Citation: | Liu Suoming, Wang Junjie, Yan Yunfei, Jiang Lichun. Construction of crown width model of Larix gmelinii plantation in Xiaoxing’an Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2023, 45(5): 79-87. DOI: 10.12171/j.1000-1522.20210551 |
[1] |
Hasenauer H, Monserud R A. Biased predictions for tree height increment models developed from smoothed ‘data’[J]. Ecological Modelling, 1997, 98(1): 13−22. doi: 10.1016/S0304-3800(96)01933-3
|
[2] |
Matsumoto H, Ohtani M, Washitani I. Tree crown size estimated using image processing[J/OL]. Tropical Conservation Science, 2017, 10: 194008291772178[2021−12−14]. https://doi.org/10.1177/1940082917721787.
|
[3] |
Hussain A, Shahzad M K, Jiang L. The effect of crown dimensions on stem profile for Dahurian larch, Korean spruce, and Manchurian fir in Northeast China[J/OL]. Forests, 2021, 12(4): 398[2021−12−29]. https://doi.org/10.3390/f12040398.
|
[4] |
Gonzalez-Benecke C A, Gezan S A, Samuelson L J, et al. Estimating Pinus palustris tree diameter and stem volume from tree height, crown area and stand-level parameters[J]. Journal of Forestry Research, 2014, 25(1): 43−52. doi: 10.1007/s11676-014-0427-4
|
[5] |
Goodman R C, Phillips O L, Baker T R. The importance of crown dimensions to improve tropical tree biomass estimates[J]. Ecological Applications, 2014, 24(4): 680−698. doi: 10.1890/13-0070.1
|
[6] |
Gray A N, McIntosh A C S, Garman S L, et al. Predicting canopy cover of diverse forest types from individual tree measurements[J/OL]. Forest Ecology and Management, 2021, 501: 119682[2021−12−24]. https://doi.org/10.1016/j.foreco.2021.119682.
|
[7] |
Shen H, Cai J, Li M, et al. On Chinese forest canopy biodiversity monitoring[J]. Biodiversity Science, 2017, 25(3): 229−236. doi: 10.17520/biods.2016294
|
[8] |
Lowman M D, Moffett M. The ecology of tropical rain forest canopies[J]. Trends in Ecology & Evolution, 1993, 8(3): 104−107.
|
[9] |
Fu L, Zhang H, Sharma R P, et al. A generalized nonlinear mixed-effects height to crown base model for Mongolian oak in northeast China[J]. Forest Ecology and Management, 2017, 384: 34−43. doi: 10.1016/j.foreco.2016.09.012
|
[10] |
Raptis D, Kazana V, Kazaklis A, et al. A crown width-diameter model for natural even-aged black pine forest management[J/OL]. Forests, 2018, 9(10): 610[2021−12−19]. https://doi.org/10.3390/f9100610.
|
[11] |
Sharma R P, Vacek Z, Vacek S. Individual tree crown width models for Norway spruce and European beech in Czech Republic[J]. Forest Ecology and Management, 2016, 366: 208−220. doi: 10.1016/j.foreco.2016.01.040
|
[12] |
周泽宇, 符利勇, 张晓红, 等. 金沟岭林场天然云冷杉林冠幅模型和估计方法比较[J]. 北京林业大学学报, 2021, 43(8): 29−40.
Zhou Z Y, Fu L Y, Zhang X H, et al. Comparison of crown width models and estimation methods of natural spruce fir forest in Jingouling Forest Farm of northeastern China[J]. Journal of Beijing Forestry University, 2021, 43(8): 29−40.
|
[13] |
王君杰, 姜立春. 基于线性分位数组合的兴安落叶松冠幅预测[J]. 南京林业大学学报(自然科学版), 2021, 45(5): 1−13.
Wang J J, Jiang L C. Predicting crown width for Larix gmelinii based on linear quantiles groups[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2021, 45(5): 1−13.
|
[14] |
辛士冬, 姜立春. 利用分位数回归模拟人工樟子松树干干形[J]. 北京林业大学学报, 2020, 42(2): 1−8.
Xin S D, Jiang L C. Modeling stem taper profile for Pinus sylvestris plantations using nonlinear quantile regression[J]. Journal of Beijing Forestry University, 2020, 42(2): 1−8.
