• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Lü Jiaxin, Zhang Wuming, Zhou Zhongyan, Shao Jie. LiDAR based individual tree localization for sample plot inventory[J]. Journal of Beijing Forestry University, 2023, 45(1): 99-108. DOI: 10.12171/j.1000-1522.20220106
Citation: Lü Jiaxin, Zhang Wuming, Zhou Zhongyan, Shao Jie. LiDAR based individual tree localization for sample plot inventory[J]. Journal of Beijing Forestry University, 2023, 45(1): 99-108. DOI: 10.12171/j.1000-1522.20220106

LiDAR based individual tree localization for sample plot inventory

More Information
  • Received Date: March 21, 2022
  • Revised Date: October 03, 2022
  • Available Online: October 10, 2022
  • Published Date: January 24, 2023
  •   Objective  The LiDAR with high scanning frequency was used to assist the ground verification process in individual tree localization, quickly and accurately corresponding to the sample plot observation results and ground verification data, aiming to provide technical support for precision forestry survey.
      Method  Taking the planted forest in Sun Yat-sen University as the research object, with the help of laser pairs LiDAR with high scanning frequency (defined as monitor LiDAR) to assist tree localization during the ground verification of individual tree inventory, we firstly solved the problem of registration with backpack and monitoring point clouds, and obtained the base map of individual tree localization in sample plots; then, based on the method of background difference, the monitor LiDAR was used to track the dynamic target in real time and obtain its positions. Combined with the individual tree localization base map, the position of the individual tree measured by the ground investigator was judged indirectly, so as to realize the correspondence between the sample plot observation and the validation data.
      Result  Using our method to register the backpack and monitor point clouds, RMSE of coarse registration was all less than 0.2 m, and which was less than the minimum spacing of standing trees and met the corresponding requirements; using the dynamic target tracking and corresponding method in this paper, taking the positions of investigators as seed points, the serial number of tree which was closest to the seed points in the base map was obtained through the nearest search, so as to realize the data correspondence, its accuracy was higher than 95%, the average processing time of per frame was less than 0.1 s, which met the requirements of real-time.
      Conclusion  Our method proposed in this paper uses LiDAR to assist tree localization in the process of ground verification, which can improve the accuracy and efficiency of correspondence to sample plot observation results and verification data, and helps to promote the development of precision forestry inventory technology.
  • [1]
    吴小丹, 闻建光, 肖青, 等. 关键陆表参数遥感产品真实性检验方法研究进展[J]. 遥感学报, 2015, 19(1): 75−92. doi: 10.11834/jrs.20154009

    Wu X D, Wen J G, Xiao Q, et al. Advances in validation methods for remote sensing products of land surface parameters[J]. Journal of Remote Sensing, 2015, 19(1): 75−92. doi: 10.11834/jrs.20154009
    [2]
    方红亮. 我国叶面积指数卫星遥感产品生产及验证[J]. 遥感技术与应用, 2020, 35(5): 990−1003.

    Fang H L. Development and validation of satellite leaf area index (LAI) production in China[J]. Remote Sensing Technology and Application, 2020, 35(5): 990−1003.
    [3]
    Hédl R, Svátek M, Dančák M, et al. A new technique for inventory of permanent plots in tropical forests: a case study from lowland dipterocarp forest in Kuala Belalong, Brunei Darussalam[J]. Blumea-Biodiversity, Evolution and Biogeography of Plants, 2009, 54: 124−130.
    [4]
    梁晓军, 庞勇, 陈博伟. 基于地基激光雷达胸径提取的单木位置精确测量[J]. 林业科学研究, 2020, 33(4): 67−74. doi: 10.13275/j.cnki.lykxyj.2020.04.009

    Liang X J, Pang Y, Chen B W. Accurate measurement of individual tree position based on DBH extraction of terrestrial laser scanning[J]. Forest Research, 2020, 33(4): 67−74. doi: 10.13275/j.cnki.lykxyj.2020.04.009
    [5]
    张民侠, 赵浩彦, 张洁. 涉案林地面积测算方法比较研究[J]. 西南林业大学学报, 2016, 36(4): 138−144.

    Zhang M X, Zhao H Y, Zhang J. Comparative study on methods of estimating forest land area[J]. Journal of Southwest Forestry University, 2016, 36(4): 138−144.
    [6]
    熊妮娜, 王佳. 基于地基激光雷达的活立木材积提取算法[J]. 林业工程学报, 2020, 5(6): 143−148.

