• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Hu Yingxin, Mei Anqi, Xu Qing, Hou Zhengyang. Using spatial distribution patterns and sample plot design to improve the accuracy of forest resource sampling survey[J]. Journal of Beijing Forestry University, 2024, 46(2): 155-165. DOI: 10.12171/j.1000-1522.20230061
Citation: Hu Yingxin, Mei Anqi, Xu Qing, Hou Zhengyang. Using spatial distribution patterns and sample plot design to improve the accuracy of forest resource sampling survey[J]. Journal of Beijing Forestry University, 2024, 46(2): 155-165. DOI: 10.12171/j.1000-1522.20230061

Using spatial distribution patterns and sample plot design to improve the accuracy of forest resource sampling survey

More Information
  • Received Date: March 16, 2023
  • Revised Date: January 04, 2024
  • Available Online: January 10, 2024
  • Objective 

    In forest resource survey, sampling design under the spatial distribution pattern of forest attributes was studied to break through regional limitations and provide generalizable empirical rules for sampling survey.

    Method 

    Artificial forest populations were constructed with the data field survey at the Beijing Jiufeng National Forest Park. Tree mortality rate was used as a proxy for expressing forest spatial autocorrelation. Systematic sampling design was adopted, and Monte Carlo simulations were implemented to evaluate the effects of spatial autocorrelation, sample plot size and systematic sampling on sampling precision.

    Result 

    (1) The coefficients of variation for the four different spatial distribution patterns increased in the following order: 0% mortality, 20% mortality in random pattern, 10% mortality in aggregated pattern, and 20% mortality in aggregated pattern. When mortality rate was 20% and sampling intensity was 2.73%, the coefficient of variation for random pattern was 1.3% lower than that for aggregated pattern. (2) The coefficients of variation for three different sample plot sizes increased in the following order: 20 m × 20 m, 30 m × 30 m, and 40 m × 40 m. The coefficient of variation of 40 m × 40 m was significantly higher than that of 20 m × 20 m and 30 m × 30 m. (3) With increasing sampling intensity, under the random pattern, the coefficient of variation for the artificial population designed with 8 × 8 main units was about 0.02% higher than that for 4 × 4, and about 0.15% higher than that for 16 × 16. Under the clustered pattern, the coefficient of variation for the artificial population designed with 8 × 8 main units was about 0.32% higher than that for 4 × 4, and about 0.54% lower than that for 16 × 16.

    Conclusion 

    (1) Different degrees of spatial autocorrelation reduce sampling accuracy, among which aggregated pattern has a more significant impact than random pattern. (2) Smaller sample plots help improve sampling accuracy and convergence rate, but reasonable sample plot design can effectively enhance sampling efficiency. (3) The number of main units in systematic sampling has little impact on sampling accuracy. In practice, systematic sampling designs with a sample size of 1 should be avoided because sampling errors would be hard to quantify.

  • [1]
    白降丽, 彭道黎, 庾晓红. 我国森林资源调查技术发展研究[J]. 山西林业科技, 2005(1): 4−7.

    Bai J L, Peng D L, Yu X H. Study on the development of forest resource inventory technology in China[J]. Shanxi Forestry Science and Technology, 2005(1): 4−7.
    [2]
    张会儒, 雷相东, 李凤日. 中国森林经理学研究进展与展望[J]. 林业科学, 2020, 26(9): 130−142.

    Zhang H R, Lei X D, Li F R. Research progress and prospects of forest management science in China[J]. Scientia Silvae Sinicae, 2020, 26(9): 130−142.
    [3]
    陈盼盼. 地面摄影测量在森林资源调查中的关键技术研究[D]. 北京: 北京林业大学, 2020.

    Chen P P. Study on key technologies of ground photogrammetry in forest inventory[D]. Beijing: Beijing Forestry University, 2020.
    [4]
    冯仲科. “互联网+”推进森林资源调查走进精准林业新时代[J]. 国土绿化, 2019(2): 16−19.

    Feng Z K. “Internet+” promotes the forest resource survey to enter the era of precision forestry[J]. Land Greening, 2019(2): 16−19.
    [5]
    罗仙仙, 亢新刚, 杨华. 我国森林资源综合监测抽样理论研究综述[J]. 西北林学院学报, 2008, 23(6): 187−193.

