Citation: | Zhou Zeyu, Zhou Chaofan, Hu Xingguo, Chen Keyi, Du Manyi, Zhang Huiru, Fu Liyong. Single tree DBH growth model of spruce-fir natural forest based on distance related Hegyi index[J]. Journal of Beijing Forestry University, 2023, 45(10): 59-69. DOI: 10.12171/j.1000-1522.20210510 |
Based on the Hegyi intraspecific and interspecific competition indexes related to distance, the prediction model of DBH increment of natural spruce-fir forest was constructed based on initial DBH and Hegyi competition index.
In order to explore the effects of competition and growth on DBH growth of individual trees, the measured data of three permanent sample plots (each of 1 ha) of spruce-fir in Jingouling Forest Farm, Jilin Province of northeastern China in 2013 were utilized. Based on the nonlinear Logistics model, initial DBH, intraspecific and interspecific competition indexes were gradually added. The nonlinear mixed-effect model was utilized to improve the model accuracy.
The results of model fitting showed that the model had the best fitting effect when initial DBH, intraspecific and interspecific Hegyi competition indexes were used as predictive variables, the best fitting efficiency occurred based on the species-level of random effect worked on parameters a0, a2, a3, and without heteroscedasticity. The R2adj, root mean squared error (RMSE) and total relative error (TRE) of modeling data were 0.512 6, 0.607 1, 3.651 9%, respectively. The R2adj, RMSE and TRE of validation data were 0.509 8, 0.624 2, 3.883 1%, respectively. The residual distribution of validation data did not show obvious heteroscedasticity.
The factors affect the diameter growth of target trees in natural spruce-fir forest, including self-growth factors and competition factors. Among the self-growth factors, initial DBH is the main factor and plays a positive role to promote DBH increment. Among the competition factors, interspecific competition and intraspecific competition have obvious inhibition effects on the growth of individual tree DBH increment. The nonlinear mixed effect model based on species-level can provide a theoretical basis and technical reference for the DBH growth of target trees in natural spruce-fir forest in the study area.
[1] |
Adame P, del Río M, Canellas I. A mixed nonlinear height-diameter model for pyrenean oak (Quercus pyrenaica Willd.)[J]. Forest Ecology and Management, 2008, 256: 88−98. doi: 10.1016/j.foreco.2008.04.006
|
[2] |
Huang S, Titus S J, Wiens D P. Comparison of nonlinear height-diameter functions for major Alberta tree species[J]. Canadian Journal of Forest Research, 1992, 22: 1297−1304. doi: 10.1139/x92-172
|
[3] |
Mehttalo L. Height-diameter models for Scots pine and birch in Finland[J]. Suomen Metstieteellinen Seura, 2005, 39: 55−66.
|
[4] |
Tomppo E, Gschwantner T, Lawrence M, et al. National forest inventories: pathways for common reporting[J]. European Science Foundation, 2010, 1: 541−553.
|
[5] |
Zianis D, Muukkonen P, Mäkipää R, et al. Biomass and stem volume equations for tree species in Europe[J]. Silva Fennica, 2005, 4(4): 1−63.
|
[6] |
Zeng W S, Chen X Y, Yang X Y. Developing national and regional individual tree biomass models and analyzing impact of climatic factors on biomass estimation for poplar plantations in China[J]. Trees, 2021(35): 93−102.
|
[7] |
Kulej M, Socha J. Effect of provenance on the volume increment of grand fir (Abies grandis Lindl.) under mountain conditions of Poland[J]. Journal of Forest Science, 2008, 54: 1−8.
|
[8] |
Härkönen S, Neumann M, Mues V, et al. A climate-sensitive forest model for assessing impacts of forest management in Europe[J]. Environmental Modelling and Software, 2019, 115: 128−143. doi: 10.1016/j.envsoft.2019.02.009
|
[9] |
Craine J M. Reconciling plant strategy theories of Grime and Tilman[J]. Journal of Ecology, 2005, 93: 1041−1052. doi: 10.1111/j.1365-2745.2005.01043.x
|
[10] |
Pinheiro J, Bates D. Mixed-effects models in S and S-PLUS[M]. New York: Springer, 2013.
|
[11] |
Bates D M, Pinheiro J C . Linear and nonlinear mixed-effects models[C]//Applied statistics in agriculture: proceedings of the Kansas State University Conference on Applied Statistics in Agriculture, 1998.
|
[12] |
Mehtätalo L, de Miguel S, Gregoire T G. Modeling height-diameter curves for prediction[J]. Canadian Journal of Forest Research, 2015, 45: 826−837. doi: 10.1139/cjfr-2015-0054
|
[13] |
李春明. 基于两层次线性混合效应模型的杉木林单木直径生长量模型[J]. 林业科学, 2012, 48(3): 66−73.