    Xiong N N, Wang J. Extraction algorithm for stand volume using ground-based laser scanner[J]. Journal of Forestry Engineering, 2020, 5(6): 143−148.
    [7]
    林观土, 王长委, 韩锡君, 等. 全站仪在森林生态系统大样地定位中的应用[J]. 测绘科学, 2011, 36(4): 242−243. doi: 10.16251/j.cnki.1009-2307.2011.04.091

    Lin G T, Wang C W, Han X J, et al. Application of total station in the positioning of large-scale plot sampling in forest ecosystem[J]. Science of Surveying and Mapping, 2011, 36(4): 242−243. doi: 10.16251/j.cnki.1009-2307.2011.04.091
    [8]
    Liu J, Hyyppä J, Yu X, et al. A novel GNSS technique for predicting boreal forest attributes at low cost[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(9): 4855−4867. doi: 10.1109/TGRS.2017.2650944
    [9]
    Bakula M, Przestrzelski P, Kazmierczak R. Reliable technology of centimeter GPS/GLONASS surveying in forest environments[J]. IEEE Transactions on Geoscience & Remote Sensing, 2015, 53(2): 1029−1038.
    [10]
    冯仲科, 游先祥. 普通手持式GPS接收机用于林区近实时差分定位的研究[J]. 林业科学, 2000, 36(6): 116−118. doi: 10.3321/j.issn:1001-7488.2000.06.020

    Feng Z K, You X X. Study on forestry near-real time differential positioning portable GPS receiver[J]. Scientia Silvae Sinicae, 2000, 36(6): 116−118. doi: 10.3321/j.issn:1001-7488.2000.06.020
    [11]
    李永宁, 刘利民, 崔立艳, 等. 林冠开阔度对GNSS RTK在森林中定位可用性及初始化时间的影响[J]. 林业科学, 2014, 50(2): 78−84.

    Li Y N, Liu L M, Cui L Y, et al. Effects of canopy openness on positioning availability and initialization time of GNSS RTK in forests[J]. Scientia Silvae Sinicae, 2014, 50(2): 78−84.
    [12]
    武红敢, 罗鹏, 杨云风, 等. 森林环境中民用与专业级设备多模态定位精度比较研究[J]. 林业科学研究, 2020, 33(5): 170−176. doi: 10.13275/j.cnki.lykxyj.2020.05.021

    Wu H G, Luo P, Yang Y F, et al. Comparison on multimodal positioning accuracy of commercial and professional receiver in forest environment[J]. Forest Research, 2020, 33(5): 170−176. doi: 10.13275/j.cnki.lykxyj.2020.05.021
    [13]
    Liu J, Feng Z, Mannan A, et al. Positioning of coordinates and precision analysis of sample trees using the intelligent forest survey calculator[J]. Computers and Electronics in Agriculture, 2019, 159: 157−164. doi: 10.1016/j.compag.2019.03.003
    [14]
    Němec P. Comparison of modern forest inventory method with the common method for management of tropical rainforest in the Peruvian Amazon[J]. Journal of Tropical Forest Science, 2015, 27(1): 80−91.
    [15]
    Saarinen N, Kankare V, Yrttimaa T, et al. Assessing the effects of stand dynamics on stem growth allocation of individual scots pine trees[J]. Forest Ecology and Management, 2020, 474: 118344. doi: 10.1016/j.foreco.2020.118344
    [16]
    Yurtsever E, Lambert J, Carballo A, et al. A survey of autonomous driving: common practices and emerging technologies[J]. IEEE Access, 2020(8): 58443−58469.
    [17]
    Agarwal S, Vora A, Pandey G, et al. Ford multi-av seasonal dataset[J]. The International Journal of Robotics Research, 2020, 39(12): 1367−1376. doi: 10.1177/0278364920961451
    [18]
    Bula J, Derron M, Mariéthoz G. Dense point cloud acquisition with a low-cost Velodyne VLP-16[J]. Geoscientific Instrumentation, Methods and Data Systems, 2020, 9(2): 385−396. doi: 10.5194/gi-9-385-2020
    [19]
    Shao J, Zhang W, Mellado N, et al. Slam-aided forest plot mapping combining terrestrial and mobile laser scanning[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 163: 214−230. doi: 10.1016/j.isprsjprs.2020.03.008
    [20]
    Shao J, Zhang W, Luo L, et al. Slam-based backpack laser scanning for forest plot mapping[J]. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2020(2): 267−271.
    [21]
    Zhang W, Qi J, Peng W, et al. An easy-to-use airborne LiDAR data filtering method based on cloth simulation[J]. Remote Sensing, 2016(8): 501.
    [22]
    He L, Chao Y, Suzuki K, et al. Fast connected-component labeling[J]. Pattern Recognition, 2009, 42(9): 1977−1987. doi: 10.1016/j.patcog.2008.10.013
    [23]
    Himmelsbach M, Hundelshausen F V, Wuensche H J. Fast segmentation of 3D point clouds for ground vehicles[C]//Intelligent Vehicles Symposium. California: IEEE, 2010: 560−565.
    [24]
    Bogoslavskyi I, Stachniss C. Fast range image-based segmentation of sparse 3D laser scans for online operation[C]//RSJ International Conference on Intelligent Robots and Systems (IROS). Daejeon: IEEE, 2016: 163−169.
    [25]
    Aiger D, Mitra N J, Cohen-Or D. 4-points congruent sets for robust pairwise surface registration[J]. ACM Transactions on Graphics, 2008, 27(3): 1−10.
  • Related Articles

