Citation: | Wang Longfeng, Xiao Weiwei, Wang Shuli. Changes of soil aggregate stability and carbon-nitrogen distribution after artificial management of natural secondary forests[J]. Journal of Beijing Forestry University, 2022, 44(7): 97-106. DOI: 10.12171/j.1000-1522.20210497 |
[1] |
李玮, 郑子成, 李廷轩, 等. 不同植茶年限土壤团聚体及其有机碳分布特征[J]. 生态学报, 2014, 34(21): 6326−6336.
Li W, Zheng Z C, Li T X, et al. Distribution characteristics of soil aggregates and its organic carbon in different tea plantation age[J]. Acta Ecologica Sinica, 2014, 34(21): 6326−6336.
|
[2] |
杨洪炳, 肖以华, 许涵, 等. 城乡梯度下不同林分类型土壤团聚体分布及其稳定性[J]. 林业科学研究, 2022, 35(3): 82−92.
Yang H B, Xiao Y H, Xu H, et al. Distribution and stability of soil aggregates in different forest types under an urban-rural gradient[J]. Forest Research, 2022, 35(3): 82−92.
|
[3] |
田慎重, 王瑜, 李娜, 等. 耕作方式和秸秆还田对华北地区农田土壤水稳性团聚体分布及稳定性的影响[J]. 生态学报, 2013, 33(22): 7116−7124. doi: 10.5846/stxb201207261062
Tian S Z, Wang Y, Li N, et al. Effects of different tillage and straw systems on soil water-stable aggregate distribution and stability in the North China Plain[J]. Acta Ecologica Sinica, 2013, 33(22): 7116−7124. doi: 10.5846/stxb201207261062
|
[4] |
周学雅, 陈志杰, 耿世聪, 等. 氮沉降对长白山森林土壤团聚体内碳、氮含量的影响[J]. 应用生态学报, 2019, 30(5): 1543−1552.
Zhou X Y, Chen Z J, Geng S C, et al. Effects of nitrogen deposition on carbon and nitrogen contents in soil aggregates in temperate forests of Changbai Mountain, Northeast China[J]. Chinese Journal of Applied Ecology, 2019, 30(5): 1543−1552.
|
[5] |
黄永珍, 王晟强, 叶绍明. 杉木林分类型对表层土壤团聚体有机碳及养分变化的影响[J]. 应用生态学报, 2020, 31(9): 2857−2865.
Huang Y Z, Wang S Q, Ye S M. Effects of Cunninghamia lanceolata stand types on the changes of aggregate-related organic carbon and nutrients in surface soil[J]. Chinese Journal of Applied Ecology, 2020, 31(9): 2857−2865.
|
[6] |
林立文, 邓羽松, 王金悦, 等. 南亚热带人工林种植对赤红壤团聚体分布及稳定性的影响[J]. 应用生态学报, 2020, 31(11): 3647−3656.
Lin L W, Deng Y S, Wang J Y, et al. Effects of plantation on aggregate distribution and stability of lateritic red soil in south sub-tropical China[J]. Chinese Journal of Applied Ecology, 2020, 31(11): 3647−3656.
|
[7] |
胡琛, 贺云龙, 崔鸿侠, 等. 神农架4种典型人工林对土壤团聚体分布及稳定性的影响[J]. 中南林业科技大学学报, 2020, 40(12): 125−133.
Hu C, He Y L, Cui H X, et al. Effects of four typical plantations on the distribution and stability of soil aggregates in Shennongjia[J]. Journal of Central South University of Forestry & Technology, 2020, 40(12): 125−133.
|
[8] |
徐海东, 苑海静, 熊静, 等. 杉阔异龄复层林对土壤团聚体稳定性和有机碳及养分储量的影响[J]. 林业科学研究, 2020, 33(3): 107−115.
Xu H D, Yuan H J, Xiong J, et al. Effects of uneven-aged Cunninghamia lanceolata and evergreen broadleaved mixed plantations on soil aggregate stability and soil organic carbon and nutrients stocks[J]. Forest Research, 2020, 33(3): 107−115.
|
[9] |
王小红, 杨智杰, 刘小飞, 等. 天然林转换成人工林对土壤团聚体稳定性及有机碳分布的影响[J]. 水土保持学报, 2014, 28(6): 177−182.
