Citation: | Huai Yongjian, Meng Qingkuo, Chen Yuanyuan, Ma Tianrong, Xu Haifeng, Nie Xiaoying. Review on realistic forest modeling methods[J]. Journal of Beijing Forestry University, 2022, 44(8): 134-146. DOI: 10.12171/j.1000-1522.20210544 |
[1] |
杨垠晖, 王锐. 树木的真实感建模与绘制综述[J]. 计算机辅助设计与图形学学报, 2018, 30(2): 191−216.
Yang Y H, Wang R. Realistic modeling and rendering of trees: a survey[J]. Journal of Computer-Aided Design & Computer Graphics, 2018, 30(2): 191−216.
|
[2] |
欧中斌, 廖桂平, 喻飞, 等. 虚拟植物生长建模[J]. 系统仿真学报, 2006, 18(增刊1): 291−294. doi: 10.3969/j.issn.1004-731X.2006.z1.088
Ou Z B, Liao G P, Yu F, et al. Modeling of crop growth virtual plant[J]. Journal of System Simulation, 2006, 18(Suppl.1): 291−294. doi: 10.3969/j.issn.1004-731X.2006.z1.088
|
[3] |
孙永香, 刘彤, 郑永果, 等. 虚拟植物的建模方法[J]. 系统仿真学报, 2006, 18(增刊1): 263−266. doi: 10.3969/j.issn.1004-731X.2006.z1.080
Sun Y X, Liu T, Zheng Y G, et al. Virtual plant modeling[J]. Journal of System Simulation, 2006, 18(Suppl.1): 263−266. doi: 10.3969/j.issn.1004-731X.2006.z1.080
|
[4] |
Stava O, Pirk S, Kratt J, et al. Inverse procedural modelling of trees[J]. Journal of the European Association for Computer Graphics, 2014, 33(6): 118−131.
|
[5] |
Li C, Deussen O, Song Y Z, et al. Modeling and generating moving trees from video[J]. ACM Transactions on Graphics (TOG), 2011, 30(6): 1−12.
|
[6] |
Li D, Yang R, Hu Y, et al. Tracking trajectory of 3D trees moving based on video data driven[C]//Guerrero J E. 2014 Seventh International Symposium on Computational Intelligence and Design. Washington: IEEE Computer Society, 2014: 89−92.
|
[7] |
Shlyakhter I, Rozenoer M, Dorsey J, et al. Reconstructing 3D tree models from instrumented photographs[J]. IEEE Computer Graphics and Applications, 2001, 21(3): 53−61.
|
[8] |
Reche-Martinez A, Martin I, Drettakis G. Volumetric reconstruction and interactive rendering of trees from photographs[M]// Marks J. ACM SIGGRAPH 2004 Papers. New York: Association for Computing Machinery, 2004: 720−727.
|
[9] |
Quan L, Tan P, Zeng G, et al. Image-based plant modeling[M]//Finnegan J. ACM SIGGRAPH 2006 Papers. New York: Association for Computing Machinery, 2006: 599−604.
|
[10] |
Neubert B, Franken T, Deussen O. Approximate image-based tree-modeling using particle flows[M]//Levoy M. ACM SIGGRAPH 2007 papers. New York: Association for Computing Machinery, 2007: 88−90.
|
[11] |
Tan P, Zeng G, Wang J, et al. Image-based tree modeling[M]//Levoy M. ACM SIGGRAPH 2007 papers. New York: Association for Computing Machinery, 2007: 87−90.
|
[12] |
Argudo O, Chica A, Andujar C. Single-picture reconstruction and rendering of trees for plausible vegetation synthesis[J]. Computers & Graphics, 2016, 57: 55−67.
|
[13] |
Li B, Kałużny J, Klein J, et al. Learning to reconstruct botanical trees from single images[J]. ACM Transactions on Graphics (TOG), 2021, 40(6): 1−15.
|
[14] |
Livny Y, Yan F, Olson M, et al. Automatic reconstruction of tree skeletal structures from point clouds[M]// Drettakis G. ACM SIGGRAPH Asia 2010 papers. New York: Association for Computing Machinery, 2010: 1−8.
|
[15] |
Li Y, Fan X, Mitra N J, et al. Analyzing growing plants from 4D point cloud data[J]. ACM Transactions on Graphics (TOG), 2013, 32(6): 1−10.
|
[16] |
Xie K, Yan F, Sharf A, et al. Tree modeling with real tree-parts examples[J]. IEEE Transactions on Visualization and Computer Graphics, 2015, 22(12): 2608−2618.
