Citation: | Lü Jiaxin, Zhang Wuming, Zhou Zhongyan, Shao Jie. LiDAR based individual tree localization for sample plot inventory[J]. Journal of Beijing Forestry University, 2023, 45(1): 99-108. DOI: 10.12171/j.1000-1522.20220106 |
[1] |
吴小丹, 闻建光, 肖青, 等. 关键陆表参数遥感产品真实性检验方法研究进展[J]. 遥感学报, 2015, 19(1): 75−92. doi: 10.11834/jrs.20154009
Wu X D, Wen J G, Xiao Q, et al. Advances in validation methods for remote sensing products of land surface parameters[J]. Journal of Remote Sensing, 2015, 19(1): 75−92. doi: 10.11834/jrs.20154009
|
[2] |
方红亮. 我国叶面积指数卫星遥感产品生产及验证[J]. 遥感技术与应用, 2020, 35(5): 990−1003.
Fang H L. Development and validation of satellite leaf area index (LAI) production in China[J]. Remote Sensing Technology and Application, 2020, 35(5): 990−1003.
|
[3] |
Hédl R, Svátek M, Dančák M, et al. A new technique for inventory of permanent plots in tropical forests: a case study from lowland dipterocarp forest in Kuala Belalong, Brunei Darussalam[J]. Blumea-Biodiversity, Evolution and Biogeography of Plants, 2009, 54: 124−130.
|
[4] |
梁晓军, 庞勇, 陈博伟. 基于地基激光雷达胸径提取的单木位置精确测量[J]. 林业科学研究, 2020, 33(4): 67−74. doi: 10.13275/j.cnki.lykxyj.2020.04.009
Liang X J, Pang Y, Chen B W. Accurate measurement of individual tree position based on DBH extraction of terrestrial laser scanning[J]. Forest Research, 2020, 33(4): 67−74. doi: 10.13275/j.cnki.lykxyj.2020.04.009
|
[5] |
张民侠, 赵浩彦, 张洁. 涉案林地面积测算方法比较研究[J]. 西南林业大学学报, 2016, 36(4): 138−144.
Zhang M X, Zhao H Y, Zhang J. Comparative study on methods of estimating forest land area[J]. Journal of Southwest Forestry University, 2016, 36(4): 138−144.
|
[6] |
熊妮娜, 王佳. 基于地基激光雷达的活立木材积提取算法[J]. 林业工程学报, 2020, 5(6): 143−148.
Xiong N N, Wang J. Extraction algorithm for stand volume using ground-based laser scanner[J]. Journal of Forestry Engineering, 2020, 5(6): 143−148.
|
[7] |
林观土, 王长委, 韩锡君, 等. 全站仪在森林生态系统大样地定位中的应用[J]. 测绘科学, 2011, 36(4): 242−243. doi: 10.16251/j.cnki.1009-2307.2011.04.091
Lin G T, Wang C W, Han X J, et al. Application of total station in the positioning of large-scale plot sampling in forest ecosystem[J]. Science of Surveying and Mapping, 2011, 36(4): 242−243. doi: 10.16251/j.cnki.1009-2307.2011.04.091
|
[8] |
Liu J, Hyyppä J, Yu X, et al. A novel GNSS technique for predicting boreal forest attributes at low cost[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(9): 4855−4867. doi: 10.1109/TGRS.2017.2650944
|
[9] |
Bakula M, Przestrzelski P, Kazmierczak R. Reliable technology of centimeter GPS/GLONASS surveying in forest environments[J]. IEEE Transactions on Geoscience & Remote Sensing, 2015, 53(2): 1029−1038.
|
[10] |
冯仲科, 游先祥. 普通手持式GPS接收机用于林区近实时差分定位的研究[J]. 林业科学, 2000, 36(6): 116−118. doi: 10.3321/j.issn:1001-7488.2000.06.020
Feng Z K, You X X. Study on forestry near-real time differential positioning portable GPS receiver[J]. Scientia Silvae Sinicae, 2000, 36(6): 116−118. doi: 10.3321/j.issn:1001-7488.2000.06.020
|
[11] |
李永宁, 刘利民, 崔立艳, 等. 林冠开阔度对GNSS RTK在森林中定位可用性及初始化时间的影响[J]. 林业科学, 2014, 50(2): 78−84.