    Luo X X, Kang X G, Yang H. A review on the sampling theory of forest resources comprehensive monitoring[J]. Journal of Northwest Forestry University, 2008, 23(6): 187−193.
    [6]
    曾伟生, 黄国胜, 党永峰, 等. 全国森林资源宏观监测的抽样设计与估计方法探索[J]. 林业资源管理, 2016(3): 1−6.

    Zeng W S, Huang G S, Dang Y F, et al. Discussion on sampling design and estimation methods of national forest resources macro-monitoring[J]. Forest Resources Management, 2016(3): 1−6.
    [7]
    高宏. 森林资源抽样调查技术方法[J]. 林业勘查设计, 2018, 188(4): 87−88. doi: 10.3969/j.issn.1673-4505.2018.04.040

    Gao H. Technical methods of sampling survey of forest resources[J]. Forest Investigation Design, 2018, 188(4): 87−88. doi: 10.3969/j.issn.1673-4505.2018.04.040
    [8]
    李春干, 代华兵. 中国森林资源调查: 历史、现状与趋势[J]. 世界林业研究, 2021, 34(6): 72−80.

    Li C G, Dai H B. Forest management inventory in China: history, current status and trend[J]. World Forestry Research, 2021, 34(6): 72−80.
    [9]
    Tomppo E. Forest inventory: methodology and applications[M]. Dordrecht: Springer, 2006: 179−194.
    [10]
    李明阳, 姜文倩, 徐婷, 等. 基于总体表面属性特征的森林资源抽样调查方法比较[J]. 东北林业大学学报, 2011, 39(9): 49−51, 64. doi: 10.3969/j.issn.1000-5382.2011.09.016

    Li M Y, Jiang W Q, Xu T, et al. Comparison of sampling survey methods of forest resources for populations with different surface attributes[J]. Journal of Northeast Forestry University, 2011, 39(9): 49−51, 64. doi: 10.3969/j.issn.1000-5382.2011.09.016
    [11]
    Annika K M. Forest inventory: methodology and applications [M]. New York: Springer-Verlag, 2006.
    [12]
    Cochran W G. Sampling techniques[M]. 3rd ed. Hoboken: John Wiley & Sons, 1977: 227.
    [13]
    Mcroberts R E, Westfall J A. Propagating uncertainty through individual tree volume model predictions to large-area volume estimates[J]. Annals of Forest Science, 2016, 73(3): 625−633. doi: 10.1007/s13595-015-0473-x
    [14]
    Särndal C E T, Hoem L, Lindley J M, et al. Design-based and model-based inference in survey sampling[J]. Scandinavian Journal of Statistics, 1978(5): 27−52.
    [15]
    Schreuder H T, Gregoire T G, Wood G B. Sampling methods for multiresource forest inventory [M]. New York: John Wiley & Sons, 1993: 446.
    [16]
    金勇进, 郝一炜. 非概率样本的模型推断[J]. 数学的实践与认识, 2019, 49(5): 246−255.

    Jin Y J, Hao Y W. Model-based inference for non-probability sample[J]. Mathematics in Practice and Theory, 2019, 49(5): 246−255.
    [17]
    Thompson S K. Sampling[M]. 3rd ed. Hoboken: John Wiley & Sons, 2012.
    [18]
    Legendre P. Spatial autocorrelation: trouble or new paradigm[J]. Ecology, 1993, 74(6): 1659−1673. doi: 10.2307/1939924
    [19]
    Reed D, Burkhart H. Spatial autocorrelation of individual tree characteristics in loblolly pine stands[J]. Forest Science, 1985, 31(3): 575−587.
    [20]
    Penttinen A , Henttonen H M. Marked point processes in forest statistics[J]. Forest Science, 1992, 38(4): 806−824.
    [21]
    Tomppo E. Models and methods for analyzing spatial pattern of trees[J]. Communicationes Instituti Forestalis Fenniae, 1986(138): 65.
    [22]
    Chou Y H. Spatial patterns and spatial autocorrelation[J]. Lecture Notes in Computer Science, 1995(988): 365−376.
    [23]
    Zeng W S, Tomppo E, Healey S P, et al. The national forest inventory in China: history-results-international context[J]. Forest Ecosystems, 2015(2): 23.
    [24]
    宋新民, 李金良. 抽样调查技术[M]. 北京: 中国林业出版社, 2007.