|
[17] |
刘阁, 周国民. L系统理论及其应用综述[J]. 农业网络信息, 2008(9): 21−23. doi: 10.3969/j.issn.1672-6251.2008.09.007
Liu G, Zhou G M. The summarization of the theory and application of L-systems[J]. Agriculture Network Information, 2008(9): 21−23. doi: 10.3969/j.issn.1672-6251.2008.09.007
|
[18] |
Bielefeldt B R, Akleman E, Reich G W, et al. L-system-generated mechanism topology optimization using graph-based interpretation[J]. Journal of Mechanisms and Robotics, 2019, 11(2): 020905. doi: 10.1115/1.4042512
|
[19] |
Juhari J, Alghar M Z. Modeling plant stems using the deterministic lindenmayer system[J]. CAUCHY: Journal Matematika Murni dan Aplikasi, 2021, 6(4): 286−295. doi: 10.18860/ca.v6i4.11591
|
[20] |
Cieslak M, Prusinkiewicz P. Gillespie-Lindenmayer systems for stochastic simulation of morphogenesis[J]. In Silico Plants, 2019, 1(1): diz009. doi: 10.1093/insilicoplants/diz009
|
[21] |
Sievänen R, Godin C, de Jong T M, et al. Functional-structural plant models: a growing paradigm for plant studies[J]. Annals of Botany, 2014, 114(4): 599−603. doi: 10.1093/aob/mcu175
|
[22] |
Guo J, Jiang H, Benes B, et al. Inverse procedural modeling of branching structures by inferring L-systems[J]. ACM Transactions on Graphics, 2020, 39(5): 1−13.
|
[23] |
Zhao X, Reffye P D, Houllier F, et al. Interactive simulation of plant architecture based on a dual-scale automaton model[C]// Hu B G. Plant growth modeling and applications. Beijing: Tsinghua University Press, 2003: 144−153.
|
[24] |
Pirk S, Stava O, Kratt J, et al. Plastic trees: interactive self-adapting botanical tree models[J]. ACM Transactions on Graphics (TOG), 2012, 31(4): 1−10.
|
[25] |
Zhao Y, Barbič J. Interactive authoring of simulation-ready plants[J]. ACM Transactions on Graphics (TOG), 2013, 32(4): 1−12.
|
[26] |
Pirk S, Niese T, Hädrich T, et al. Windy trees: computing stress response for developmental tree models[J]. ACM Transactions on Graphics (TOG), 2014, 33(6): 1−11.
|
[27] |
Hädrich T, Benes B, Deussen O, et al. Interactive modeling and authoring of climbing plants[C]//Chen M. Computer graphics forum. Hoboken: Wiley-Blackwell Publishing Ltd, 2017: 49−61.
|
[28] |
Quigley E, Yu Y, Huang J, et al. Real-time interactive tree animation[J]. IEEE Transactions on Visualization and Computer Graphics, 2017, 24(5): 1717−1727.
|
[29] |
Liu Z, Shen C, Li Z, et al. Interactive modeling of trees using VR devices[C]//Wang D X. 2019 International Conference on Virtual Reality and Visualization (ICVRV). Los Alamitos: IEEE Computer Society, 2019: 69−75.
|
[30] |
Yan F, Gong M, Cohen-Or D, et al. Flower reconstruction from a single photo[C]//Deussen O. Computer graphics forum. Hoboken: Wiley-Blackwell Publishing Ltd, 2014: 439−447.