Li Y N, Liu L M, Cui L Y, et al. Effects of canopy openness on positioning availability and initialization time of GNSS RTK in forests[J]. Scientia Silvae Sinicae, 2014, 50(2): 78−84.
|
[12] |
武红敢, 罗鹏, 杨云风, 等. 森林环境中民用与专业级设备多模态定位精度比较研究[J]. 林业科学研究, 2020, 33(5): 170−176. doi: 10.13275/j.cnki.lykxyj.2020.05.021
Wu H G, Luo P, Yang Y F, et al. Comparison on multimodal positioning accuracy of commercial and professional receiver in forest environment[J]. Forest Research, 2020, 33(5): 170−176. doi: 10.13275/j.cnki.lykxyj.2020.05.021
|
[13] |
Liu J, Feng Z, Mannan A, et al. Positioning of coordinates and precision analysis of sample trees using the intelligent forest survey calculator[J]. Computers and Electronics in Agriculture, 2019, 159: 157−164. doi: 10.1016/j.compag.2019.03.003
|
[14] |
Němec P. Comparison of modern forest inventory method with the common method for management of tropical rainforest in the Peruvian Amazon[J]. Journal of Tropical Forest Science, 2015, 27(1): 80−91.
|
[15] |
Saarinen N, Kankare V, Yrttimaa T, et al. Assessing the effects of stand dynamics on stem growth allocation of individual scots pine trees[J]. Forest Ecology and Management, 2020, 474: 118344. doi: 10.1016/j.foreco.2020.118344
|
[16] |
Yurtsever E, Lambert J, Carballo A, et al. A survey of autonomous driving: common practices and emerging technologies[J]. IEEE Access, 2020(8): 58443−58469.
|
[17] |
Agarwal S, Vora A, Pandey G, et al. Ford multi-av seasonal dataset[J]. The International Journal of Robotics Research, 2020, 39(12): 1367−1376. doi: 10.1177/0278364920961451
|
[18] |
Bula J, Derron M, Mariéthoz G. Dense point cloud acquisition with a low-cost Velodyne VLP-16[J]. Geoscientific Instrumentation, Methods and Data Systems, 2020, 9(2): 385−396. doi: 10.5194/gi-9-385-2020
|
[19] |
Shao J, Zhang W, Mellado N, et al. Slam-aided forest plot mapping combining terrestrial and mobile laser scanning[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 163: 214−230. doi: 10.1016/j.isprsjprs.2020.03.008
|
[20] |
Shao J, Zhang W, Luo L, et al. Slam-based backpack laser scanning for forest plot mapping[J]. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2020(2): 267−271.
|
[21] |
Zhang W, Qi J, Peng W, et al. An easy-to-use airborne LiDAR data filtering method based on cloth simulation[J]. Remote Sensing, 2016(8): 501.
|
[22] |
He L, Chao Y, Suzuki K, et al. Fast connected-component labeling[J]. Pattern Recognition, 2009, 42(9): 1977−1987. doi: 10.1016/j.patcog.2008.10.013
|
[23] |
Himmelsbach M, Hundelshausen F V, Wuensche H J. Fast segmentation of 3D point clouds for ground vehicles[C]//Intelligent Vehicles Symposium. California: IEEE, 2010: 560−565.
|
[24] |
Bogoslavskyi I, Stachniss C. Fast range image-based segmentation of sparse 3D laser scans for online operation[C]//RSJ International Conference on Intelligent Robots and Systems (IROS). Daejeon: IEEE, 2016: 163−169.
|
[25] |
Aiger D, Mitra N J, Cohen-Or D. 4-points congruent sets for robust pairwise surface registration[J]. ACM Transactions on Graphics, 2008, 27(3): 1−10.