|
[15] |
Bohora S B, Cao Q V. Prediction of tree diameter growth using quantile regression and mixed-effects models[J]. Forest Ecology and Management, 2014, 319: 62−66. doi: 10.1016/j.foreco.2014.02.006
|
[16] |
Cao Q V, Wang J. Evaluation of methods for calibrating a tree taper equation[J]. Forest Science, 2015, 61(2): 213−219. doi: 10.5849/forsci.14-008
|
[17] |
Özçelik R, Cao Q V, Trincado G, et al. Predicting tree height from tree diameter and dominant height using mixed-effects and quantile regression models for two species in Turkey[J]. Forest Ecology and Management, 2018, 419−420: 240−248. doi: 10.1016/j.foreco.2018.03.051
|
[18] |
Fu L, Sun H, Sharma R P, et al. Nonlinear mixed-effects crown width models for individual trees of Chinese fir (Cunninghamia lanceolata) in south-central China[J]. Forest Ecology and Management, 2013, 302: 210−220. doi: 10.1016/j.foreco.2013.03.036
|
[19] |
Sharma R P, Bílek L, Vacek Z, et al. Modelling crown width-diameter relationship for Scots pine in the central Europe[J]. Trees, 2017, 31(6): 1875−1889. doi: 10.1007/s00468-017-1593-8
|
[20] |
Fu L, Sharma R P, Hao K, et al. A generalized interregional nonlinear mixed-effects crown width model for Prince Rupprecht larch in northern China[J]. Forest Ecology and Management, 2017, 389: 364−373. doi: 10.1016/j.foreco.2016.12.034
|
[21] |
雷相东, 张则路, 陈晓光. 长白落叶松等几个树种冠幅预测模型的研究[J]. 北京林业大学学报, 2006, 28(6): 75−79. doi: 10.3321/j.issn:1000-1522.2006.06.013
Lei X D, Zhang Z L, Chen X G. Crown width prediction models for several tree species including Larix olgensis in northeastern China[J]. Journal of Beijing Forestry University, 2006, 28(6): 75−79. doi: 10.3321/j.issn:1000-1522.2006.06.013
|
[22] |
Grégoire T G, Schabenberger O, Barrett J P. Linear modelling of irregularly spaced, unbalanced, longitudinal data from permanent-plot measurements[J]. Canadian Journal of Forest Research, 1995, 25(1): 137−156. doi: 10.1139/x95-017
|
[23] |
Pinheiro J C, Bates D M. Mixed effects models in S and S-PLUS[M]. New York: Springer, 2000.
|
[24] |
Davidian M, Giltinan D M. Nonlinear models for repeated measurement data[M]. New York: Chapman & Hall, 1995.
|
[25] |
Meng S X, Huang S. Improved calibration of nonlinear mixed-effects models demonstrated on a height growth function[J]. Forest Science, 2009, 55(3): 238−248.
|
[26] |
Zhang L, Bi H, Gove J H, et al. A comparison of alternative methods for estimating the self-thinning boundary line[J]. Canadian Journal of Forest Research, 2005, 35(6): 1507−1514. doi: 10.1139/x05-070
|
[27] |
Crecente-Campo F, Tomé M, Soares P, et al. A generalized nonlinear mixed-effects height–diameter model for Eucalyptus globulus L. in northwestern Spain[J]. Forest Ecology and Management, 2010, 259(5): 943−952. doi: 10.1016/j.foreco.2009.11.036
|
[28] |
Temesgen H, Monleon V J, Hann D W. Analysis and comparison of nonlinear tree height prediction strategies for Douglas-fir forests[J]. Canadian Journal of Forest Research, 2008, 38(3): 553−565. doi: 10.1139/X07-104
|
[29] |
Bronisz K, Mehtätalo L. Mixed-effects generalized height-diameter model for young silver birch stands on post-agricultural lands[J/OL]. Forest Ecology and Management, 2020, 460: 117901[2021−12−18]. https://doi.org/10.1016/j.foreco.2020.117901.
|
[30] |
Yang Y, Huang S. Suitability of five cross validation methods for performance evaluation of nonlinear mixed-effects forest models: a case study[J]. Forestry, 2014, 87(5): 654−662. doi: 10.1093/forestry/cpu025
|
[31] |
Thorpe H C, Astrup R, Trowbridge A, et al. Competition and tree crowns: a neighborhood analysis of three boreal tree species[J]. Forest Ecology and Management, 2010, 259(8): 1586−1596. doi: 10.1016/j.foreco.2010.01.035
|
[32] |
邓成, 吕勇, 雷渊才, 等. 以相对直径为竞争指标的单木直径生长模型研究[J]. 林业资源管理, 2011(1): 40−43. doi: 10.3969/j.issn.1002-6622.2011.01.009
Deng C, Lü Y, Lei Y C, et al. Study on individual tree diameter growth models with the relative diameter as competition indicator[J]. Forest Resources Wanagement, 2011(1): 40−43. doi: 10.3969/j.issn.1002-6622.2011.01.009
|
[33] |
Zhang X, Wang H, Chhin S, et al. Effects of competition, age and climate on tree slenderness of Chinese fir plantations in southern China[J/OL]. Forest Ecology and Management, 2020, 458: 117815[2021−12−16]. https://doi.org/10.1016/j.foreco.2019.117815.
|
[34] |
Zang H, Lei X D, Zeng W S. Height–diameter equations for larch plantations in northern and northeastern China: a comparison of the mixed-effects, quantile regression and generalized additive models[J]. Forestry, 2016, 89(4): 434−445. doi: 10.1093/forestry/cpw022
|
1. |
孙永平,于新栋,柴希娟,徐开蒙,解林坤. 低熔点合金高低温循环浸渍杨木的性能及机理研究. 林产工业. 2024(04): 1-6 .
![]() | |
2. |
韦溶军,王志闯,王雪纯,王婷欢,王振宇,何正斌,伊松林. 锡铋合金/肉豆蔻酸制备具有金属外壳的储能木材. 北京林业大学学报. 2024(08): 25-33 .
![]() | |
3. |
陶鑫,田东雪,梁善庆,李善明,彭立民,傅峰. 微波膨化木基金属复合材料的涂饰性能及耐光老化研究. 北京林业大学学报. 2023(10): 140-148 .
![]() |