|
[31] |
Loi C, Cournède P H. A Markovian framework to formalize stochastic L-systems and application to models of plant development[J/OL]. INRIA, 2008 [2021−10−12]. https://hal.inria.fr/inria-00359515
|
[32] |
黄争舸, 陈建军, 杨廷俊, 等. 基于二叉树的上下文相关L-系统实现[J]. 浙江大学学报(工学版), 2008, 42(3): 403−406. doi: 10.3785/j.issn.1008-973X.2008.03.008
Huang Z G, Chen J J, Yang T J, et al. Implementation of context-sensitive L-system based on binary tree[J]. Journal of Zhejiang University (Engineering Science), 2008, 42(3): 403−406. doi: 10.3785/j.issn.1008-973X.2008.03.008
|
[33] |
石银涛, 程效军, 张鸿飞. 基于参数L-系统的三维树木仿真[J]. 同济大学学报(自然科学版), 2011, 39(12): 1871−1876. doi: 10.3969/j.issn.0253-374x.2011.12.026
Shi Y T, Cheng X J, Zhang H F. Three dimensional trees emulation based on parametric L-system[J]. Journal of Tongji University (Natural Science), 2011, 39(12): 1871−1876. doi: 10.3969/j.issn.0253-374x.2011.12.026
|
[34] |
林郁欣, 唐丽玉, 陈崇成, 等. 基于组合型L-系统的单树建模工具的设计与实现[J]. 农业工程学报, 2011, 27(3): 185−190. doi: 10.3969/j.issn.1002-6819.2011.03.035
Lin Y X, Tang L Y, Chen C C, et al. Design and implementation of tree individual modeling tool based on compounded L-system[J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(3): 185−190. doi: 10.3969/j.issn.1002-6819.2011.03.035
|
[35] |
Hamon L, Richard E, Richard P, et al. RTIL-system: a real-time interactive L-system for 3D interactions with virtual plants[J]. Virtual Reality, 2012, 16(2): 151−160. doi: 10.1007/s10055-011-0193-y
|
[36] |
王志维, 江梦璇, 李晖. 基于OpenGL迭代函数植物建模算法的改进及实现[J]. 武汉工程大学学报, 2016, 38(2): 204−208. doi: 10.3969/j.issn.1674-2869.2016.02.019
Wang Z W, Jiang M X, Li H. Improvement and implementation of plant modeling algorithm of iterative function based on openGL[J]. Journal of Wuhan Institute of Technology, 2016, 38(2): 204−208. doi: 10.3969/j.issn.1674-2869.2016.02.019
|
[37] |
Zhang F X, Lu F Y, Wang M L. Realistic simulation of potted monocot plant based on IFS[J]. Journal of System Simulation, 2017, 29(11): 2678−2684.
|
[38] |
Reeves W T. Particle systems: a technique for modeling a class of fuzzy objects[J]. ACM Transactions on Graphics (TOG), 1983, 2(2): 91−108. doi: 10.1145/357318.357320
|
[39] |
熊海桥, 蒋立华, 罗轶先, 等. 基于粒子系统的物理约束植物根生长建模[J]. 计算机应用, 2002(7): 39−41.
Xiong H Q, Jiang L H, Luo Y X, et al. A physically restrained plant root growing model based on particle system[J]. Computer Applications, 2002(7): 39−41.
|
[40] |
Ding W, Zhao Y, Xin W, et al. Parameter extraction method of virtual plant growth model based on improved particle swarm optimization[J]. Computers and Electronics in Agriculture, 2021, 191: 106470. doi: 10.1016/j.compag.2021.106470
|
[41] |
Sievänen R, Nikinmaa E, Perttunen J. Evaluation of importance of sapwood senescence on tree growth using the model Lignum[J]. Silva Fennica, 1997, 31(3): 329−340.
|
[42] |
Perttunen J, Nikinmaa E, Lechowicz M J, et al. Application of the functional-structural tree model LIGNUM to sugar maple saplings (Acer saccharum Marsh) growing in forest gaps[J]. Annals of Botany, 2001, 88(3): 471−481. doi: 10.1006/anbo.2001.1489
|
[43] |
Kang M Z, Heuvelink E, Carvalho S M P, et al. A virtual plant that responds to the environment like a real one: the case for chrysanthemum[J]. New Phytologist, 2012, 195(2): 384−395. doi: 10.1111/j.1469-8137.2012.04177.x
|
[44] |
Cieslak M, Owens A, Prusinkiewicz P. Computational models of auxin-driven patterning in shoots[J]. Cold Spring Harbor Perspectives in Biology, 2021, 14(3): a040097.
|
[45] |
Hong S M, Simpson B, Baranoski G V G. Interactive venation-based leaf shape modeling[J]. Computer Animation and Virtual Worlds, 2005, 16(3−4): 415−427. doi: 10.1002/cav.88
|
[46] |
董春胜, 荣霞. 三维迭代函数系统植物模拟[J]. 辽宁工程技术大学学报, 2014, 33(5): 712−715.
Dong C S, Rong X. Plant simulation three dimension iterated function system[J]. Journal of Liaoning Technical University (Natural Science), 2014, 33(5): 712−715.
|
[47] |
Perttunen J, Änen R S, Nikinmaa E, et al. LIGNUM: a tree model based on simple structural units[J]. Annals of Botany, 1996, 77(1): 87−98. doi: 10.1006/anbo.1996.0011
|
[48] |
Yi L, Li H, Guo J, et al. Tree growth modelling constrained by growth equations[C]//Chen M. Computer graphics forum. Hoboken: Wiley-Blackwell Publishing Ltd, 2018: 239−253.
|
[49] |
Jullien A, Mathieu A, Allirand J M, et al. Characterization of the interactions between architecture and source–sink relationships in winter oilseed rape (Brassica napus) using the GreenLab model[J]. Annals of Botany, 2011, 107(5): 765−779. doi: 10.1093/aob/mcq205
|