添加对阔叶红松林细根形态、解剖结构和化学组分的影响. 北京林业大学学报. 2022(11): 31-40 . 本站查看
    10. 郝龙飞,郝文颖,刘婷岩,张敏,许吉康,斯钦毕力格. 氮添加及接种处理对1年生樟子松苗木根系形态及养分含量的影响. 北京林业大学学报. 2021(04): 1-7 . 本站查看
    11. 焦海珍,邵陈禹,陈建姣,张晨禹,陈佳豪,李云飞,沈程文. 重度遮阴及复光条件下茶树根系的生理响应及抗氧化酶活性动态变化. 茶叶科学. 2021(05): 695-704 .
    12. 洪梓明,邢亚娟,闫国永,张军辉,王庆贵. 长白山白桦山杨次生林细根形态特征和解剖结构对氮沉降的响应. 生态学报. 2020(02): 608-620 .
    13. 吴义远,董文渊,刘培,张孟楠,谢泽轩,田发坤. 不同土壤水分和养分条件下筇竹竹秆解剖特征及其适应可塑性. 北京林业大学学报. 2020(04): 80-90 . 本站查看
    14. 李秉钧,颜耀,王小虎,孙雪莲,马祥庆. 环境因子对林木细根功能性状的影响研究进展. 福建林业科技. 2020(02): 125-132 .
    15. 张俪予,张军辉,张蕾,陈伟,韩士杰. 兴安落叶松和白桦细根形态对环境变化的响应. 北京林业大学学报. 2019(06): 15-23 . 本站查看
    16. 陈旭,刘洪凯,赵春周,王强,王延平. 山东滨海盐碱地11个造林树种叶解剖特征对土壤条件的响应. 植物生态学报. 2019(08): 697-708 .
    17. 杨阳,熊远兵,郝晓泳. 干旱胁迫对耧斗菜根解剖结构及生理特性的影响. 北方园艺. 2018(17): 82-89 .
    18. 王建宇,胡海清,邢亚娟,闫国永,王庆贵. 大兴安岭兴安落叶松林树木生物量对氮沉降的响应. 林业科学研究. 2018(03): 88-94 .
    19. 杨阳,熊远兵,郝晓泳. 干旱胁迫对耧斗菜根解剖结构及生理特性的影响. 内蒙古农业大学学报(自然科学版). 2018(03): 1-7 .
    20. 钟悦鸣,董芳宇,王文娟,王健铭,李景文,吴波,贾晓红. 不同生境胡杨叶片解剖特征及其适应可塑性. 北京林业大学学报. 2017(10): 53-61 . 本站查看
    21. 毛晋花,邢亚娟,马宏宇,王庆贵. 氮沉降对植物生长的影响研究进展. 中国农学通报. 2017(29): 42-48 .
    22. 张鑫,邢亚娟,贾翔,王庆贵. 北方森林细根对氮沉降和二氧化碳浓度升高的响应. 中国农学通报. 2017(30): 84-90 .

    Other cited types(33)

Catalog

    Article views (1997) PDF downloads (46) Cited by(55)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return