Li C M. Individual tree diameter increment model for Chinese fir plantation based on two-level linear mixed effects models[J]. Scientia Silvae Sinicae, 2012, 48(3): 66−73.
|
[14] |
符利勇, 李永慈, 李春明, 等. 利用2种非线性混合效应模型(2水平)对杉木林直径生长量的分析[J]. 林业科学, 2012, 48(5): 36−43.
Fu L Y, Li Y C, Li C M, et al. Analysis of the basal area for Chinese fir plantation using two kinds of nonlinear mixed effects model (two levels)[J]. Scientia Silvae Sinicae, 2012, 48(5): 36−43.
|
[15] |
张兴龙, 姜立春. 兴安落叶松树干去皮直径预测模型[J]. 林业科学研究, 2015, 28(1): 67−73.
Zhang X L, Jiang L C. Inside bark diameter prediction models for Dahurian larch[J]. Forest Research, 2015, 28(1): 67−73.
|
[16] |
姜立春, 杜书立. 基于非线性混合模型的东北兴安落叶松树高和直径生长模拟[J]. 林业科学研究, 2012, 25(1): 11−16. doi: 10.3969/j.issn.1001-1498.2012.01.003
Jiang L C, Du S L. Height and diameter growth modeling of Dahurian larch based on nonlinear mixed model in northeastern China[J]. Forest Research, 2012, 25(1): 11−16. doi: 10.3969/j.issn.1001-1498.2012.01.003
|
[17] |
陈国栋, 杜研, 丁佩燕, 等. 基于混合效应模型的新疆天山云杉单木胸径预测模型构建[J]. 北京林业大学学报, 2020, 42(7): 12−22.
Chen G D, Du Y, Ding P Y, et al. Predicting model construction of single tree DBH of Picea schrenkiana in Xinjiang of northwestern China based on mixed effects model[J]. Journal of Beijing Forestry University, 2020, 42(7): 12−22.
|
[18] |
臧颢, 刘洪生, 黄锦程, 等. 竞争和气候及其交互作用对杉木人工林直径生长的影响[J]. 林业科学, 2021, 57(3): 39−50.
Zang H, Liu H S, Huang J C, et al. Effects of competition, climate factors and their interactions on diameter growth for Chinese fir plantations[J]. Scientia Silvae Sinicae, 2021, 57(3): 39−50.
|
[19] |
余黎, 雷相东, 王雅志, 等. 基于广义可加模型的气候对单木直径生长的影响研究[J]. 北京林业大学学报, 2014, 36(5): 22−32.
Yu L, Lei X D, Wang Y Z, et al. Impact of climate on individual tree radial growth based on generalized additive model[J]. Journal of Beijing Forestry University, 2014, 36(5): 22−32.
|
[20] |
刘帅, 李建军 卿东升, 等. 气候敏感的青冈栎单木直径生长模型[J]. 林业科学, 2021, 57(1): 95−104.
Liu S, Li J J, Qing D S, et al. A climate-sensitive individual-tree DBH growth model for Cyclobalanopsis glauca[J]. Scientia Silvae Sinicae, 2021, 57(1): 95−104.
|
[21] |
吕沅杭, 伊利启, 王儒林, 等. 基于空间结构参数的大兴安岭天然落叶松单木直径生长模型[J]. 林业科学研究, 2021, 34(2): 81−91.
Lü Y H, Yi L Q, Wang R L, et al. Diameter growth model using spatial structure parameters of natural Larix gmelinii stand in Daxing’anling Mountains, Northeast China[J]. Forest Research, 2021, 34(2): 81−91.
|
[22] |
孟宪宇. 测树学 [M]. 3版. 北京: 中国林业出版社, 2006.
Meng X Y. Forestry measuration [M]. 3rd ed. Beijing: China Forestry Publishing House, 2006.
|
[23] |
Hegyi F. A simulation model for managing jack-pine stands simulation[J]. Forest Research Notes, 1974, 30: 74−90.
|
[24] |
刘方炎, 李昆, 廖声熙, 等. 濒危植物翠柏的个体生长动态及种群结构与种内竞争[J]. 林业科学, 2010, 46(10): 23−28. doi: 10.11707/j.1001-7488.20101004
Liu F Y, Li K, Liao S X, et al. Interspecific competition, population structure and growth dynamics of endangered Calocedrus macrolepis[J]. Scientia Silvae Sinicae, 2010, 46(10): 23−28. doi: 10.11707/j.1001-7488.20101004
|
[25] |
董利虎, 李凤日, 贾炜玮. 林木竞争对红松人工林立木生物量影响及模型研究[J]. 北京林业大学学报, 2013, 35(6): 14−22.