    Song X M, Li J L. Sampling survey technology[M]. Beijing: China Forestry Publishing House, 2007.
    [25]
    Hou Z, Xu Q, Hartikainen S, et al. Impact of plot size and spatial pattern of forest attributes on sampling efficacy[J]. Forest Science, 2015, 61(5): 847−860. doi: 10.5849/forsci.14-197
    [26]
    庞丽峰, 雷渊才, 陆元昌, 等. 森林经营单位级系统群团抽样设计比较[J]. 西北农林科技大学学报(自然科学版), 2015, 43(6): 141−152.

    Pang L F, Lei Y C, Lu Y C, et al. Comparison of cluster systematic sapling at management unit level[J]. Journal of Northwest A & F University (Natural Science Edition), 2015, 43(6): 141−152.
    [27]
    嘎拉泰, 朱双双, 徐道春, 等. 鹫峰森林多层土壤温度变化规律的研究[J]. 林业工程学报, 2018, 3(3): 136−141.

    Ga L T, Zhu S S, Xu D C, et al. Investigation of temperature changing patterns of multi-layer soil in Jiufeng forest[J]. Journal of Forestry Engineering, 2018, 3(3): 136−141.
    [28]
    孟芮萱. 城郊型森林公园游憩功能评价及结构优化方法研究: 以鹫峰国家森林公园为例[D]. 北京: 北京林业大学, 2020.

    Meng R X. The study on recreation function evaluation and structure optimization methods in the suburban forest park: take Jiufeng National Forest Park as a case[D]. Beijing: Beijing Forestry University, 2020.
    [29]
    蒲莹, 曾伟生, 阳帆. 北京市树高胸径回归模型研建及一元立木材积表检验[J]. 林业资源管理, 2021(3): 62−66.

    Pu Y, Zeng W S, Yang F. Tree height-diameter regression models development and one-variable tree volume tables examination in Beijing[J]. Forest Resources Management, 2021(3): 62−66.
    [30]
    Berrill J P, O’hara K L. Influence of tree spatial pattern and sample plot type and size on inventory estimates for leaf area index, stocking, and tree size parameters[C]//Proceedings of coast redwood forests in a changing California: A symposium for scientists and managers. Albany, CA: Pacific Southwest Research Station, 2012: 485– 497.
  • Related Articles

    [1]Wen Wenjie, Zhang Jianjun, Li Yixuan, Huang Xiaoqing, He Pei. A simple method for estimating runoff sediment concentration[J]. Journal of Beijing Forestry University, 2019, 41(11): 155-162. DOI: 10.13332/j.1000-1522.20180246
    [2]Guo Yingli, Zhang Shouhong, Chen Mingxiu, Anaer, Jiang Yuchen, Cao Shuning, Xie Chaoshuai. Experimental study on runoff control performances for impervious area disconnection system of sandy loam soil green space in West Mountains of Beijing[J]. Journal of Beijing Forestry University, 2019, 41(6): 111-119. DOI: 10.13332/j.1000-1522.20180262
    [3]Gao Shumin, Yang Muhan, Zhu Yuanyuan, Zhou Yan. Role of CMLs in regulating the competition of plant pollen pollination[J]. Journal of Beijing Forestry University, 2019, 41(3): 143-150. DOI: 10.13332/j.1000-1522.20180375
    [4]YANG Gui-yan, ZHAO Zhen, ZHAO Yu-lin, ZHANG Feng-jiao, GAO Cai-qiu. Upstream regulators of ThVHAc1.[J]. Journal of Beijing Forestry University, 2015, 37(12): 1-6. DOI: 10.13332/j.1000-1522.20140486
    [5]GAO Qiong, NIU Shi-hui, LI Wei, CHEN Xiao-yang. Regulation of low temperature stress on gibberellin metabolism[J]. Journal of Beijing Forestry University, 2014, 36(6): 135-141. DOI: 10.13332/j.cnki.jbfu.2014.06.025
    [6]DU Yu-liang, CHEN Ye, LIU Cai-hong, YIN Zeng-fang. Molecular regulation mechanism of vascular pattern formation in plant[J]. Journal of Beijing Forestry University, 2014, 36(3): 142-150. DOI: 10.13332/j.cnki.jbfu.2014.03.023
    [7]KONG Ying, SUN Ming, PAN Hu-tang, ZHANG Qi-xiang. Advances in metabolism and regulation of floral scent.[J]. Journal of Beijing Forestry University, 2012, 34(2): 146-154.
    [8]SUN Qing-yan, YU Xin-xiao, HU Shu-ping, XIAO Yang. SWAT model-based runoff simulation in Banchengzi Reservoir Catchment,Beijing[J]. Journal of Beijing Forestry University, 2008, 30(supp.2): 148-154.
    [9]SUN Jing-shuang, ZHENG Hong-juan, JIA Gui-xia, SUN Chang-zhong, WEN Lei. Effects of different substrates, growth regulators, grades of cuttings and metabolism regulator on cutting propagation of Juniperus squamata‘Blue Star’[J]. Journal of Beijing Forestry University, 2008, 30(1): 67-73.
    [10]LI Fa-dong, SONG Xian-fang, LIU Chang-ming, YU Jing-jie, YANG Cong, LIU Xiang-chao, HU Kun, TANG Chang-yuan. Discharge recession from runoff plots in representative mountain area in North China[J]. Journal of Beijing Forestry University, 2006, 28(2): 79-84.
  • Cited by