|
[1] | Hu Yingxin, Mei Anqi, Xu Qing, Hou Zhengyang. Using spatial distribution patterns and sample plot design to improve the accuracy of forest resource sampling survey[J]. Journal of Beijing Forestry University, 2024, 46(2): 155-165. DOI: 10.12171/j.1000-1522.20230061 |
[2] | Lü Jiaxin, Zhang Wuming, Zhou Zhongyan, Shao Jie. LiDAR based individual tree localization for sample plot inventory[J]. Journal of Beijing Forestry University, 2023, 45(1): 99-108. DOI: 10.12171/j.1000-1522.20220106 |
[3] | Mi Xiangcheng, Yu Jianping, Wang Ningning, Jia Wen, Ren Haibao, Chen Lei, Pang Yong, Ma Keping. Utilizing LiDAR technology to estimate forest aboveground biomass in Qianjiangyuan National Park, Jiangxi Province of eastern China[J]. Journal of Beijing Forestry University, 2022, 44(10): 77-84. DOI: 10.12171/j.1000-1522.20220383 |
[4] | Qi Zhiyong, Li Shiming, Yue Wei, Liu Qingwang, Li Zengyuan. Forest gap identification in natural forest based on UAV LiDAR[J]. Journal of Beijing Forestry University, 2022, 44(6): 44-53. DOI: 10.12171/j.1000-1522.20210524 |
[5] | Chen Zhongchao, Liu Qingwang, Li Chungan, Li Mei, Zhou Xiangbei, Yu Zhu, Su Kai. Comparison in linear and nonlinear estimation models of carbon storage of plantations based on UAV LiDAR[J]. Journal of Beijing Forestry University, 2021, 43(12): 9-16. DOI: 10.12171/j.1000-1522.20200417 |
[6] | CAO Lin, DAI Jin-song, XU Jian-xin, XU Zi-qian, SHE Guang-hui. Optimized extraction of forest parameters in subtropical forests based on airborne small footprint LiDAR technology[J]. Journal of Beijing Forestry University, 2014, 36(5): 13-21. DOI: 10.13332/j.cnki.jbfu.2014.05.009 |
[7] | HUANG Hua-guo.. Progress analysis of LiDAR research on forestry science studies[J]. Journal of Beijing Forestry University, 2013, 35(4): 134-143. |
[8] | ZHOU Yu-fei, LIU Peng-ju, TANG Xiao-ming. Space accuracy evaluation of forest fire spreading model[J]. Journal of Beijing Forestry University, 2010, 32(2): 21-26. |
[9] | LIU Qing-wang, LI Zeng-yuan, CHEN Er-xue, PANG Yong, WU Hong-gan. Extracting height and crown of individual tree using airborne LIDAR data.[J]. Journal of Beijing Forestry University, 2008, 30(6): 83-89. |
[10] | YU Yan, JIANG Ze-hui, WANG Ge, QIN Dao-chun, XU Zhong-yun. Effects of sample surface on the accuracy of near infrared predictive model of air dried density of bamboo[J]. Journal of Beijing Forestry University, 2007, 29(4): 80-83. DOI: 10.13332/j.1000-1522.2007.04.019 |
1. |
张紫阳,刘艳,魏瑞研,林元震. 木本植物miRNAs参与环境胁迫应答的研究进展. 分子植物育种. 2021(16): 5372-5379 .
![]() | |
2. |
李金航,朱济友,Catherine Mhae B.Jandug,赵凯,徐程扬. 干旱胁迫环境中黄栌幼苗叶功能性状变异与产地地理-气候因子的关系. 北京林业大学学报. 2020(02): 68-78 .
![]() | |
3. |
李双,苏艳艳,王厚领,李惠广,刘超,夏新莉,尹伟伦. 胡杨miR1444b在拟南芥中正调控植物抗旱性. 北京林业大学学报. 2018(04): 1-9 .
![]() |