Dong L H, Li F R, Jia W W. Effects of tree competition on biomass and biomass models of Pinus koraiensis plantation[J]. Journal of Beijing Forestry University, 2013, 35(6): 14−22.
|
[26] |
胡雪凡, 张会儒, 段光爽, 等. 基于交角和密集度的竞争指数构建及评价[J]. 林业科学, 2021, 57(4): 182−190.
Hu X F, Zhang H R, Duan G S, et al. Establishment and evaluation of tree competition index based on intersection and crowding[J]. Scientia Silvae Sinicae, 2021, 57(4): 182−190.
|
[27] |
陈科屹. 云冷杉过伐林经营诊断及目标树抚育效果研究[D]. 北京: 中国林业科学研究院, 2018.
Chen K Y. Studies on management diagnosis and effectiveness of thinning based on crop tree management for over-logged spruce-fir forest[D]. Beijing: Chinese Academy of Forestry, 2018.
|
[28] |
周红敏, 惠刚盈, 赵中华, 等. 林分空间结构分析中样地边界木的处理方法[J]. 林业科学, 2009, 45(2): 1−5.
Zhou H M, Hui G Y, Zhao Z H, et al. Treatment methods of plot boundary trees in spatial forest structure analysis[J]. Scientia Silvae Sinicae, 2009, 45(2): 1−5.
|
[29] |
洪伟, 吴承祯, 蓝斌. 邻体干扰指数通用模型及其应用[J]. 植物生态学报, 1997, 21(2): 149−154. doi: 10.3321/j.issn:1005-264X.1997.02.006
Hong W, Wu C Z, Lan B. A general model for neighborhood interference index and its application[J]. Acta Phytoecologica Sinica, 1997, 21(2): 149−154. doi: 10.3321/j.issn:1005-264X.1997.02.006
|
[30] |
王政权, 吴巩胜, 王军邦. 利用竞争指数评价水曲柳落叶松种内种间空间竞争关系[J]. 应用生态学报, 2000, 11(5): 641−645.
Wang Z Q, Wu G S, Wang J B. Application of competition index in assessing intraspecific and interspecific spatial relations between Manchurian ash and Dahurian larch[J]. Chinese Journal of Applied Ecology, 2000, 11(5): 641−645.
|
[31] |
封磊, 洪伟, 吴承祯, 等. 杉木−拟赤杨人工混交林种内、种间竞争强度研究[J]. 热带亚热带植物学报, 2004, 12(1): 46−50.
Feng L, Hong W, Wu C Z, et al. Intraspecific and interspecific competition intensity in mixed forest plantation of Cunninghamia lanceolata and Alniphyllum fortune[J]. Journal of Tropical and Subtropical Botany, 2004, 12(1): 46−50.
|
[32] |
Alexander K A, Brian C M. Competition size and age affect tree growth response to fuel reduction treatments in mixed oak forests of Ohio[J]. Forest Ecology and Management, 2013, 307(7): 74−83.
|
[33] |
项小燕, 吴甘霖, 段仁燕, 等. 大别山五针松种内和种间竞争强度[J]. 生态学报, 2015, 35(2): 389−395.
Xiang X Y, Wu G L, Duan R Y, et al. Intraspecific and interspecific competition of Pinus dabeshanesis[J]. Acta Ecologica Sinica, 2015, 35(2): 389−395.
|
[34] |
Curtis R O. Height-diameter and height-diameter-age equations for second-growth Douglas-fir[J]. Forest Science, 1967, 13: 365−375.
|
[35] |
Lappi J. A longitudinal analysis of height-diameter curves[J]. Forest Science, 1997, 43: 555−570.
|
[36] |
Mehtätalo L. A longitudinal height-diameter model for Norway spruce in Finland[J]. Canadian Journal of Forest Research, 2004, 34: 131−140. doi: 10.1139/x03-207
|
[37] |
Meng S X, Huang S X. Improved calibration of nonlinear mixed-effects models demonstrated on a height growth function[J]. Forest Science, 2009, 55(3): 238−248.
|
[38] |
汪金松, 范秀华, 范娟, 等. 林木竞争对臭冷杉生物量分配的影响[J]. 林业科学, 2012, 48(4): 14−20. doi: 10.11707/j.1001-7488.20120403
Wang J S, Fan X H, Fan J, et al. Effects of tree competition on the biomass partitioning of Abies nephrolepis[J]. Scientia Silvae Sinicae, 2012, 48(4): 14−20. doi: 10.11707/j.1001-7488.20120403
|
[39] |
Waring R H, Thies W G, Muscato D. Stem growth per unit of leaf area: a measure of tree vigor[J]. Forest Science, 1980, 26: 112−117.
|
[40] |
彭娓, 李凤日, 董利虎, 等. 黑龙江省长白落叶松人工林单木生长模型[J]. 南京林业大学学报(自然科学版), 2018, 61(3): 19−27.