Wang X H, Yang Z J, Liu X F, et al. Effects of natural forest converted plantations on soil organic carbon distribution and stability of aggregates in middle-subtropics of China[J]. Journal of Soil and Water Conservation, 2014, 28(6): 177−182.
|
[10] |
吕来新, 宋蕾, 刘志理, 等. 红松人工林土壤酶活性与化学性质对氮添加的响应[J]. 环境科学, 2020, 41(4): 1960−1967.
Lü L X, Song L, Liu Z L, et al. Response of soil enzyme activity and chemical properties to nitrogen addition in a Korean pine plantation[J]. Environmental Science, 2020, 41(4): 1960−1967.
|
[11] |
刘珽, 牟长城, 王亚辉, 等. 透光抚育强度对小兴安岭“栽针保阔”红松林凋落物水文效应的影响[J]. 应用生态学报, 2021, 32(7): 2335−2346.
Liu T, Mu C C, Wang Y H, et al. Effects of light-felling intensity on hydrological effects of litter in Korean pine forests by ‘planting conifer and preserving broadleaved tree’ in Xiaoxing’an Mountains of China[J]. Chinese Journal of Applied Ecology, 2021, 32(7): 2335−2346.
|
[12] |
胡嵩, 张颖, 史荣久, 等. 长白山原始红松林次生演替过程中土壤微生物生物量和酶活性变化[J]. 应用生态学报, 2013, 24(2): 366−372.
Hu S, Zhang Y, Shi R J, et al. Temporal variations of soil microbial biomass and enzyme activities during the secondary succession of primary broadleaved-Pinuskoraiensis forests in Changbai Mountains of Northeast China[J]. Chinese Journal of Applied Ecology, 2013, 24(2): 366−372.
|
[13] |
刘少冲, 段文标. 红松阔叶混交林林隙土壤养分的空间异质性[J]. 水土保持学报, 2011, 25(3): 142−146.
Liu S C, Duan W B. Spatial heterogeneity of soil nutrition in the mixed broad-leaved Korean pine forest gap[J]. Journal of Soil and Water Conservation, 2011, 25(3): 142−146.
|
[14] |
孙双红, 陈立新, 李少博, 等. 阔叶红松林不同演替阶段土壤酶活性与养分特征及其相关性[J]. 北京林业大学学报, 2016, 38(2): 20−28.
Sun S H, Chen L X, Li S B, et al. Characteristics of soil enzyme activity and nutrient content and their correlations at different succession stages of broadleaf-Korean pine forest[J]. Journal of Beijing Forestry University, 2016, 38(2): 20−28.
|
[15] |
郭志明, 张心昱, 李丹丹, 等. 温带森林不同海拔土壤有机碳及相关胞外酶活性特征[J]. 应用生态学报, 2017, 28(9): 2888−2896.
Guo Z M, Zhang X Y, Li D D, et al. Characteristics of soil organic carbon and related exo-enzyme activities at different altitudes in temperate forests[J]. Chinese Journal of Applied Ecology, 2017, 28(9): 2888−2896.
|
[16] |
刘少冲, 陈立新, 段文标, 等. 影响不同林型天然红松混交林林隙更新的土壤特征因子[J]. 生态学报, 2017, 37(12): 4072−4083.
Liu S C, Chen L X, Duan W B, et al. Effects of soil characteristics on forest gap regeneration in different types of natural Pinus koraiensis mixed forest[J]. Acta Ecologica Sinica, 2017, 37(12): 4072−4083.