    Periodical cited type(16)

    1. 谢微,尹若勇,温梦玲,张宝津,邓小梅. 诗琳通木兰对干旱胁迫的生理响应. 林业与环境科学. 2025(01): 111-118 .
    2. 冯柳俊,陈志强,陈志彪,罗立津,王健. 南方红壤侵蚀区芒萁对聚乙二醇6000模拟干旱胁迫的响应. 安徽农业科学. 2023(20): 66-69+108 .
    3. 梁青兰,韩友吉,乔艳辉,谢孔安,李双云,董玉峰,李善文,张升祥. 干旱胁迫对黑杨派无性系生长及生理特性的影响. 北京林业大学学报. 2023(10): 81-89 . 本站查看
    4. 张忠辉,王文涛,包广道,刘婷,罗也,刘志越. 我国杨树抗旱性研究进展. 吉林林业科技. 2023(06): 35-41 .
    5. 苑正赛,乔艳辉,王丽,王相娥,姚俊修,李善文,韩友吉,董玉峰. 镉胁迫对黑杨派无性系生物量及镉离子含量的影响. 北京林业大学学报. 2021(12): 38-46 . 本站查看
    6. 黄海霞,连转红,王亮,杨琦琦,魏振艳,马彦军,张金霞. 裸果木渗透调节物质和抗氧化酶活性对干旱的响应. 干旱区研究. 2020(01): 227-235 .
    7. 姚俊修,乔艳辉,杨庆山,仲伟国,李庆华,董玉峰,李善文,吴德军. 重金属镉胁迫对黑杨派无性系光合生理及生长的影响. 西北林学院学报. 2020(02): 40-46+107 .
    8. 姚俊修,陈甘牛,李善文,乔艳辉,仲伟国,李庆华,董玉峰,吴德军. 镉胁迫对黑杨派无性系生理生化特性及生长的影响. 北京林业大学学报. 2020(04): 12-20 . 本站查看
    9. 郑涛,樊军锋,高建社,周永学. 美洲黑杨无性系抗旱性综合评价研究. 西北林学院学报. 2019(02): 98-104 .
    10. 郑涛,樊军锋,高建社,周永学. 11个白杨派无性系抗旱性综合评价. 西北林学院学报. 2019(04): 101-106 .
    11. 张文婷,王子邦. 6种常见彩叶灌木对干旱胁迫的生理响应. 江苏农业科学. 2018(08): 123-126 .
    12. 王曦,胡红玲,胡庭兴,张城浩,王鑫,刘丹. 干旱胁迫对桢楠幼树渗透调节与活性氧代谢的影响及施氮的缓解效应. 植物生态学报. 2018(02): 240-251 .
    13. 苏丹,殷小琳,董智,慕德宇,张晓晓,贾淑友. 白榆无性系生长特性及离子分布对NaCl胁迫的响应. 北京林业大学学报. 2017(05): 48-57 . 本站查看
    14. 杨传宝,孙超,李善文,姚俊修,刘敬国,矫兴杰. 白杨派无性系苗期耐盐性综合评价及筛选. 北京林业大学学报. 2017(10): 24-32 . 本站查看
    15. 邓辉茗,龙聪颖,蔡仕珍,苏明洁,王小梅. PEG-6000模拟干旱协迫对大蓟叶片生理特性的影响. 西北植物学报. 2017(05): 959-964 .
    16. 崔博文,乔光,范付华,丁贵杰,文晓鹏. 不同种源马尾松种质耐低磷的主成分与灰色关联度分析. 西南大学学报(自然科学版). 2017(08): 49-56 .

    Other cited types(15)

Catalog

    Article views (416) PDF downloads (70) Cited by(31)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return