Peng W, Li F R, Dong L H, et al. Individual tree diameter growth model for Larix olgensis plantation in Heilongjiang Province, China[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2018, 61(3): 19−27.
|
[41] |
Contreras M A, Affleck D, Chung W. Evaluating tree competition indices as predictors of basal area increment in western Montana forests[J]. Forest Ecology and Management, 2011, 262: 1939−1949. doi: 10.1016/j.foreco.2011.08.031
|
[42] |
Kuehne C, Weiskittel A R, Waskiewicz J. Comparing performance of contrasting distance-independent and distance-dependent competition metrics in predicting individual tree diameter increment and survival within structurally-heterogeneous, mixed-species forests of Northeastern United States[J]. Forest Ecology and Management, 2019, 433: 205−216. doi: 10.1016/j.foreco.2018.11.002
|
[43] |
Kahriman A, Şahin A¸ Sönmez T, et al. A novel approach to selecting a competition index: the effect of competition on individual-tree diameter growth of Calabrian pine[J]. Canadian Journal of Forest Research, 2018, 48: 1217−1226. doi: 10.1139/cjfr-2018-0092
|
[1] | Li Yang, Kang Xingang. Mixed model of forest space utilization in spruce-fir coniferous and broadleaved mixed forest of Changbai Mountains, northeastern China[J]. Journal of Beijing Forestry University, 2020, 42(5): 71-79. DOI: 10.12171/j.1000-1522.20190112 |
[2] | Li Cheng, Ma Jingyong, Zhang Cai, Wang Ben, Zha Tianshan, Jia Xin. Seasonal dynamics of light-use efficiency in Artemisia ordosica shrubby desert[J]. Journal of Beijing Forestry University, 2019, 41(9): 99-107. DOI: 10.13332/j.1000-1522.20180217 |
[3] | Wen Yongbin, Han Hairong, Cheng Xiaoqin, Li Zuzheng. Forest water use efficiency in Qianyanzhou based on Biome-BGC model, Jiangxi Province of eastern China[J]. Journal of Beijing Forestry University, 2019, 41(4): 69-77. DOI: 10.13332/j.1000-1522.20190001 |
[4] | YANG Shuang, YUAN Xiao-na, WANG Zhong-xuan, ZHU Pu, JIA Gui-xia. Effects of HgCl2 stress on the upper leaf necroses and water use efficiency of oriental hybrid lilies[J]. Journal of Beijing Forestry University, 2016, 38(5): 114-119. DOI: 10.13332/j.1000-1522.20150306 |
[5] | WEN Yi-bo, CHANG Ying, FAN Wen-yi. Algorithm for leaf area index inversion in the Great Xing'an Mountains using MISR data and spatial scaling for the validation[J]. Journal of Beijing Forestry University, 2016, 38(5): 1-10. DOI: 10.13332/j.1000-1522.20150204 |
[6] | JIANG Dong-yue, QIAN Yong-qiang, LIU Jun-xiang, WANG Zheng-chao, FEI Ying-jie, SUN Zhen-yuan. Evaluation of radiation use efficiency of superior clones of Salix based on photosynthetic light-response characteristics.[J]. Journal of Beijing Forestry University, 2015, 37(5): 49-61. DOI: 10.13332/j.1000-1522.20140187 |
[7] | GUO Peng, XING Hai-tao, XIA Xin-li, YIN Wei-lun. Discrimination of water use efficiency(WUE) among three Populus deltoids clones.[J]. Journal of Beijing Forestry University, 2011, 33(2): 19-24. |
[8] | DUAN Ai-guo, ZHANG Jian-guo, ZHANG Jun-pei, HE Cai-yun. Dynamics of water-use efficiency of tree species for vegetation restoration in dry-hot river valleys[J]. Journal of Beijing Forestry University, 2010, 32(6): 13-19. |
[9] | ZHANG Jian-jun, DONG Huang-biao, NA Lei, WANG Peng. Comparison of rainfallrunoff process in watersheds under different scales on the loess area in western Shanxi Province, northern China.[J]. Journal of Beijing Forestry University, 2008, 30(2): 106-112. |
[10] | ZHAO Feng-jun, SHEN Ying-bai, GAO Rong-fu, SU Xiao-hua, ZHANG Bing-yu. Relationship between foliar carbon isotope composition (δ13C) and long-term water use efficiency (WUEL)[J]. Journal of Beijing Forestry University, 2006, 28(6): 40-45. |
1. |
包塔娜,范文义. 基于集合卡尔曼滤波的帽儿山森林多源LAI产品重建及融合校正方法. 浙江农林大学学报. 2024(04): 841-849 .
![]() | |
2. |
郝兵,李萍,刘东. 基于模糊小波的光照干扰图像对比度增强方法. 激光杂志. 2023(11): 104-108 .
![]() |