|
[17] |
李海瑜, 杨振景, 王树力. 水曲柳人工林与天然林间土壤磷吸附解吸特性差异[J]. 东北林业大学学报, 2021, 49(3): 93−98. doi: 10.3969/j.issn.1000-5382.2021.03.016
Li H Y, Yang Z J, Wang S L. Comparison of soil phosphorus adsorption and desorption characteristics in planted and natural Fraxinus mandshurica forests[J]. Journal of Northeast Forestry University, 2021, 49(3): 93−98. doi: 10.3969/j.issn.1000-5382.2021.03.016
|
[18] |
周磊, 王树力. 树种混交对红皮云杉人工林土壤养分的影响[J]. 东北林业大学学报, 2019, 47(2): 37−41. doi: 10.3969/j.issn.1000-5382.2019.02.009
Zhou L, Wang S L. Effects of mixed tree species on soil nutrients in Picea koraiensis plantations[J]. Journal of Northeast Forestry University, 2019, 47(2): 37−41. doi: 10.3969/j.issn.1000-5382.2019.02.009
|
[19] |
Elliott E T. Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils[J]. Soil Science Society of America Journal, 1986, 50(3): 627−633. doi: 10.2136/sssaj1986.03615995005000030017x
|
[20] |
朱家琪, 满秀玲, 王飞. 我国寒温带四种森林植被类型下土壤团聚体粒级组成及其稳定性比较研究[J]. 土壤通报, 2020, 51(3): 606−613.
Zhu J Q, Man X L, Wang F. Composition and stability of soil aggregates in four forest vegetation types in cold temperate zone[J]. Chinese Journal of Soil Science, 2020, 51(3): 606−613.
|
[21] |
Tyler S W, Wheatcraft S W. Fractal scaling of soil particle-size distributions: analysis and limitations[J]. Soil Science Society of America Journal, 1992, 56(2): 362−369. doi: 10.2136/sssaj1992.03615995005600020005x
|
[22] |
朱家琪, 满秀玲, 王飞. 寒温带4种森林类型土壤团聚体有机碳氮特征[J]. 南京林业大学学报(自然科学版), 2021, 45(5): 71−83.
Zhu J Q, Man X L, Wang F. Organic carbon and nitrogen characteristics of soil aggregates in four forest types in frigid temperate zone[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2021, 45(5): 71−83.
|
[23] |
崔芯蕊, 张嘉良, 王云琦, 等. 甘肃小陇山林区不同林分对土壤团聚体稳定性的影响[J]. 水土保持学报, 2021, 35(4): 275−281.
Cui X R, Zhang J L, Wang Y Q, et al. Effect of different forest on the soil aggregate stability in Xiaolongshan forest region of Gansu Province[J]. Journal of Soil and Water Conservation, 2021, 35(4): 275−281.
|
[24] |
Barthes B, Roose E. Aggregate stability as an indicator of soil susceptibility to runoff and erosion; validation at several levels[J]. Catena, 2002, 47(2): 133−149. doi: 10.1016/S0341-8162(01)00180-1
|
[25] |
Chaplot V, Cooper M. Soil aggregate stability to predict organic carbon outputs from soils[J]. Geoderma, 2015, 243−244: 205−213. doi: 10.1016/j.geoderma.2014.12.013
|
[26] |
王冰, 张鹏杰, 张秋良. 不同林型兴安落叶松林土壤团聚体及其有机碳特征[J]. 南京林业大学学报(自然科学版), 2021, 45(3): 15−24.
Wang B, Zhang P J, Zhang Q L. Characteristics of the soil aggregate and its organic carbon in different Larix gmelinii forest types[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2021, 45(3): 15−24.
|
[27] |
陆琪, 马红彬, 俞鸿千, 等. 轮牧方式对荒漠草原土壤团聚体及有机碳特征的影响[J]. 应用生态学报, 2019, 30(9): 3028−3038.
Lu Q, Ma H B, Yu H Q, et al. Effects of rotational grazing methods on soil aggregates and organic carbon characteristics in desert steppe[J]. Chinese Journal of Applied Ecology, 2019, 30(9): 3028−3038.
|
[28] |
潘俊, 刘苑秋, 刘晓君, 等. 退化红壤植被恢复团聚体及化学计量特征[J]. 水土保持学报, 2019, 33(4): 187−195.
Pan J, Liu Y Q, Liu X J, et al. Distribution and stoichomentry of water- stable aggregates of different vegetation restoration patterns in degradesd red soil regions[J]. Journal of Soil and Water Conservation, 2019, 33(4): 187−195.
|
[29] |
王玉娇. 胡桃楸与红松混交对土壤特性和细根性状的影响[D]. 哈尔滨: 东北林业大学, 2021.