    [1]Hu Yingxin, Mei Anqi, Xu Qing, Hou Zhengyang. Using spatial distribution patterns and sample plot design to improve the accuracy of forest resource sampling survey[J]. Journal of Beijing Forestry University, 2024, 46(2): 155-165. DOI: 10.12171/j.1000-1522.20230061
    [2]Lü Jiaxin, Zhang Wuming, Zhou Zhongyan, Shao Jie. LiDAR based individual tree localization for sample plot inventory[J]. Journal of Beijing Forestry University, 2023, 45(1): 99-108. DOI: 10.12171/j.1000-1522.20220106
    [3]Mi Xiangcheng, Yu Jianping, Wang Ningning, Jia Wen, Ren Haibao, Chen Lei, Pang Yong, Ma Keping. Utilizing LiDAR technology to estimate forest aboveground biomass in Qianjiangyuan National Park, Jiangxi Province of eastern China[J]. Journal of Beijing Forestry University, 2022, 44(10): 77-84. DOI: 10.12171/j.1000-1522.20220383
    [4]Qi Zhiyong, Li Shiming, Yue Wei, Liu Qingwang, Li Zengyuan. Forest gap identification in natural forest based on UAV LiDAR[J]. Journal of Beijing Forestry University, 2022, 44(6): 44-53. DOI: 10.12171/j.1000-1522.20210524
    [5]Chen Zhongchao, Liu Qingwang, Li Chungan, Li Mei, Zhou Xiangbei, Yu Zhu, Su Kai. Comparison in linear and nonlinear estimation models of carbon storage of plantations based on UAV LiDAR[J]. Journal of Beijing Forestry University, 2021, 43(12): 9-16. DOI: 10.12171/j.1000-1522.20200417
    [6]CAO Lin, DAI Jin-song, XU Jian-xin, XU Zi-qian, SHE Guang-hui. Optimized extraction of forest parameters in subtropical forests based on airborne small footprint LiDAR technology[J]. Journal of Beijing Forestry University, 2014, 36(5): 13-21. DOI: 10.13332/j.cnki.jbfu.2014.05.009
    [7]HUANG Hua-guo.. Progress analysis of LiDAR research on forestry science studies[J]. Journal of Beijing Forestry University, 2013, 35(4): 134-143.
    [8]ZHOU Yu-fei, LIU Peng-ju, TANG Xiao-ming. Space accuracy evaluation of forest fire spreading model[J]. Journal of Beijing Forestry University, 2010, 32(2): 21-26.
    [9]LIU Qing-wang, LI Zeng-yuan, CHEN Er-xue, PANG Yong, WU Hong-gan. Extracting height and crown of individual tree using airborne LIDAR data.[J]. Journal of Beijing Forestry University, 2008, 30(6): 83-89.
    [10]YU Yan, JIANG Ze-hui, WANG Ge, QIN Dao-chun, XU Zhong-yun. Effects of sample surface on the accuracy of near infrared predictive model of air dried density of bamboo[J]. Journal of Beijing Forestry University, 2007, 29(4): 80-83. DOI: 10.13332/j.1000-1522.2007.04.019
  • Cited by

    Periodical cited type(3)

    1. 张紫阳,刘艳,魏瑞研,林元震. 木本植物miRNAs参与环境胁迫应答的研究进展. 分子植物育种. 2021(16): 5372-5379 .
    2. 李金航,朱济友,Catherine Mhae B.Jandug,赵凯,徐程扬. 干旱胁迫环境中黄栌幼苗叶功能性状变异与产地地理-气候因子的关系. 北京林业大学学报. 2020(02): 68-78 . 本站查看
    3. 李双,苏艳艳,王厚领,李惠广,刘超,夏新莉,尹伟伦. 胡杨miR1444b在拟南芥中正调控植物抗旱性. 北京林业大学学报. 2018(04): 1-9 . 本站查看

    Other cited types(2)

Catalog

    Article views (1013) PDF downloads (123) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return