Wang Y J. Effects of Juglans mandshurica and Pinus koraiensis on soil characteristics and fine root traits[D]. Harbin: Northeast Forestry University, 2021.
|
[30] |
冯文瀚, 李金彪, 周聪, 等. 不同林龄鹅掌楸人工林土壤团聚体及其有机碳状况[J]. 中南林业科技大学学报, 2021, 41(2): 133−141.
Feng W H, Li J B, Zhou C, et al. Soil aggregates and organic carbon status of Liriodendron chinense plantation at different ages[J]. Journal of Central South University of Forestry & Technology, 2021, 41(2): 133−141.
|
[31] |
苑亚茹, 韩晓增, 丁雪丽, 等. 不同植物根际土壤团聚体稳定性及其结合碳分布特征[J]. 土壤通报, 2012, 43(2): 320−324.
Yuan Y R, Han X Z, Ding X L, et al. Distribution of aggregate-associated organic carbon and aggregate stability in rhizosphere of different plants[J]. Chinese Journal of Soil Science, 2012, 43(2): 320−324.
|
[32] |
谢贤健, 张继. 巨桉人工林下土壤团聚体稳定性及分形特征[J]. 水土保持学报, 2012, 26(6): 175−179.
Xie X J, Zhang J. Soil aggregates and fractal features under different styles of Eucalyptus grandis plantations[J]. Journal of Soil and Water Conservation, 2012, 26(6): 175−179.
|
[33] |
邹鑫, 陈春峰, 刘文杰. 西双版纳橡胶种植对土壤团聚体及理化性质的影响[J]. 土壤通报, 2020, 51(3): 597−605.
Zou X, Chen C F, Liu W J. Effects of rubber plantation on soil aggregate stability and physico-chemical properties in Xishuangbanna[J]. Chinese Journal of Soil Science, 2020, 51(3): 597−605.
|
[34] |
孙铭隆. 东北黄檗群落多样性解析及其生物碱含量的氮磷调控[D]. 哈尔滨: 东北林业大学, 2017.
Sun M L. Analysis of Phellodendron amurense community diversity and its alkaloid content regulated by nitrogen and phosphorus[D]. Harbin: Northeast Forestry University, 2017.
|
[35] |
吴慧, 王树力. 天然次生林转变成长白落叶松人工林后土壤养分的变化[J]. 东北林业大学学报, 2020, 48(4): 54−58. doi: 10.3969/j.issn.1000-5382.2020.04.010
Wu H, Wang S L. Change of soil nutrients after converting natural secondary forest into Larix olgensis plantations[J]. Journal of Northeast Forestry University, 2020, 48(4): 54−58. doi: 10.3969/j.issn.1000-5382.2020.04.010
|
[36] |
Liu Z, Chen X, Jing Y, et al. Effects of biochar amendment on rapeseed and sweet potato yields and water stable aggregate in upland red soil[J]. Catena, 2014, 123: 45−51. doi: 10.1016/j.catena.2014.07.005
|
[37] |
Six J, Elliott E T, Paustian K, et al. Aggregation and soil organic matter accumulation in cultivated and native grassland soils[J]. Soil Science Society of America Journal, 1998, 62(5): 1367−1377. doi: 10.2136/sssaj1998.03615995006200050032x
|
[38] |
Sariyildiz T. Effects of tree species and topography on fine and small root decomposition rates of three common tree species (Alnus glutinosa, Picea orientalis and Pinus sylvestris) in Turkey[J]. Forest Ecology and Management, 2015, 335: 71−86. doi: 10.1016/j.foreco.2014.09.030
|
[39] |
Freschet G T, Cornwell W K, Wardle D A, et al. Linking litter decomposition of above and below-ground organs to plant-soil feedbacks worldwide[J]. Journal of Ecology, 2013, 101(4): 943−952. doi: 10.1111/1365-2745.12092
|
[40] |
See C R, Mccormack M L, Hobbie S E, et al. Global patterns in fine root decomposition: climate, chemistry, mycorrhizal association and woodiness[J]. Ecology Letters, 2019, 22(6): 946−953. doi: 10.1111/ele.13248
|